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Abstract

A new combinatorial result intertwined with the Brouwer fixed point theorem for the n-
cube is given. This result can be used for any map (f1, ..., fn): [0, 1]

n ® [0, 1]n to
approximate the components of the set {(x1, . . . , xn) Î [0, 1]n : fi(x1, . . . , xn) = xi} that
separate the n-cube between the ith opposite faces. Equivalently, for maps g : [0, 1]n ®
ℝ such that g(x)g(y) ≤ 0 for any x Î {0} × [0, 1]n-1 and y Î {1} × [0, 1]n-1, one can use the
algorithm to approximate the components of g-1(0) that separate [0, 1]n between {0} ×
[0, 1]n-1 and {1} × [0, 1]n-1. The methods are based on an earlier result of P. Minc and the
present authors and relate to results of several other authors such as Jayawant and
Wong, Kulpa and Turzański, and Gale.
Mathematics Subject Classification (2000): Primary 54H25; 54-04; Secondary
55M20; 54F55.
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1. Introduction
In [1] Minc and the present authors described combinatorial methods that allow

approximation of connected symmetric separators of the n-sphere and n-cube. The

symmetric separators arise in the context of the Borsuk-Ulam antipodal theorem and a

theorem of Dyson for the 2-sphere [2,3]. The purpose of the present paper is to show

how the results from [1] can be extended to the setting of asymmetric separators and

the Brouwer fixed point theorem for the n-cube. The classic result of L.E.J. Brouwer

says that the n-dimensional cube In = [0, 1]n has the fixed point property; that is, for

any mapa f : In ® In, there is x Î In such that f(x) = x. There are many important

applications of the Brouwer’s theorem such as, for example, those concerning existence

of solutions for differential equations [4], or equilibrium strategies in multi-person

games relating to market problems in economics [5]. This is why computability of

fixed points became an important theme in the fixed point theory. The first fixed point

algorithm was given by Scarf [6]. Soon after, other were given by Eaves [7] and Todd

[8] (see, for example, [9,10] for a comprehensive treatment of this subject with applica-

tions). There are also several combinatorial equivalents of Brouwer’s theorem. The best

known is probably Sperner’s lemma [11] on coloring vertices of a barycentric subdivi-

sion of an n-simplex. Some other transfer the fixed point problem to the scenario of

board games, such as Hex [12] or Chess [13].
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In the present paper, in Theorem 3.1, we formulate yet another combinatorial result

that implies the Brouwer fixed point theorem. Its baby version can be formulated as

follows.

Theorem 1.1. Suppose f : V® ℝ is a function defined on the set of vertices V of a trian-

gulation T of In. Suppose in addition that f(v1)f(v2) ≤ 0 for any vertices v1 Î {0} × In-1 and

v2 Î {1} × In-1. Then, there is a subcollection S ⊆ T of simplices of dimension n such that

1. for every simplex s Î S there is an edge [v, u] such that f (v) f (u) ≤ 0;

2. ∪S separates In between {0} × In-1 and {1} × In-1.

The above theorem implies the Brouwer fixed point theorem in the following way. If

(f1, . . . , fn): I
n ® In is a map and X is a polyhedral complex with In as its underlying

space, then each gi(x1, . . . , xn) = fi(x1, . . . , xn) -xi satisfies the assumptions of Theo-

rem 1.1 and one can find Ci, an approximation of a component of g−1
i (0), that sepa-

rates In between the ith opposite (n - 1)-dimensional faces. By Eilenberg-Otto theorem

(see [14])
⋂

n
i=1Ci is nonempty and approximates a fixed point of f.

We give a stronger (but at the same time more technical) version of the above result in

Theorem 3.1, and in Section 4, we show how along with Theorem 4.1 it can be used to

approximate a connected separating component of the set of zeros of an arbitrary map f

: In ® ℝ, which assumes opposite signs on some two opposite (n - 1)-faces of In. The

case when n = 2 was already considered in [15]. The methods used in the proof of Theo-

rem 3.1 are based on those introduced in [1] where, in connection with the Borsuk-

Ulam antipodal theorem, it was shown how to approximate a connected separator of the

n-sphere Sn (or In), invariant under the antipodal map. Any such separator was corre-

sponding to a component of f-1(0), with f : Sn ® ℝ (or f : In® ℝ) an odd map (related

combinatorial results can be found in [2,16]). However, the methods of [1] were dealing

only with symmetric separators and are insufficient in the case of arbitrary separators.

First, unlike in the case of symmetric separators and odd maps, if a map f : In ® R satis-

fies the condition f({1} × In-1) ⊆ [0, ∞) and f({0} × In-1) ⊆ (-∞, 0] for some i = 1, . . . , n,

there may be no unique connected separator of In in f-1(0). Clearly, f-1(0) may consist of

several disjoint separating components, none of which needs to be symmetric. Second,

the algorithms in [1] were making use of the fact that the symmetric component of f-1(0)

is the separating omponent, when f is odd. Therefore, if a subcollection of the triangula-

tion approximated a component of f-1(0) and, at the same time, was symmetric, this was

sufficient to determine that it separated Sn (or In). This is why one is forced to develop

new combinatorial criteria for arbitrary separators in In. In Section 4 we furnish such a

computer implementable criterion that allows isolating those subcollections of the trian-

gulation, approximating a component of f-1(0), that separate In from those that do not.

2. Preliminaries
For a collection of sets K, by K∗ we will denote the union of all its elements. πi : [0, 1]

n ®
[0, 1] will denote the projection onto the ith coordinate. I+i and I−i will denote the ith

opposite (n - 1)-dimensional faces of In, that is I+i = π−1
i (1)and I−i = π−1

i (0). C separates

In (or is a separator of In) between I+i and I−i if for any x ∈ I+i \C,y ∈ I−i \C, there are U, V ,

distinct components of In\C, such that x Î U and y Î V. A map g : X ∗ → R is piecewise

linear if given {sj : j = 1, . . . , N}, a triangulation of X ∗, for every j the restriction of g to
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the simplex sj is linear, that is g
(∑k

i=1
λiai

)
=

∑k

i=1
λig(ai) where a1, . . . , ak are the

vertices spanning sj and li ≥ 0 with
∑k

i=1
λi = 1 (see [17]).

We will heavily rely on the following inductive procedure introduced by Minc and

the two authors in [1]. Let X be a polyhedral complex such that X ∗ = [0, 1]n. Let

V(X ) and E(X ) denote the collections of vertices and edges, respectively. Suppose

f : V(X ) → R is a function. Let Ef be the collection of those edges e = 〈u, v〉 ∈ E(X )

that f (u) f (v) ≤ 0. Let P ⊂ X be the collection of polytopes in X of dimension n. For

any e ∈ Ef ,C(e) is defined by induction.

• Let C0(e) be the collection of those P ∈ P that contain e.

• Suppose Ci−1(e) has been defined. Define Ci(e) to be the collection of those

P ∈ P such that the intersection P ∩ Ci−1(e)∗ contains an edge from Ef or a vertex

from f-1 (0).

Clearly, Ci−1(e) ⊂ Ci(e) and there is an integer q ≥ 0 such that Cq(e) = Cq+1(e). For
the first such number q (e) set C(e) = Cq(e)(e). Note that e ⊂ C(e)∗, and C(e)∗ is

connected.

3. Combinatorial theorem on separators of In between opposite faces
Let c be a polyhedral complex such that X ∗ = [0, 1]n. Note that X can be subdivided

to give a triangulation of In, without introducing new vertices [18], and consequently,

every function f : V(X ) → R has a piecewise linear extension g : In ® ℝ. The follow-

ing result is of purely combinatorial nature.

Theorem 3.1. Suppose that f : V(X ) → Ris a function satisfying

f (V(X ) ∩ I+i ) ⊆ [0, +∞), f (V(X ) ∩ I−i ) ⊆ (−∞, 0] (3:1)

for some i Î{1, . . . ,n}. Let Lbe a subcollection of E(X )such that L∗ ⊆ Iεj for some j ≠ i

andε Î {+, -}, and L∗is an arc with endpoints in I+i and I−i . Then, there is an edge

d ∈ E(X ) ∩ Lsuch that d ∈ Efand

1. each C ∈ C(d)contains an edge from Ef ,
2. C(d)∗separates In between I+i and I−i and

3. for any other such d′ ∈ Lwith C(d′)∗satisfying (1)-(2), either C(d′) ∩ C(d) = ∅or
C(d′) = C(d).

Proof. Without loss we can assume that i = 1. Let g : In ® ℝ be a piecewise linear

extension of f. Then, g is continuous and g(v) = f(v) for any v ∈ V(X ).

Claim 3.1.1. If K ∈ X , then g(r) = 0 for some r Î K if and only if there is an edge

[w, v] ∈ E(X ) such that w, v ∈ K ∩ V(X ) and f (w) f (v) ≤ 0.

Proof of claim 3.1.1. First suppose K ∈ X is such that there are vertices

w, v ∈ K ∩ V(X ), and f (w) f (v) ≤ 0. Then, either f(w)f(v) = 0 or f(w)f(v) <0. In the first

case, clearly g(w) = f(w) = 0 or g(v) = f(v) = 0. Otherwise there must be r Î [u, v] such

that g(r) = 0. For the converse, suppose g(r) = 0 for some r Î K. Then, r =
∑k

i=1
λiai,

where ao, . . . , ak are vertices of K spanning a simplex s ⊆ K, and li ≥ 0 with
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0 = g(r) =
∑k

i=1 λig(ai) =
∑k

i=1 λif (ai). Therefore, 0 = g(r) =
∑k

i=1 λig(ai) =
∑k

i=1 λif (ai).

Clearly, there is l such that f(al) = 0, or there are aj, at such that f(aj)f(at) <0. □
Claim 3.1.2. g(I+i ) ⊆ [0, +∞), g(I−i ) ⊆ (−∞, 0].

Proof of claim 3.1.2. Similarly to the proof of claim 3.1.1, this follows from the fact

that if ao, . . . , ak spans a simplex s and g (ai) ≥ 0 (g(ai) ≤ 0) for every i, then∑k
i=1 λig(ai) ≥ 0(

∑k
i=1 λig(ai) ≤ 0) for li ≥ 0. Consequently, g(s) ⊆ [0,+∞) (g(s) ⊆ (-∞,

0]) for any such s. □
Now, consider the following decomposition of the n-cube.

Z = {x Î In : g(x) = 0}, N = {x Î In : g(x) <0}, P = {x Î In : g(x) >0}. Clearly Z sepa-

rates In between P and N. Let Z1, . . . , Zp be the components of Z. It is well known

that if X is a connected, locally connected and unicoherent space then any closed set

separating X contains a connected subset separating X ([[19], p. 195], cf. [[20], p. 429,

Theorem 1.(vi)]). Since Z is closed and separates In, by unicoherence of In, there must

be q such that Zq separates I
n between N and P. Consequently, Zq separates I

n between
I+i and I−i by claim 3.1.2.

Consider S a subcollection of K such that K ∈ S if, it has nonempty intersection

with Zq, that is S = {K ∈ X : K ∩ Zq �= ∅}. Clearly Zq ⊆ S∗ and therefore S∗ separates In

between I+i and I−i .
Now, let L be a subcollection of E(X ) such that L∗ ⊆ Iεj for some j ≠ 1 and ε Î {+, -},

and L∗ is an arc with endpoints a ∈ I+1 and b ∈ I−1 , that is L∗ = [a, b]. Since Zq ∩ Bd (In)

separates Bd (In) between I+i and I−i , we conclude there is z Î [a, b] ∩ Zq. Additionally,

there is d ∈ L such that z Î d. By claim 3.1.1 d ∈ Ef ∩ L, and since d ∩ Zq ≠ ∅ therefore

d ∈ S.
Claim 3.1.3. S ⊆ C(d).
Proof of claim 3.1.3. Let L ∈ S be such that d Î L. Clearly L ∈ C0(d) ⊆ C(d). Heading

toward a contradiction suppose S\C(d) �= ∅. Consider a partition of S into the follow-

ing two sets

S1 = {T ∈ S : T ∈ C(d)},S2 = {T ∈ S : T /∈ C(d)}.

By definition of C(d), for any T ∈ S2 and for any T̃ ∈ S1, we must have that whenever

s ∈ E(X ) and s ⊆ T ∩ T̃ then s �∈ Ef . Otherwise T would be in S1. Therefore,

(T ∩ T̃) ∩ Zq = ∅, by claim 3.1.1. Consequently, there is a partition of Zq into two dis-

joint sets Zq ∩ S∗
1 and Zq ∩ S∗

2. Since both are closed, we obtain a contradiction with

connectedness of Zq. □
Now, property (1) is an immediate consequence of the definition of C(d). Since

S∗⊆∗C(d), (2) easily follows from the fact that S∗ separates In between I+i and I−i . Now,

suppose d′ ∈ L is another edge with C(d′)∗ satisfying (1)-(2). If C(d′) ∩ C(d) �= ∅, then
there is K such that K ∈ Cj(d) and K ∈ Cp(d′) for some j and p. Consequently,⋃j

i=0
Ci(d) ⊆

⋃q(d′)

i=p
Ci(d′) and

⋃q(d)

i=j
Ci(d) ⊆

⋃q(d′)

i=p
Ci(d′), by definition of C(d′).

Clearly C(d) ⊆ C(d′). Similarly C(d′) ⊆ C(d). That justifies (3) and completes the

proof. □

Boroński and Turzański Fixed Point Theory and Applications 2012, 2012:2
http://www.fixedpointtheoryandapplications.com/content/2012/1/2

Page 4 of 7



4. Algorithm approximating connected separators of In

Suppose K is a partition of In into kn congruent n-cubes, all with side length equal to 1
k.

In this section we shall furnish a computer implementable criterion for the union of a

subcollection of K to separate In between some two opposite faces. Suppose S ⊆ K
and we want to determine if S∗ separates In between I+i and I−i .
Let K ∈ K\S be an n-cube. G is a j-face of K if dim (G) = j and G = K ∩ L for some

K, L ∈ K. We will define Comp (K,S) by induction. Let Comp1 (K,S) consists of K

and all those cubes L in K\S such that K ∩ L is an (n - 1)-face. Suppose Compp(K,S)
has already been defined and let Compp+1(K,S) consists of all cubes in Compp(K,S),
and all those cubes R in K\S for which there is a cube L Î Compp(K,S) such that L ∩
R is an (n - 1)-face. Since K consists of only finite number of cubes Compq(K,S) =
Compq+1 (K,S) for some natural number q. Let q(K) be the first such number and let

Comp (K,S) = Compq(K)(K,S).
Theorem 4.1. S∗separates In between I+i and I−i iff

Comp (K,S)∗ ∩ I−i = ∅ for every K ∈ Ksuch that K ∩ I+i �= ∅. (4:1)

Proof. If the condition (4.1) is not satisfied, then clearly S∗ does not separate In

between I+i and I−i . Namely, Comp (K,S)∗ for some K contains a connected set, disjoint

with S∗, intersecting both I+i and I−i in a nonempty set. For the converse, by contradic-

tion suppose that the condition (4.1) is satisfied but S∗ does not separate In between I+i
and I−i . Let A be a connected component of In\S∗ intersecting both I+i and I−i in a

nonempty set. Let R be a subcollection of K\S such that R∗ is connected and

A ⊆ R∗. Without loss of generality, we can assume that R is a minimal such collec-

tion. We will obtain a contradiction showing, by induction, that for any two cubes in

R if their intersection is an m-face, then m ∉ {0, . . . , n - 2}. Suppose K, L ∈ R are

two cubes such that K ∩ L ≠ ∅ but L ∉ Comp (K,S). Since K ∩ L must be an m-face,

for some m < n, we must have that K ∩ L is an m-face with m < n - 1. Suppose m = n

- 2, then there are exactly 22 - 2 other cubes sharing this m-face. Let T be any of those

two cubes. Then, T ∩ K and T ∩ L are (n - 1)-faces, K ∩ L ⊆ T and T must be in S. A
contradiction with the fact that (K ∩ L) ∩ A ≠ ∅ and therefore m ≠ n - 2. Suppose we

have already proved that m < n - i. We shall show that m ≠ n - (i + 1). Suppose other-

wise, that is K ∩ L is an n - (i + 1)-face, for some K, L ∈ R. Then, there are 2i+1 - 2

other cubes having this n - (i + 1)-face in common. Let T be one of them such that T

∩ K is an (n - 1)-face. Then, T ∩ L is an (n - i)-face and K ∩ L ⊆ T. Since (K ∩ L) ⊆ T

and (K ∩ L) ∩ A ≠ ∅, therefore A ∩ T ≠ ∅ and T /∈ S. Consequently, T Î Comp (K,S)
with T ∩ L an (n - i)-face, which leads to a contradiction by an inductive step.

It follows that for any two K, L ∈ R we have L Î Comp (K,S). Consequently,
R = Comp (K,S) for some K such that K ∩ I+i �= ∅ and Comp (K,S)∗ ∩ I−i �= ∅. A con-

tradiction that completes the proof. □
A collection of cubes in K and the collection of the faces of all dimensions of cubes in K

forms a polyhedral complex withK as its generating collection. Denote this complex byX .

Suppose f : V(X ) → R is such that f (v) ≥ 0 for each v ∈ V(X ) ∩ I+1 and f (v) ≤ 0 for

each v ∈ V(X ) ∩ I−i . We will make use of Theorems 3.1 and 4.1 to obtain an algorithm

finding C(d) ⊂ K, for all d ∈ Ef , such that the following is true
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1. each C ∈ C(d) contains an edge from Ef ,
2. C(d)∗ is connected, and
3. C(d)∗ separates In between x ∈ I+1 and y ∈ I−1 for each x, y ∈ In\C(d)∗.

Set L = {[ ik , i+1k ] × {0} × ... × {0} : i = 0, ..., k − 1}, and notice that L∗is a segment

joining I+i and I−i . Therefore, C(d) will be the desired collection satisfying (1) - (3) for

some d ∈ L.
Algorithm (outline)

Step 1. Add all elements of Ef ∩ L to List A.

Step 2. Repeat Step 3-Step 11 until List A is empty.

Step 3. Pick an edge d from List A.

Step 4. Generate C(d). Remove d from List A.

Step 5. Add all elements K ∈ K such that K ∩ I+i �= ∅ to List B.

Step 6. Repeat Step 7-Step 9 until List B is empty.

Step 7. Pick a cube K from List B.

Step 8. Generate Comp (K, C(d)). Remove K from List B.

Step 9. If there is L Î Comp (K, C(d)) such that L ∩ I−i �= ∅ then go back to Step 3.

Otherwise, go back to Step 7.

Step 10. List all elements from C(d) (C(d)∗ is a separator).

Step 11. Go back to Step 3.

Endnote
aBy a map we will always mean a continuous function. Whenever continuity is not

assumed we will use the term function instead.
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