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Abstract
In this paper, the existence of a best proximity point for relatively u-continuous
mappings is proved in geodesic metric spaces. As an application, we discuss the
existence of common best proximity points for a family of not necessarily commuting
relatively u-continuous mappings.

1 Introduction
Let A be a nonempty subset of a metric space (X,d) and T : A → X. A solution to the
equation Tx = x is called a fixed point of T . It is obvious that the condition T(A) ∩ A �= ∅
is necessary for the existence of a fixed point for T . But there occur situations in which
d(x,Tx) >  for all x ∈ A. In such a situation, it is natural to find a point x ∈ A such that x is
closest to Tx in some sense. The following well-known best approximation theorem, due
to Ky Fan [], explores the existence of an approximate solution to the equation Tx = x.

Theorem  [] Let A be a nonempty compact convex subset of a normed linear space X
and T : A → X be a continuous function. Then there exists x ∈ A such that ‖x – Tx‖ =
dist(Tx,A) = inf{‖Tx – a‖ : a ∈ A}.

The point x ∈ A in Theorem  is called a best approximant of T in A. Let A, B be
nonempty subsets of a metric space X and T : A → B. A point x ∈ A is called a best
proximity point of T if d(x,Tx) = dist(A,B). Some interesting results in approximation
theory can be found in [–].
Eldred et al. [] defined relatively nonexpansivemappings and used the proximal normal

structure to prove the existence of best proximity points for such mappings.

Definition  [] Let A, B be nonempty subsets of a metric space (X,d). A mapping T :
A∪ B→ A∪ B is said to be a relatively nonexpansive mapping if

(i) T(A) ⊆ B, T(B)⊆ A;
(ii) d(Tx,Ty) ≤ d(x, y), for all x ∈ A, y ∈ B.

Theorem [] Let (A,B) be a nonempty,weakly compact convex pair in a Banach space X.
Let T : A ∪ B → A ∪ B be a relatively nonexpansive mapping and suppose (A,B) has a
proximal normal structure. Then there exists (x, y) ∈ A× B such that

‖x – Tx‖ = ‖Ty – y‖ = dist(A,B).
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Remark  [] Note that every nonexpansive self-map is a relatively nonexpansive map.
Also, a relatively nonexpansive mapping need not be continuous.

In [], Sankar Raj and Veeramani used a convergence theorem to prove the existence
of best proximity points for relatively nonexpansive mappings in strictly convex Banach
spaces.
Recently, Elderd, Sankar Raj and Veeramani [] introduced a class of relatively u-

continuous mappings and investigated the existence of best proximity points for such
mappings in strictly convex Banach spaces.

Definition [] LetA,B be nonempty subsets of ametric spaceX. AmappingT : A∪B →
A∪ B is said to be a relatively u-continuous mapping if it satisfies:

(i) T(A) ⊆ B, T(B)⊆ A;
(ii) for each ε > , there exists a δ >  such that d(Tx,Ty) < ε + dist(A,B), whenever

d(x, y) < δ + dist(A,B), for all x ∈ A, y ∈ B.

Theorem  [] Let A, B be nonempty compact convex subsets of a strictly convex Banach
space X and T : A ∪ B → A ∪ B be a relatively u-continuous mapping. Then there exists
(x, y) ∈ A× B such that

‖x – Tx‖ = ‖y – Ty‖ = dist(A,B).

Remark  [] Every relatively nonexpansive mapping is a relatively u-continuous map-
ping, but the converse is not true.

Example  [] Let (X = R
,‖ · ‖) and consider A = {(, t) :  ≤ t ≤ } and B = {(, s) :  ≤

s ≤ }. Define T : A∪ B→ A∪ B by

T(x, y) =

⎧⎨
⎩
(,√y) if x = ,

(,√y) if x = .

Then T is relatively u-continuous, but not relatively nonexpansive.

Also, in [], the authors proved the existence of common best proximity points for a
family of commuting relatively u-continuous mappings.
The aim of this paper is to discuss the existence of a best proximity point for relatively

u-continuous mappings in the frameworks of geodesic metric spaces. As an application,
we investigate the existence of common best proximity points for a family of not neces-
sarily commuting relatively u-continuous mappings.

2 Preliminaries
In this section, we give some preliminaries.

Definition  [] Ametric space (X,d) is said to be a geodesic space if every two points x
and y of X are joined by a geodesic, i.e., a map c : [, l]⊆R → X such that c() = x, c(l) = y,
and d(c(t), c(t′)) = |t– t′| for all t, t′ ∈ [, l]. Moreover, X is called uniquely geodesic if there
is exactly one geodesic joining x and y for each x, y ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2012/1/234
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The midpoint m between two points x and y in a uniquely geodesic metric space has
the property d(x,m) = d(y,m) = 

d(x, y). A trivial example of a geodesic space is a Banach
space with usual segments as geodesic segments.
A point z ∈ X belongs to the geodesic segment [x, y] if and only if there exists t ∈ [, ]

such that d(z,x) = td(x, y) and d(z, y) = ( – t)d(x, y). Hence, we write z = ( – t)x + ty.
A subset A of a geodesic metric space X is said to be convex if it contains any geodesic

segment that joins each pair of points of A.
The metric d : X ×X → R in a geodesic space (X,d) is convex if

d
(
z, ( – t)x + ty

) ≤ ( – t)d(z,x) + td(z, y)

for any x, y, z ∈ X and t ∈ [, ].

Definition  [] A geodesicmetric spaceX is said to be strictly convex if for every r > ,
a, x and y ∈ X with d(x,a) ≤ r, d(y,a) ≤ r and x �= y, it is the case that d(a,p) < r, where p
is any point between x and y such that p �= x and p �= y, i.e., p is any point in the interior of
a geodesic segment that joins x and y.

Remark  [] Every strictly convex metric space is uniquely geodesic.

In [], Fernández-León proved the existence and uniqueness of best proximity points
in strictly convex metric spaces. For more details about geodesic spaces, one may check
[–].
In the particular framework of geodesicmetric spaces, the concept of global nonpositive

curvature (global NPC spaces), also known as the CAT() spaces, is defined in [] as
follows.

Definition  A global NPC space is a complete metric space (X,d) for which the follow-
ing inequality holds true: for each pair of points x, x ∈ X there exists a point y ∈ X such
that for all points z ∈ X,

d(z, y) ≤ 

d(z,x) +



d(z,x) –



d(x,x).

Proposition  [] If (X,d) is a global NPC space, then it is a geodesic space. Moreover,
for any pair of points x,x ∈ X there exists a unique geodesic γ : [, ] → X connecting
them. For t ∈ [, ] the intermediate points γt depend continuously on the endpoints x, x.
Finally, for any z ∈ X,

d(z,γt) ≤ ( – t)d(z,x) + td(z,x) – t( – t)d(x,x).

Corollary  [] Let (X,d) be a global NPC space, γ ,η : [, ] → X be geodesics and t ∈
[, ]. Then

d(γt ,ηt) ≤ ( – t)d(γ,η) + td(γ,η) – t( – t)
[
d(γ,γ) – d(η,η)

]

and

d(γt ,ηt) ≤ ( – t)d(γ,η) + td(γ,η).
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Corollary  shows that the distance function (x, y) 
–→ d(x, y) in a global NPC space is
convex with respect to both variables. Consequently, all balls in a global NPC space are
convex.

Example  Every Hilbert space is a global NPC space.

Example  Every metric tree is a global NPC space.

Example  A Riemannian manifold is a global NPC space if and only if it is complete,
simply connected, and of nonpositive curvature.

More details about global NPC spaces can be found in [–].
We need the following notations in the sequel. Let (X,d) be a metric space and A, B be

nonempty subsets of X. Define

dist(A,B) = inf
{
d(a,b) : a ∈ A,b ∈ B

}
,

A =
{
x ∈ A : d(x, y) = dist(A,B), for some y ∈ B

}
,

B =
{
y ∈ B : d(x, y) = dist(A,B), for some x ∈ A

}
.

Given C a nonempty subset of X, the metric projection PC : X → C is the mapping

PC(x) =
{
y ∈ C : d(x, y) = dist(x,C)

}
, for every x ∈ X,

where C denotes the set of all subsets of C.

Definition  [] LetA,B be nonempty convex subsets of a geodesicmetric space. Amap-
ping T : A∪ B → A∪ B is said to be affine if

T
(
λx + ( – λ)y

)
= λTx + ( – λ)Ty,

for all x, y ∈ A or x, y ∈ B and λ ∈ (, ).

Definition  [] Let X be a metric space. A subset C of X is called approximatively
compact if for any y ∈ X and for any sequence {xn} in C such that d(xn, y) → dist(y,C)
as n→ ∞, {xn} has a subsequence which converges to a point in C.

In [], Sturmpresented the following result which ensures the existence anduniqueness
of the metric projection on a global NPC space.

Proposition 
(i) For each closed convex set C in a global NPC space (X,d), there exists a unique map

PC : X → C (projection onto C) such that

d
(
PC(x),x

)
= inf

y∈C d(x, y) for every x ∈ X;
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(ii) PC is orthogonal in the sense that

d(x, y) ≥ d(x,PC(x)
)
+ d(PC(x), y

)

for every x ∈ X , y ∈ C;
(iii) PC is nonexpansive,

d
(
PC(x),PC(z)

) ≤ d(x, z) for every x, z ∈ X.

Remark  Note that the existence of a unique metric projection does not need the com-
pactness of C.

Remark  [] For any subsetA of a global NPC space (X,d), there exists a unique small-
est convex set co(A) =

⋃∞
n=An, containing A and called convex hull of A. Where A = A,

and for n ∈N, the setAn consists of all points in global NPC spaceX which lie on geodesics
which start and end in An–.

Based on Proposition , Niculescu and Roventa [] proved the Schauder fixed point
theorem in the setting of a global NPC space.

Theorem  Let C be a closed convex subset of a global NPC space X with the property
that the closed convex hull of every finite subset of X is compact. Then every continuous
map T : C → C, whose image T(C) is relatively compact, has a fixed point.

3 Main results
In this section, we will prove the existence of best proximity points for a relatively
u-continuous mapping. Also, we obtain a result on the existence of common best proxim-
ity points for a family of not necessarily commuting relatively u-continuous mappings.

Proposition  Let A, B be nonempty subsets of a metric space X with A �= ∅ and T :
A∪ B→ A∪ B be a relatively u-continuous mapping. Then T(A) ⊆ B and T(B)⊆ A.

Proof Choose x ∈ A, then there exists y ∈ B such that d(x, y) = dist(A,B). But T is a rela-
tively u-continuous mapping, then for each ε > , there exists a δ >  such that

d(p,q) < δ + dist(A,B) implies d(Tp,Tq) < ε + dist(A,B)

for each p ∈ A, q ∈ B. Since d(x, y) < δ + dist(A,B) for any δ > , hence

dist(A,B)≤ d(Tx,Ty) < ε + dist(A,B)

for each ε > . Therefore, d(Tx,Ty) = dist(A,B) and then T(x) ∈ B. This shows that
T(A) ⊆ B. Similarly, it can be seen that T(B) ⊆ A. �

Proposition  Let A, B be nonempty closed convex subsets of a global NPC space X with
A �= ∅, T : A∪B → A∪B be a relatively u-continuous mapping, and P : A∪B → A∪B be

http://www.fixedpointtheoryandapplications.com/content/2012/1/234
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a mapping defined by

P(x) =

⎧⎨
⎩
PB(x), if x ∈ A,

PA(x), if x ∈ B.

Then TP(x) = P(Tx) for all x ∈ A ∪ B, i.e., PA(T(x)) = T(PB(x)) for x ∈ A and T(PA(y)) =
PB(T(y)) for y ∈ B.

Proof Choose x ∈ A, then there exists y ∈ B such that d(x, y) = dist(A,B). According to
Proposition , since the metric projection is unique, we have y = PB(x) and x = PA(y).
Recalling that T is relatively u-continuous, therefore, as in the proof of Proposition ,
d(Tx,Ty) = dist(A,B). Thus, it follows that T(x) ∈ B and T(y) ∈ A. Again, in view of the
uniqueness of the projection operator, we have

PA
(
T(x)

)
= T(y) = T

(
PB(x)

)
.

So, PA(T(x)) = T(PB(x)) for any x ∈ A. Similarly, it can be shown that T(PA(y)) = PB(T(y))
for any y ∈ B. �

By an analogous argument to the proof of Theorem . [], we can prove the following
theorem.

Theorem  Let A, B be two nonempty subsets of a global NPC space X such that A is
closed convex and B is closed. If A is approximatively compact and {xn} is a sequence
in A, and y ∈ B such that d(xn, y) → dist(A,B), then xn → PA(y).

Proof Assume the contrary, then there exists ε >  and a subsequence {xnm} of {xn} such
that

d(xnm , y) → dist(A,B) but d
(
xnm ,PA(y)

) ≥ ε.

Since A is approximatively compact, there exists a subsequence {xn′
m} of {xnm} which

converges to a point x ∈ A. Hence,

d(xn′
m , y) → d(x, y).

Also,

d(xn′
m , y) → dist(A,B).

Thus, d(x, y) = dist(A,B). By Proposition , it follows that x = PA(y). Finally, we obtain

d
(
xn′

m ,PA(y)
) → d

(
x,PA(y)

) ≥ ε,

which implies that x �= PA(y). This leads to a contradiction and therefore xn → PA(y).
�

http://www.fixedpointtheoryandapplications.com/content/2012/1/234
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The following theorem guarantees the existence of best proximity points for a relatively
u-continuous mapping in a global NPC space.

Theorem  Let A, B be nonempty closed convex subsets of a global NPC space X with
the property that the closed convex hull of every finite subset of X is compact. Let A, B be
nonempty compact convex and T : A ∪ B → A ∪ B be a relatively u-continuous mapping.
Then there exist x ∈ A, y ∈ B such that

d(x,Tx) = d(y,Ty) = dist(A,B).

Proof By Proposition , since T is a relatively u-continuous mapping, we have T(A) ⊆
B and T(B) ⊆ A. The result follows from Theorem  once we show that PA ◦T : A →
A is a continuous mapping, where PA : X → A is a metric projection operator.
To prove this, first notice that PA(B) ⊆ A. Since X is a global NPC space, by Proposi-

tion , we obtain that PA : X → A is a continuous mapping. In what follows, we see that
the mapping T is continuous on A, In fact, let {xn} be a sequence in A such that xn → x
for some x ∈ A. From Proposition , we have

PB
(
PA(Tx)

)
= PB

(
T(PBx)

)
= T

(
PA(PBx)

)
= Tx.

Notice that

d
(
xn,PB(x)

) ≤ d(xn,x) + d
(
x,PB(x)

)
= d(xn,x) + dist(A,B) → dist(A,B) (.)

as n→ ∞. Since T is relatively u-continuous, for each ε > , there exists a δ >  such that
d(x, y) < δ + dist(A,B) implies d(Tx,Ty) < ε + dist(A,B) for all x ∈ A, y ∈ B. From (.), with
this δ > , it follows that there isN ∈N such that d(xn,PB(x)) < δ + dist(A,B) for all n≥ N .
This implies

d
(
T(xn),T

(
PB(x)

))
< ε + dist(A,B)

for all n ≥ N . Therefore,

d
(
T(xn),PA(Tx)

)
= d

(
T(xn),T

(
PB(x)

)) → dist(A,B).

This together with Theorem  implies that Txn → PB(PA(Tx)) = Tx. Thus, T is contin-
uous on A.
Now, sincePA◦T is a continuousmapping ofA, by the Schauder fixed point theorem for

a global NPC space, Theorem , PA ◦T has a fixed point x ∈ A. From PA(Tx) = x, we
find that d(x,Tx) = dist(Tx,A). But since Tx ∈ B, there is x′ ∈ A such that d(x′,Tx) =
dist(A,B). Consequently,

dist(A,B)≤ dist(Tx,A) ≤ d
(
Tx,x′) = dist(A,B),

http://www.fixedpointtheoryandapplications.com/content/2012/1/234
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which gives

dist(Tx,A) = dist(A,B).

Thus, d(x,Tx) = dist(A,B). This completes the proof. �

Next, we will show that Theorem  is also true for an appropriate family of relatively
u-continuousmappings. The following notations define the set of all best proximity points
of a relatively u-continuous mapping:

FA(T) =
{
x ∈ A : d(x,Tx) = dist(A,B)

}
,

FB(T) =
{
y ∈ B : d(y,Ty) = dist(A,B)

}
.

Theorem  Let A, B be nonempty closed convex subsets of a global NPC space X with
the property that the closed convex hull of every finite subset of X is compact. Let A, B be
nonempty compact convex and T : A ∪ B → A ∪ B be a relatively u-continuous mapping.
Let T be affine. Then FA(T) is a nonempty compact convex subset of A and FB(T) is a
nonempty compact convex subset of B.

Proof It is obvious that FA(T) is a nonempty subset of A by Theorem . Assume that
{xn} is a sequence in FA(T) such that xn → x for some x ∈ A. By the continuity of T
on A, we have x ∈ FA(T). Therefore, FA(T) is closed and then compact. Now we claim
that FA(T) is convex. In fact, let λ ∈ [, ], x, x ∈ FA(T), and z = ( – λ)x + λx. Since the
distance function d is convex with respect to both variables, by Corollary , we have

dist(A,B) ≤ d(z,Tz)

= d
(
( – λ)x + λx,T

(
( – λ)x + λx

))
= d

(
( – λ)x + λx, ( – λ)Tx + λTx

)
≤ ( – λ)d(x,Tx) + λd(x,Tx)

= dist(A,B).

This implies that d(z,Tz) = dist(A,B), i.e., z ∈ FA(T). Therefore, FA(T) is convex. Similarly,
it can be shown that FB(T) is a nonempty compact convex subset of B. �

Lemma  Let A, B be nonempty closed convex subsets of a global NPC space X with
the property that the closed convex hull of every finite subset of X is compact. Let A, B

be nonempty compact convex and T ,S : A ∪ B → A ∪ B be relatively u-continuous map-
pings such that S and T are commuting on FA(T) ∪ FB(T). Then S(FA(T)) ⊆ FB(T) and
S(FB(T))⊆ FA(T).

Proof For each x ∈ FA(T), we have d(x,Tx) = dist(A,B). Since S is a relatively u-continuous
mapping, then for δ > ,

d(x,Tx) < δ + dist(A,B) implies d
(
S(x),S(Tx)

)
< ε + dist(A,B)

http://www.fixedpointtheoryandapplications.com/content/2012/1/234
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for each ε > . Therefore, d(S(x),S(Tx)) = dist(A,B). The commutativity for S and T on
FA(T) implies that d(S(x),T(Sx)) = dist(A,B). Thus, we deduce that Sx ∈ FB(T). This shows
that S(FA(T)) ⊆ FB(T). Also, we can prove that S(FB(T))⊆ FA(T). �

Now, we define a new class of mappings called cyclic Banach pairs.

Definition  LetA, B be nonempty subsets of ametric space (X,d) and letT ,S : A∪B →
A ∪ B be mappings. The pair {S,T} is called a cyclic Banach pair if S(FA(T)) ⊆ FB(T) and
S(FB(T))⊆ FA(T).

The following is an example of a pair of non-commuting mappings that are relatively
u-continuous and that are a cyclic Banach pair.

Example  Let X =R
 with the Euclidean metric and consider (as in [])

A =
{(

,

n

)
: n ∈N

}
∪ {

(, )
}
,

B =
{(

,

n

)
: n ∈ N

}
∪ {

(, )
}
.

Let T ,S : A∪ B → A∪ B be defined as

T(,x) =
(
,
x


)
for all (,x) ∈ A,

T(,x) =
(
,

x


)
for all (,x) ∈ B,

S(,x) =
(
,
x



)
for all (,x) ∈ A,

S(,x) =
(
,

x



)
for all (,x) ∈ B.

Then T and S are relatively u-continuous mappings. Since

TS(,x) �= ST(,x),

T and S are non-commuting mappings. Also, dist(A,B) = . It is easy to verify that

FA(T) =
{
(, )

}
and FB(T) =

{
(, )

}

and

S
(
FA(T)

) ⊆ FB(T), S
(
FB(T)

) ⊆ FA(T).

Therefore, {S,T} is a cyclic Banach pair.

The following theorem proves that two relatively u-continuous mappings which are not
necessarily commuting have common best proximity points.

http://www.fixedpointtheoryandapplications.com/content/2012/1/234
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Theorem  Let A, B be nonempty closed convex subsets of a global NPC space X with
the property that the closed convex hull of every finite subset of X is compact. Let A, B

be nonempty compact convex and T ,S : A ∪ B → A ∪ B be affine relatively u-continuous
mappings. If {S,T} is a cyclic Banach pair, then FA(T)∩ FA(S) �= ∅.

Proof By Theorem , FA(T) is a nonempty compact convex subset of A and FB(T) is a
nonempty compact convex subset of B. For each x ∈ FA(T), we have

dist(A,B)≤ dist
(
FA(T),FB(T)

) ≤ d(x,Tx) = dist(A,B),

which implies that dist(FA(T),FB(T)) = dist(A,B). By the definition of cyclic Banach pairs
S : FA(T)∪ FB(T) → FA(T)∪ FB(T). Since {S,T} is a cyclic Banach pair and since for each
ε >  there exists a δ >  such that

d(x, y) < δ + dist(A,B) implies d
(
S(x),S(y)

)
< ε + dist(A,B)

for all x ∈ FA(T), y ∈ FB(T), hence S is a relatively u-continuousmapping on FA(T)∪FB(T).
The conditions of Theorem  are satisfied, so there exists x ∈ FA(T) such that

d(x,Sx) = dist
(
FA(T),FB(T)

)
= dist(A,B).

Thus, x ∈ FA(S). This implies that FA(T)∩ FA(S) �= ∅. �

Next, we will extend Theorem  to the case of a countable family of not necessarily
commuting relatively u-continuous mappings. Let � = {Ti : i ∈N} be a family of relatively
u-continuous mappings. Define

FA(Ti) =
{
x ∈ A : d(x,Tix) = dist(A,B)

}
,

FB(Ti) =
{
y ∈ B : d(y,Tiy) = dist(A,B)

}
,

for each i = , . . . ,n.

Definition  LetA, B be nonempty subsets of ametric space (X,d) and letT ,S : A∪B →
A ∪ B. The pair {S,T} is called a symmetric cyclic Banach pair if {S,T} and {T ,S} are
cyclic Banach pairs, that is, S(FA(T)) ⊆ FB(T), S(FB(T)) ⊆ FA(T), T(FA(S)) ⊆ FB(S) and
T(FB(S))⊆ FA(S).

Theorem  Let A, B be nonempty closed convex subsets of a global NPC space X with
the property that the closed convex hull of every finite subset of X is compact. Let A, B

be nonempty compact convex and � a countable family of affine relatively u-continuous
mappings such that {Ti,Tj} is a symmetric cyclic Banach pair for each i, j ∈ N. Then � has
a common best proximity in A.

Proof First, we prove that FA(T) ∩ FA(T) ∩ FA(T) �= ∅. By an analogous argument to
the proof of Theorem , FA(Ti) is a nonempty compact convex subset of A, FB(Ti) is a

http://www.fixedpointtheoryandapplications.com/content/2012/1/234
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nonempty compact convex subset of B and dist(FA(Ti),FB(Ti)) = dist(A,B), for i = , , .
So, we have FA(T)∩ FA(T) and FB(T)∩ FB(T) are nonempty compact convex with

dist
(
FA(T)∩ FA(T),FB(T)∩ FB(T)

)
= dist(A,B).

Suppose that T is a mapping on (FA(T) ∩ FA(T)) ∪ (FB(T) ∩ FB(T)). Since both of
{T,T} and {T,T} are cyclic Banach pairs, T is a relatively u-continuous mapping on
(FA(T) ∩ FA(T)) ∪ (FB(T) ∩ FB(T)). From Theorem , T has a best proximity point
z ∈ FA(T)∩ FA(T). This shows that FA(T)∩ FA(T)∩ FA(T) �= ∅.
By induction, for a finite symmetric cyclic Banach family �′ = {T,T, . . . ,Tn} of affine

relatively u-continuous mappings, there exists x ∈ ⋂n
i= FA(Ti).

Now, let � = {Ti : i ∈ N}. For each Ti, FA(Ti) is a nonempty compact convex of A, and
for i = , . . . ,n, we have

n⋂
i=

FA(Ti) �= ∅.

This shows that the set {FA(Ti) : i ∈N} has a finite intersection property. Thus, we have

∞⋂
i=

FA(Ti) �= ∅,

i.e., � has a common best proximity point in A. �
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