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Abstract

In this article, we introduce a new iterative scheme for finding a common element
of the set of fixed points of strongly relatively nonexpansive mapping, the set of
solutions for equilibrium problems and the set of zero points of maximal monotone
operators in a uniformly smooth and uniformly convex Banach space. Consequently,
we obtain new strong convergence theorems in the frame work of Banach spaces.
Our theorems extend and improve the recent results of Wei et al., Takahashi and
Zembayashi, and some recent results.

1 Introduction
Let E be a real Banach space with norm ∥ · ∥ and let C be a nonempty closed convex

subset of E. Let E* be the dual space of E and 〈·,·〉 denote the pairing between E and

E*. We consider the problem for finding:

v ∈ E such that 0 ∈ Av, (1:1)

where A is an operator from E into E*, such that v Î E is called a zero point of A, i.

e., A-10 = {v Î E : Av = 0}. Such a problem contains numerous problems in economics,

optimization and physics. Many authors studied this problem see, for example [1-5]

and references therein.

Let F : C × C ® ℝ be a bifunction, where ℝ is the set of real numbers. The equili-

brium problem for F : C × C ® ℝ is to find x Î C such that

F(x, y) ≥ 0, ∀y ∈ C. (1:2)

The set of solutions of is denote by EP(F). The above formulation (1.2) was shown in

[6] to cover monotone inclusion problems, saddle point problems, variational inequal-

ity problems, minimization problems, vector equilibrium problems, Nash equilibria in

noncooperative games. In addition, there are several other problems, for example, the

complementarity problem, fixed point problem and optimization problem, which can

also be written in the form of an EP(F). In other words, the EP(F) is an unifying model

for several problems arising in physics, engineering, science, optimization, economics,

see, for example [6-9] and references therein.

In 2009, Takahashi and Zembayashi [10], proposed the iteration in a uniformly

smooth and uniformly convex Banach space: as sequence {xn} generated by x1 Î E,
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{
F(un, y) + 1

rn

〈
y − un, Jun − Jxn

〉 ≥ 0, ∀y ∈ C,
xn+1 = J−1 (αnJun + (1 − αn) JSun) ,

(1:3)

for every n Î N, where J is duality mappings form E to E*, S is a relatively nonexpan-

sive self mapping on C and {an} is appropriate positive real sequence. They proved that

if J is weakly sequentially continuous, then {xn} converges weakly to some element in

EP(F) ∩ F(S), where F(S) is the fixed point set of S i.e., F(S) := {x Î C : Sx = x}.

In 2010, Wei et al. [5], constructed the following iterative scheme to approximate the

common element of the set of fixed points of a relatively nonexpansive mapping S : E

® E and the set of zero points of a maximal monotone operator A : E ® 2E* :⎧⎨
⎩
x1 ∈ E,
yn = J−1

(
βnJxn + (1 − βn)JQA

λxn
)
,

xn+1 = J−1
(
αnJxn + (1 − αn)JSyn

)
,

(1:4)

for every n Î N, where QA
λ : E → E∗ define by QA

λx = (J + λA)−1Jx for all x Î E and

{an}, {bn} are sequence in [0,1). They proved that if J is weakly sequentially continuous,

then {xn} converges weakly to some element in F(S) ∩ A-10.

Recently, Nilsrakoo [11], proved a strong convergence theorem for finding a com-

mon element of the fixed points set of a relatively nonexpansive mapping and the set

of solutions of an equilibrium problem in a uniformly convex and uniformly smooth

Banach space. In this article, motivated by the above results and the iterative schemes

considered of Wei, et al. [5], Takahashi and Zembayashi [10], we present a new itera-

tive scheme for approximation of a common element in the intersection of the set of

solutions for equilibrium problems, the set of zero points of maximal monotone opera-

tors and set of fixed points for relatively nonexpansive mapping in a uniformly smooth

and uniformly convex Banach space. We prove a strong convergence theorem under

some mind conditions. The results presented in this article extend and improve the

results of Wei et al. [5], Takahashi and Zembayashi [10], and some authors.

2 Preliminaries
Let E be a real Banach space and let E* be the dual space of E. For q > 1, the general-

ized duality mapping Jq : E ® 2E* is defined by

Jq(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖q, ∥∥f∥∥ = ‖x‖q−1}

for all x Î E. In particular, if q = 2, the mapping J2 is called the normalized duality

mapping and usually write J2 = J.

Let U = {x Î E : ∥x∥ = 1}. A Banach space E is said to be strictly convex if∥∥∥x + y

2

∥∥∥ < 1 for all x, y Î U and x ≠ y. A Banach space E is said to be uniformly convex

if, for any � Î (0, 2], there exists δ > 0 such that, for any x, y Î U, ∥x - y∥ ≥ � implies∥∥∥x + y

2

∥∥∥ ≤ 1 − δ. It is known that a uniformly convex Banach space is reflexive and

strictly convex. A Banach space E is said to be smooth if the limit

limt→0

∥∥x + ty
∥∥ − ‖x‖
t

exists or all x, y Î U. It is also said to be uniformly smooth if the

limit is attained uniformly for x, y Î U. The modulus of smoothness of E is defined by
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ρ(τ ) = sup
{
1
2

(∥∥x + y
∥∥ +

∥∥x − y
∥∥) − 1 : x, y ∈ E, ‖x‖ = 1,

∥∥y∥∥ = τ

}
,

where r : [0, ∞) ® [0, ∞) is a function. It is known that E is uniformly smooth if and

only if limτ→0
ρ(τ)

τ
= 0. Let q be a fixed real number with 1 <q ≤ 2.

A Banach space E is said to be q-uniformly smooth if there exists a constant c > 0

such that r(τ) ≤ cτq for all τ > 0.

We note that E is a uniformly smooth Banach space if and only if Jq is single-valued

and uniformly continuous on any bounded subset of E. Typical examples of both uni-

formly convex and uniformly smooth Banach spaces are Lp, where p > 1. More pre-

cisely, Lp is min{p, 2}-uniformly smooth for every p > 1.

A multi-valued operator A : E ® 2E*;

(i) The graph of A, G(A) = {(u, v) | u Î E and v Î A(u)};

(ii) A is said to be monotone if 〈x1 - x2, y1 - y2〉 ≥ 0, x1, x2 Î D(A), y1 Î Ax1, y2 Î
Ax2;

(iii) A is maximal monotone if it is monotone and its graph is maximal with

respect to this property, i.e., it is not properly contained in the graph of any other

monotone operator.

Example. The mapping A : ℝ ® 2ℝ defined by

A(x) =

⎧⎨
⎩
x − a, x < 0,
[−a, a], x = 0,
x + a, x > 0.

(2:1)

Then, A is a monotone mapping.

Note. A is maximal monotone if and only if A(x) = [-a, a], when x = 0.

Let E be smooth Banach space and J the normalized duality mapping from E to E*.

Alber [12] considered the following functional � : E × E ® [0, ∞) defined by

ϕ(x, y) = ‖x‖2 − 2
〈
x, Jy

〉
+

∥∥y∥∥2, x, y ∈ E. (2:2)

It is obvious from the definition of the function � that(‖x‖ − ∥∥y∥∥)2 ≤ ϕ(x, y) ≤ (‖x‖ +
∥∥y∥∥)2

and

ϕ
(
x, J−1 (

tJy + (1 − t)Jz
)) ≤ tϕ(x, y) + (1 − t)ϕ(x, z) (2:3)

for all t Î [0,1] and x, y, z Î E. The following lemma is an analogue of Xu’s inequal-

ity with respect to �.

Lemma 2.1. [11]Let E be a uniformly smooth Banach space and r > 0. Then there

exists a continuous, strictly increasing, and convex function g : [0, 2r] ® [0, ∞) such

that g(0) = 0 and

ϕ
(
x, J−1 (

tJy + (1 − t)Jz
)) ≤ tϕ(x, y) + (1 − t)ϕ(x, z) − t(1 − t)g

(∥∥Jy − Jz
∥∥)

(2:4)

for all t Î [0,1], x Î E and y, z Î Br.
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Let C be a closed convex subset of E, and S be a mapping from C into itself. Let F(S)

= {x Î C : Sx = x} be the set of fixed points of S. A point p Î C is said to be an

asymptotic fixed point S if C contains a sequence {xn} which converges weakly to p

such that limn®∞(xn - Sxn) = 0. The set of asymptotic fixed points of S will denoted by

F̂(s).

A mapping S from C into itself is said to be relatively nonexpansive if

(C1) F(s) 	= ∅;
(C2) �(p, Sx) ≤ �(p, x) for all x Î C and p Î F(S);

(C3) F̂(S) = F(S).

A mapping S from C into itself is said to be strongly relatively nonexpansive if

(D1) S is relatively nonexpansive;

(D2) �(Sxn,xn) ® 0 whenever {xn} is bounded sequence in C such that �(p, xn) - �(p,

Sxn) ® 0 for some p Î F(S).

Lemma 2.2. [13]The duality mapping J has the following properties:

(i) If E is a real reflexive and smooth Banach space, then J : E ® E* is single-valued;

(ii) For all x Î E and l > 0, J(lx) = lJx;
(iii) If E is strictly convex, then J is one to one and strictly monotone, that is, 〈x - y,

x* - y*〉 > 0 hold for all x* Î Jx and y* Î Jy with x ≠ y;

(iv) If E is a real uniformly convex and uniformly smooth Banach space, then J-1 : E*

® E is also a duality mapping. Moreover, both J and J-1 are uniformly continuous

on each bounded subset of E or E*, respectively.

Lemma 2.3. [8,12]Let E be a real reflexive, strictly convex and smooth Banach space,

let C be a nonempty closed and convex subset of E, and x Î E. Then there exists a

unique element x0 Î C such that �(x0,x) = min{�(z,x) : z Î C}.

In this case, the mapping ΠC of E onto C defined by 	Cx = x0 for all x Î E is called

the generalized projection operator.

Lemma 2.4. [14]Let E and C be the same as those in Lemma 2.3. Let x Î E and

x̂ ∈ C. Then,

(a) x̂ = 	Cx if and only if
〈
y − x̂, Jx − Jx̂

〉 ≤ 0, for all y Î C;

(b) ϕ
(
y,	Cx

)
+ ϕ (	Cx , x) ≤ ϕ(y, x), for all y Î C.

Lemma 2.5. [14]Let E be a real smooth and uniformly convex Banach space and let

{xn} and {yn} be two sequences of E. If either {xn} or {yn} is bounded and �(xn, yn) ® 0

as n ® ∞, then xn - yn ® 0 as n ® ∞.

Lemma 2.6. [8]Let E be a real smooth and strictly convex Banach space and let C be

a closed convex subset of E, and let S be a relatively nonexpansive mapping from C into

itself. Then F(S) is convex and closed.

Lemma 2.7. [14]Let E be a real smooth Banach space, let C be a convex subset of E,

let x Î E and x0 Î C. Then �(x0,x) = inf{�(z, x) : z Î C} if and only if 〈z - x0, Jx0 - Jx〉

≥ 0 for all z Î C.

Lemma 2.8. [13,15]Let E be a real smooth and uniformly convex Banach space and

let A : E ® 2E* be a maximal monotone operator. Then A-10 is a closed and convex
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subset of E and the graph G(A) of A, is demi-closed in the following sense: for all {xn} ⊂
D(A) with xn ⇀ x Î E and yn Î Axn with yn ® y Î E*, we have x Î D(A) and y Î Ax.

Definition 2.9. Let E and A be the same as these in Lemma 2.8. For all l > 0, define

the operator QA
λ : E → E by QA

λx = (J + λA)−1Jx for all x Î E.

Lemma 2.10. [16]Let E be a real reflexive, strictly convex and smooth Banach space

and let A : E ® 2E* be a maximal monotone operator with A-10. Then, for all x Î E, y

Î A-10 and l > 0, we have ϕ
(
y,QA

λx
)
+ ϕ

(
QA

λx, x
) ≤ ϕ(y, x).

Let E be a reflexive, strictly convex and smooth Banach space. The duality mapping

J* from E* onto E** = E coincides with the inverse of the duality mapping J from E

onto E*, that is, J* = J-1. We make use of the following mapping V : E × E ® ℝ studied

in Alber [12]:

V(x, x∗) = ‖x‖2 − 2
〈
x, x∗〉 + ∥∥x∗∥∥2 (2:5)

for all x Î E and x* Î E*. Obviously, V(x, x*) = �(x, J-1(x*)). We know the following

lemma.

Lemma 2.11. [11]Let E be a reflexive, strictly convex and smooth Banach space and

let V be as in (2.5). Then

V(x, x∗) + 2
〈
J−1(x∗) − x, y∗

〉 ≤ V(x, x∗ + y∗)

for all x Î E and x*, y* Î E*.

For solving the equilibrium problem, let us give the following assumptions for the

bifunction F : C × C ® ℝ, satisfies the following conditions:

(A1) F(x, x) = 0, ∀x Î C;

(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0, ∀x, y Î C;

(A3) for each x, y, z Î C, lim
t↓0

F
(
tz + (1 − t)x, y

) ≤ F(x, y);

(A4) for each x Î C, y ↦ F(x, y) is convex and lower semi-continuous.

In what follows, we shall make use of the following lemmas.

Lemma 2.12. [10]Let C be a closed convex subset of smooth, strictly convex and

reflexive Banach space E, let F : C × C ® ℝ be a bifunction satisfies (A1)-(A4) and let

r > 0 and x Î E. Then, there exists z Î C such that

F(z, y) +
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C.

Lemma 2.13. [10]Let C be nonempty closed convex subset of a uniformly smooth,

strictly convex and reflexive Banach space E. Let F : C × C ® ℝ be a bifunction satis-

fies (A1)-(A4). For r > 0 and x Î E, define a mapping Tr : E ® C as follows:

Tr(x) =
{
z ∈ C : F(z, y) +

1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C
}
,

for all x Î C. Then, the following conclusions hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e., for any x, y Î E, 〈Trx - Try, JTrx -

JTry〉 ≤ 〈Trx - Try, Jx - Jy〉;

(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.
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Lemma 2.14. [17]Let C be a nonempty closed convex subset of a Banach space E, let

F : C × C ® ℝ. be a bifunction satisfying conditions (A1)-(A4) and z Î C. Then z Î EP

(F) if and only if F(y, z) ≤ 0, ∀y Î C.

Remark 2.15. [18] Let C be a nonempty subset of a smooth Banach space E. If S : C

® E is firmly nonexpansive-type mapping, then

ϕ(z, Sx) ≤ ϕ(z, Sx) + ϕ(Sx, x) ≤ ϕ(z, x)

for all x Î C and z Î F(S). In particular, S satisfies condition (C2).

Lemma 2.16. [19]Let {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − bn)an + bncn, n ≥ 0

where {bn} is a sequence in (0,1) and {cn} is a sequence in ℝ such that

(1)
∑∞

n=1 bn = ∞, limn®∞ bn = 0;

(2) lim supn®∞ cn ≤ 0.

Then limn®∞ an = 0.

Lemma 2.17. [20]Let {an} be a sequence of real numbers such that there exists a sub-

sequence {ni} of {n} such that ani < ani+1for all iÎN. Then there exists a nondecreasing

sequence {mk} ⊂ N such that mk ® ∞,

amk ≤ amk+1 and ak ≤ amk+1, (2:6)

for all k Î N. In fact, mk = max{j ≤ k : aj <aj+1}.

3 Main result
In this section, we prove a strong convergence theorem for finding a common element

of the set of solutions for equilibrium problems, the set of zero points of maximal

monotone operators and set of fixed points for strongly relatively nonexpansive map-

ping in a uniformly convex and uniformly smooth Banach space.

Theorem 3.1. Let C be nonempty closed convex subset of a uniformly convex and

uniformly smooth Banach space E, F: C × C ® ℝ bea bifunction satisfying conditions

(A1)-(A4), S : C ® C be a strongly relatively nonexpansive mapping, and let A : E ®
2E* be a maximal monotone operator with 
 =: F(S) ∩ EP(F) ∩ A−1(0) 	= ∅. For a posi-

tive number l, let the sequence {xn} be generated by x0 Î C, x1 Î E and⎧⎨
⎩
F(un, y) + 1

rn

〈
y − un, Jun − Jxn

〉 ≥ 0, ∀y ∈ C,
yn = 	CJ−1

(
βnJx0 + (1 − βn)JQA

λun
)
,

xn+1 = J−1
(
αnJun + (1 − αn)JSyn

)
,

(3:1)

for every n ≥ 1, where {an}, {bn} are sequences in [0,1), and {rn} ⊂ (0, ∞). If the control

sequences satisfy the following restrictions:

(i)
∑∞

n=1 βn = ∞and limn®∞ bn = 0;

(ii) 0 < lim infn®∞ an ≤ lim supn®∞ an < 1;

(iii) lim infn®∞ rn > 0.

Then {xn} and {un} converge strongly to p = ΠΩ(x0), where ΠΩ is the generalized pro-

jection from E onto Ω.

Proof. First, taking p = ΠΩ(x0), since 	C,Trn ,Q
A
λ
and S satisfy the condition (C2) and

(2.4), un = Trnxn, it follows that
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ϕ(p, yn) = ϕ
(
p,	CJ−1 (

βnJx0 + (1 − βn)JQA
λun

))
≤ ϕ

(
p, J−1 (

βnJx0 + (1 − βn)JQA
λun

))
≤ βnϕ(p, x0) + (1 − βn) ϕ

(
p,QA

λun
)

≤ βnϕ(p, x0) + (1 − βn)ϕ(p, un)

= βnϕ(p, x0) + (1 − βn)ϕ(p,Trn xn)

≤ βnϕ(p, x0) + (1 − βn)ϕ(p, xn)

and

ϕ(p, xn+1) = ϕ
(
p, J−1 (

αnJun + (1 − αn)JSyn
))

≤ αnϕ(p, un) + (1 − αn)ϕ(p, Syn)

= αnϕ
(
p,Trn xn

)
+ (1 − αn)ϕ(p, Syn)

≤ αnϕ(p, xn) + (1 − αn)ϕ(p, yn)

≤ αnϕ(p, xn) + (1 − αn)βnϕ(p, x0) + (1 − αn)(1 − βn)ϕ(p, xn)

= (1 − αn)βnϕ(p, x0) +
(
1 − βn(1 − αn)

)
ϕ(p, xn)

≤ max
n≥1

{
ϕ(p, x0),ϕ(p, xn)

}
≤ · · ·
≤ max

n≥1

{
ϕ(p, x0),ϕ(p, x1)

}
.

This show that {xn} is bounded. Hence {un}, {yn} and {Syn} are also bounded.

Put vn = J−1 (
βnJx0 + (1 − βn)JQA

λun
)
.

Using Lemma 2.11 gives

ϕ(p, yn) = ϕ(p,	Cvn)

≤ ϕ(p, vn) = V(p, Jvn)

≤ V
(
p, Jvn − βn

(
Jx0 − Jp

)) − 2
〈
vn − p,−βn

(
Jx0 − Jp

)〉
= ϕ

(
p, J−1 (

βnJp + (1 − βn)JQA
λun

))
+ 2βn

〈
vn − p, Jx0 − Jp

〉
≤ βnϕ(p, p) + (1 − βn)ϕ

(
p,QA

λun
)
+ 2βn

〈
vn − p, Jx0 − Jp

〉
≤ βnϕ(p, p) + (1 − βn)ϕ(p, un) + 2βn

〈
vn − p, Jx0 − Jp

〉
= βnϕ(p, p) + (1 − βn)ϕ

(
p,Trn xn

)
+ 2βn

〈
vn − p, Jx0 − Jp

〉
≤ (1 − βn)ϕ(p, xn) + 2βn

〈
vn − p, Jx0 − Jp

〉
.

(3:2)

Let g : [0, 2r] ® [0, ∞) be a function satisfying the properties of Lemma 2.1, where r

= supn≥1{∥un∥, ∥Syn∥}.
By Lemma 2.1, Remark 2.15 and (3.2), we get

ϕ(p, xn+1) = ϕ
(
p, J−1 (

αnJun + (1 − αn)JSyn
))

≤ αnϕ(p, un) + (1 − αn)ϕ(p, Syn) − αn(1 − αn)g
(∥∥Jun − JSyn

∥∥)
≤ αn

(
ϕ(p, xn) − ϕ(un, xn)

)
+ (1 − αn)ϕ(p, yn) − αn(1 − αn)g(

∥∥Jun − JSyn
∥∥)

≤ αn
(
ϕ(p, xn) − ϕ(un, xn)

)
+ (1 − αn)

(
(1 − βn)ϕ(p, xn) + 2βn

〈
vn − p, Jx0 − Jp

〉)
− αn(1 − αn)g

(∥∥Jun − JSyn
∥∥)

=
(
1 − (1 − αn)βn

)
ϕ(p, xn) + 2(1 − αn)βn

〈
vn − p, Jx0 − Jp

〉
− αnϕ(un, xn) − αn(1 − αn)g

(∥∥Jun − JSyn
∥∥)

(3:3)

≤ (
1 − (1 − αn)βn

)
ϕ(p, xn) + 2(1 − αn)βn

〈
vn − p, Jx0 − Jp

〉
. (3:4)

We divide the proof into two parts:
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Case 1. Suppose that there exists n0 Î N such that
{
ϕ(p, xn)

}∞
n=n0

is nonincreasing. In

this situation,
{
ϕ(p, xn)

}∞
n=n0

is convergent. Then

ϕ(p, xn) − ϕ(p, xn+1) → 0, as n → ∞. (3:5)

From (3.3) and bn ® 0, we have

αnϕ(un, xn) + αn(1 − αn)g
(∥∥Jun − JSyn

∥∥) → 0, as n → ∞.

Since {an} ⊂ [a, b] ⊂ (0,1), we get

ϕ(un, xn) → 0 and g
(∥∥Jun − JSyn

∥∥) → 0, as n → ∞.

By Lemma 2.5, we have

un − xn → 0, Jun − JSyn → 0 and un − Syn → 0, as n → ∞.

By (2.3) and bn ® 0, we have

ϕ(un, yn) ≤ ϕ(un, vn)

= ϕ
(
un, J−1 (

βnJx0 + (1 − βn)JQA
λun

))
≤ βnϕ(un, x0) + (1 − βn)ϕ

(
un,QA

λun
)

≤ βnϕ(un, x0) + (1 − βn)ϕ(un, un) = βnϕ(un, x0) → 0 as n → ∞.

By Lemma 2.5, implies that un - yn ® 0 and un - vn ® 0 as n ® ∞.

Hence,

vn − yn → 0, yn − Syn → 0 and yn − xn → 0, as n → ∞. (3:6)

Now let us show that ω(xn) ⊂ EP(F) ∩ F(S) ∩ A-10, where

ω(xn) :=
{
x̄ ∈ C : xni ⇀ x̄, ∃ {ni} ⊂ {n} with {ni} → ∞}

.

Indeed, since {xn} is bounded and E is reflexive, we know that ω(xn) 	= ∅. Take
x̄ ∈ ω(xn) arbitrary, there exists a subsequence

{
xni

}
of {xn} such that xni ⇀ x̄. Let us

show that x̄ ∈ A−10.

From Trnxn = un, Lemma 2.10 and (2.3), we have

ϕ(p, xn+1) ≤ αnϕ(p, un) + (1 − αn)ϕ(p, Syn)

≤ αnϕ(p, un) + (1 − αn)
[
βnϕ(p, x0) + (1 − βn)ϕ

(
p,QA

λun
)]

≤ αnϕ(p, un) + (1 − αn)βnϕ(p, x0) + (1 − αn)(1 − βn)
[
ϕ(p, un) − ϕ

(
QA

λun, un
)]

= (1 − (1 − αn) βn) ϕ(p, un) + (1 − αn)βnϕ(p, x0) − (1 − αn)(1 − βn)ϕ
(
QA

λun, un
)

= (1 − (1 − αn) βn) ϕ(p,Trn xn) + (1 − αn)βnϕ(p, x0) − (1 − αn)(1 − βn)ϕ
(
QA

λun, un
)

≤ (1 − (1 − αn) βn) ϕ(p, xn) + (1 − αn)βnϕ(p, x0) − (1 − αn)(1 − βn)ϕ
(
QA

λun, un
)

≤ ϕ(p, xn) + (1 − αn)βnϕ(p, x0) − (1 − αn)(1 − βn)ϕ
(
QA

λun, un
)
.

It follows that

(1 − αn) (1 − βn)ϕ
(
QA

λun, un
) ≤ ϕ(p, xn) − ϕ(p, xn+1) + (1 − αn)βnϕ(p, x0). (3:7)

Since bn ® 0, lim supn®∞ an < 1 and (3.5), we obtain ϕ
(
QA

λun, un
) → 0 as n ® ∞.

From Lemma 2.5, implies that QA
λun − un → 0 as n ® ∞. Since yn - xn ® 0, then

yni ⇀ x̄ and from Syn - yn ® 0 as as n ® ∞. Hence x̄ ∈ F̂(S) = F(S).
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Since J is uniformly continuous on bound subset of E, we have JQA
λun − Jun → 0 as n

® ∞.

Let zn = QA
λun. Then there exists wn Î Azn such that

wn =
Jun − Jzn

λ
=
Jun − JQA

λun
λ

→ 0, as n → ∞. (3:8)

Since QA
λun − un → 0, un - xn ® 0, and xni ⇀ x̄, then QA

λuni = zni ⇀ x̄. By Lemma

2.8, x̄ ∈ A−10. Thus ω(xn) ⊂ F(S) ∩ A-10.

Finally, let us show that x̄ ∈ EP(F). Since xn - un ® 0 and xni ⇀ x̄, we obtain that
uni ⇀ x̄, and

lim
n→∞ ‖Jun − Jxn‖ = 0.

From lim infn®∞ rn > 0, it follows that

lim
n→∞

‖Jun − Jxn‖
rn

= 0. (3:9)

By the definition of un = Trnxn, we have

F(un, y) +
1
rn

〈
y − unJun − Jxn

〉 ≥ 0, ∀y ∈ C. (3:10)

Replacing n by ni, we have from (A2) that

1
rni

〈
y − uni , Juni − Jxni

〉 ≥ −F
(
uni , y

) ≥ F
(
y, uni

)
, ∀y ∈ C. (3:11)

Letting i ® ∞, from (3.9), (A4) and uni ⇀ x̄ that

F(y, x̄) ≤ 0, ∀y ∈ C. (3:12)

From Lemma 2.14, we have ω(xn) ⊂ EP(F) ∩ F(S) ∩ A-10.

Since {yn} is bounded and E is reflexive, we choose a subsequence
{
yni

}
of {yn} such

that

lim sup
n→∞

〈yn − p, Jx0 − Jp〉 = lim
i→∞

〈yni − p, Jx0 − Jp〉.

Since yni ⇀ x̄ ∈ 
. By Lemma 2.4(a), we obtain that

lim sup
n→∞

〈yn − p, Jx0 − Jp〉 = lim
i→∞

〈yni − p, Jx0 − Jp〉 = 〈x̄ − p, Jx0 − Jp〉 ≤ 0.

Since vn - yn ® 0, we have

lim sup
n→∞

〈vn − p, Jx0 − Jp〉 = lim sup
n→∞

〈yn − p, Jx0 − Jp〉 ≤ 0. (3:13)

By (3.4), it follows that

ϕ(p, xn+1) ≤ (1 − (1 − αn)βn)ϕ(p, xn) + 2(1 − αn)βn〈vn − p, Jx0 − Jp〉. (3:14)

Set bn = (1 - an)bn and cn = 2〈vn - p, Jx0 - Jp〉. Then we have

ϕ(p, xn+1) ≤ (1 − bn)ϕ(p, xn) + bncn. (3:15)
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From the condition (i) and (3.13), we see that
∑∞

n=0 bn = ∞ and lim supn®∞ cn ≤ 0.

Therefore, applying Lemma 2.16 to (3.15), we get that �(p,xn) ® 0. Then xn ® p and

since un - xn ® 0, we have un ® p.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

ϕ(p, xni) < ϕ(p, xni+1), ∀i ∈ N. (3:16)

By Lemma 2.17, there exists a nondecreasing sequence {mk} ⊂ N such that mk ® ∞,

ϕ(p, xmk) < ϕ(p, xmk+1) and ϕ(p, xk) < ϕ(p, xmk+1), for all k Î N.

From (3.3), condition (i) and (ii), we have

αmkϕ(umk , xmk) + αmk(1 − αmk)g(
∥∥Jumk − JSymk

∥∥)
≤ ϕ(p, xmk) − ϕ(p, xmk+1) − (1 − αmk)βmkϕ(p, xmk) + 2(1 − αmk)βmk〈vmk − p, Jx0 − Jp〉
≤ −(1 − αmk)βmkϕ(p, xmk) + 2(1 − αmk)βmk〈vmk − p, Jx0 − Jp〉.

Similary proof of Case 1, we obtain that

lim sup
k→∞

〈vmk − p, Jx0 − Jp〉 ≤ 0. (3:17)

From (3.3), we have

ϕ(p, xmk+1) ≤ ϕ(p, xmk) − (1 − αmk)βmkϕ(p, xmk) + 2(1 − αmk)βmk〈vmk − p, Jx0 − Jp〉. (3:18)

Since ϕ(p, xmk) ≤ ϕ(p, xmk+1), we have

(1 − αmk)βmkϕ(p, xmk) ≤ ϕ(p, xmk) − ϕ(p, xmk+1) + 2(1 − αmk)βmk〈vmk − p, Jx0 − Jp〉
≤ 2(1 − αmk)βmk〈vmk − p, Jx0 − Jp〉.

Since, (1 − αmk)βmk > 0 and (3.17) we have

ϕ(p, xmk ) ≤ 2〈vmk − p, Jx0 − Jp〉 ≤ 0. (3:19)

It follows that ϕ(p, xmk) → 0. From (3.18), we gives ϕ(p, xmk+1) → 0, as k ® ∞.

From ϕ(p, xk) ≤ ϕ(p, xmk+1) and Lemma 2.5, we obtain that xk ® p and uk ® p, as k

® ∞.

From Cases 1 and 2, we conclude that {xn} and {un} converge strongly to p. This

completes the proof.

Corollary 3.2. Let C be nonempty closed convex subset of a uniformly convex and

uniformly smooth Banach space E, S : C ® C be a strongly relatively nonexpansive

mapping, and let A : E ® 2E* be a maximal monotone operator with

F(S) ∩ A−1(0) 	=	 0. For a positive number l, let the sequence {xn} be generated by x0 Î
C, x1 Î E and⎧⎨

⎩
un = 	Cxn,
yn = 	CJ−1(βnJx0 + (1 − βn)JQA

λun),
xn+1 = J−1(αnJun + (1 − αn)JSyn),

(3:20)

for every n ≥ 1, where {an} and {bn} are sequences in [0,1). If the control sequences

satisfy the following restrictions:

(i)
∑∞

n=0 βn = ∞and limn®∞ bn = 0;

(ii) 0 < lim infn®∞ an ≤ lim supn®∞ an < 1.

Then {xn} converges strongly to p = ΠF(S)∩A-1(0)(x0), where ΠF(S)∩A-1(0) is the general-

ized projection from E onto F(S) ∩ A-1(0).
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Proof. Put F ≡ 0 and rn ≡ 1 in Theorem 3.1. Then the conclusion of Corollary 3.2

can be obtained the desired result easily.

Corollary 3.3. Let C be nonempty closed convex subset of a uniformly convex and

uniformly smooth Banach space E, F : C × C ® ℝ bea bifunction satisfying conditions

(A1)-(A4) and S : C ® C be a strongly relatively nonexpansive mapping, with

F(S) ∩ EP(F) 	=	 0. Let the sequence {xn} be generated by x0 Î C, x1 Î E and⎧⎨
⎩
F(un, y) + 1

rn
〈y − un, Jun − Jxn〉 ≥ 0, ∀y ∈ C,

yn = 	CJ−1(βnJx0 + (1 − βn)Jun),
xn+1 = J−1(αnJun + (1 − αn)JSyn),

(3:21)

for every n ≥ 1, where {an}, {bn} are sequences in [0,1), and {rn} ⊂ (0, ∞). If the control

sequences satisfy the following restrictions:

(i)
∑∞

n=0 βn = ∞and limn®∞ bn = 0;

(ii) 0 < lim infn®∞ an ≤ lim supn®∞ an < 1;

(iii) lim infn®∞ rn > 0.

Then {xn} and {un} converge strongly to p = ΠF(S)∩EP(F)(x0), where ΠF(S)∩EP(F) is the gen-

eralized projection from E onto F(S) ∩ EP(F).

Proof. Put A ≡ 0, then QA
λ is an identity mapping, in Theorem 3.1. Then the conclu-

sion of Corollary 3.3 can be obtained the desired result easily.

Corollary 3.4. Let C be nonempty closed convex subset of a uniformly convex and

uniformly smooth Banach space E, F: C × C ® ℝ bea bifunction satisfying conditions

(A1)-(A4) and let A : E ® 2E* be a maximal monotone operator with

EP(F) ∩ A−1(0) 	=	 0. For a positive number l, let the sequence {xn} be generated by x0
Î C, x1 Î E and⎧⎨

⎩
F(un, y) + 1

rn
〈y − un, Jun − Jxn〉 ≥ 0, ∀y ∈ C,

yn = 	CJ−1(βnJx0 + (1 − βn)JQA
λun),

xn+1 = J−1(αnJun + (1 − αn)Jyn),
(3:22)

for every n ≥ 1, where {an}, {bn} are sequences in [0,1), and {rn} ⊂ (0, ∞). If the control

sequences satisfy the following restrictions:

(i)
∑∞

n=0 βn = ∞and limn®∞ bn = 0;

(ii) 0 < lim infn®∞ an ≤ lim supn®∞ an < 1;

(iii) lim infn®∞ rn > 0.

Then {xn} and {un} converge strongly to p = ΠEP(F)∩A-1(0)(x0), where ΠEP(F)∩A-1(0) is the

generalized projection from E onto EP(F) ∩ A-1(0).

Proof. Put S ≡ I, is an identity mapping, in Theorem 3.1. Then the conclusion of

Corollary 3.4 can be obtained the desired result easily.

Remark 3.5. Our main result extends and improves the recent results of Wei et al.

[5], Takahashi and Zembayashi [10] and generalizes the result of Nilsakoo [11].
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