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Abstract
In this paper, we introduce a new two-step iterative scheme of mixed type for two
asymptotically nonexpansive self-mappings and two asymptotically nonexpansive
nonself-mappings and prove strong and weak convergence theorems for the new
two-step iterative scheme in uniformly convex Banach spaces.
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1 Introduction
Let K be a nonempty subset of a real normed linear space E. A mapping T : K → K
is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [,∞) with
limn→∞ kn =  such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ (.)

for all x, y ∈ K and n≥ .
In , Goebel and Kirk [] introduced the class of asymptotically nonexpansive

self-mappings, which is an important generalization of the class of nonexpansive self-
mappings, and proved that if K is a nonempty closed convex subset of a real uniformly
convex Banach space E and T is an asymptotically nonexpansive self-mapping of K , then
T has a fixed point.
Since then, some authors proved weak and strong convergence theorems for asymptot-

ically nonexpansive self-mappings in Banach spaces (see [–]), which extend and im-
prove the result of Goebel and Kirk in several ways.
Recently, Chidume et al. [] introduced the concept of asymptotically nonexpan-

sive nonself-mappings, which is a generalization of an asymptotically nonexpansive self-
mapping, as follows.

Definition . [] Let K be a nonempty subset of a real normed linear space E. Let
P : E → K be a nonexpansive retraction of E onto K . A nonself-mapping T : K → E is said
to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [,∞) with kn →  as
n→ ∞ such that

∥∥T(PT)n–x – T(PT)n–y
∥∥ ≤ kn‖x – y‖ (.)

for all x, y ∈ K and n≥ .
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Let K be a nonempty closed convex subset of a real uniformly convex Banach space E.
In , also, Chidume et al. [] studied the following iteration scheme:

⎧⎨
⎩x ∈ K ,

xn+ = P(( – αn)xn + αnT(PT)n–xn)
(.)

for each n ≥ , where {αn} is a sequence in (, ) and P is a nonexpansive retraction of E
onto K , and proved some strong and weak convergence theorems for an asymptotically
nonexpansive nonself-mapping.
In , Wang [] generalized the iteration process (.) as follows:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K ,

xn+ = P(( – αn)xn + αnT(PT)n–yn),

yn = P(( – βn)xn + βnT(PT)n–xn)

(.)

for each n ≥ , where T,T : K → E are two asymptotically nonexpansive nonself-
mappings and {αn}, {βn} are real sequences in [, ), and proved some strong and weak
convergence theorems for two asymptotically nonexpansive nonself-mappings. Recently,
Guo and Guo [] proved some new weak convergence theorems for the iteration pro-
cess (.).
The purpose of this paper is to construct a new iteration scheme of mixed type for

two asymptotically nonexpansive self-mappings and two asymptotically nonexpansive
nonself-mappings and to prove some strong and weak convergence theorems for the new
iteration scheme in uniformly convex Banach spaces.

2 Preliminaries
Let E be a real Banach space, K be a nonempty closed convex subset of E and P : E → K
be a nonexpansive retraction of E onto K . Let S,S : K → K be two asymptotically non-
expansive self-mappings and T,T : K → E be two asymptotically nonexpansive nonself-
mappings. Then we define the new iteration scheme of mixed type as follows:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K ,

xn+ = P(( – αn)Sn xn + αnT(PT)n–yn),

yn = P(( – βn)Snxn + βnT(PT)n–xn)

(.)

for each n≥ , where {αn}, {βn} are two sequences in [, ).
If S and S are the identity mappings, then the iterative scheme (.) reduces to the

sequence (.).
We denote the set of common fixed points of S, S, T and T by F = F(S) ∩ F(S) ∩

F(T) ∩ F(T) and denote the distance between a point z and a set A in E by d(z,A) =
infx∈A ‖z – x‖.
Now, we recall some well-known concepts and results.
Let E be a real Banach space, E∗ be the dual space of E and J : E → E∗ be the normalized

duality mapping defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖‖f ‖,‖f ‖ = ‖x‖}
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for all x ∈ E, where 〈·, ·〉 denotes duality pairing between E and E∗. A single-valued nor-
malized duality mapping is denoted by j.
A subsetK of a real Banach space E is called a retract of E [] if there exists a continuous

mappingP : E → K such that Px = x for all x ∈ K . Every closed convex subset of a uniformly
convex Banach space is a retract. A mapping P : E → E is called a retraction if P = P. It
follows that if a mapping P is a retraction, then Py = y for all y in the range of P.
A Banach space E is said to satisfy Opial’s condition [] if, for any sequence {xn} of E,

xn → x weakly as n→ ∞ implies that

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖

for all y ∈ E with y 
= x.
A Banach space E is said to have a Fréchet differentiable norm [] if, for all x ∈U = {x ∈

E : ‖x‖ = },

lim
t→

‖x + ty‖ – ‖x‖
t

exists and is attained uniformly in y ∈U .
A Banach space E is said to have the Kadec-Klee property [] if for every sequence {xn}

in E, xn → x weakly and ‖xn‖ → ‖x‖, it follows that xn → x strongly.
LetK be a nonempty closed subset of a real Banach space E. A nonself-mappingT : K →

E is said to be semi-compact [] if, for any sequence {xn} in K such that ‖xn – Txn‖ → 
as n → ∞, there exists a subsequence {xnj} of {xn} such that {xnj} converges strongly to
some x∗ ∈ K .

Lemma . [] Let {an}, {bn} and {cn} be three nonnegative sequences satisfying the fol-
lowing condition:

an+ ≤ ( + bn)an + cn

for each n ≥ n, where n is some nonnegative integer,
∑∞

n=n bn < ∞ and
∑∞

n=n cn < ∞.
Then limn→∞ an exists.

Lemma . [] Let E be a real uniformly convex Banach space and  < p ≤ tn ≤ q <  for
each n≥ . Also, suppose that {xn} and {yn} are two sequences of E such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r, lim
n→∞

∥∥tnxn + ( – tn)yn
∥∥ = r

hold for some r ≥ . Then limn→∞ ‖xn – yn‖ = .

Lemma . [] Let E be a real uniformly convex Banach space, K be a nonempty closed
convex subset of E and T : K → E be an asymptotically nonexpansive mapping with a
sequence {kn} ⊂ [,∞) and kn →  as n → ∞. Then I – T is demiclosed at zero, i.e., if
xn → x weakly and xn – Txn →  strongly, then x ∈ F(T), where F(T) is the set of fixed
points of T .

http://www.fixedpointtheoryandapplications.com/content/2012/1/224
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Lemma . [] Let X be a uniformly convex Banach space and C be a convex subset of X .
Then there exists a strictly increasing continuous convex function γ : [,∞)→ [,∞) with
γ () =  such that, for each mapping S : C → C with a Lipschitz constant L > ,

∥∥αSx + ( – α)Sy – S
[
αx + ( – α)y

]∥∥ ≤ Lγ –
(

‖x – y‖ – 
L

‖Sx – Sy‖
)

for all x, y ∈ C and  < α < .

Lemma . [] Let X be a uniformly convex Banach space such that its dual space X∗ has
theKadec-Klee property. Suppose {xn} is a bounded sequence and f, f ∈ Ww({xn}) such that

lim
n→∞

∥∥αxn + ( – α)f – f
∥∥

exists for all α ∈ [, ], where Ww({xn}) denotes the set of all weak subsequential limits
of {xn}. Then f = f.

3 Strong convergence theorems
In this section, we prove strong convergence theorems for the iterative scheme given in
(.) in uniformly convex Banach spaces.

Lemma . Let E be a real uniformly convex Banach space and K be a nonempty closed
convex subset of E. Let S,S : K → K be two asymptotically nonexpansive self-mappings
with {k()n }, {k()n } ⊂ [,∞) and T,T : K → E be two asymptotically nonexpansive nonself-
mappings with {l()n }, {l()n } ⊂ [,∞) such that

∑∞
n=(k

(i)
n – ) < ∞ and

∑∞
n=(l

(i)
n – ) < ∞ for

i = , , respectively, and F = F(S) ∩ F(S) ∩ F(T) ∩ F(T) 
= ∅. Let {xn} be the sequence
defined by (.), where {αn} and {βn} are two real sequences in [, ). Then
() limn→∞ ‖xn – q‖ exists for any q ∈ F ;
() limn→∞ d(xn,F) exists.

Proof () Set hn =max{k()n ,k()n , l()n , l()n }. For any q ∈ F , it follows from (.) that

‖yn – q‖ ≤ ∥∥( – βn)
(
Snxn – q

)
+ βn

(
T(PT)n–xn – q

)∥∥
≤ ( – βn)hn‖xn – q‖ + βnhn‖xn – q‖
= hn‖xn – q‖ (.)

and so

‖xn+ – q‖ ≤ ∥∥( – αn)
(
Sn xn – q

)
+ αn

(
T(PT)n–yn – q

)∥∥
≤ ( – αn)hn‖xn – q‖ + αnhn‖yn – q‖
≤ ( – αn)hn‖xn – q‖ + αnhn‖xn – q‖
=

[
 +

(
hn – 

)]‖xn – q‖. (.)

Since
∑∞

n=(k
(i)
n – ) < ∞ and

∑∞
n=(l

(i)
n – ) < ∞ for i = , , we have

∑∞
n=(hn – ) < ∞. It

follows from Lemma . that limn→∞ ‖xn – q‖ exists.

http://www.fixedpointtheoryandapplications.com/content/2012/1/224
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() Taking the infimum over all q ∈ F in (.), we have

d(xn+,F) ≤
[
 +

(
hn – 

)]
d(xn,F)

for each n ≥ . It follows from
∑∞

n=(hn – ) < ∞ and Lemma . that the conclusion ()
holds. This completes the proof. �

Lemma . Let E be a real uniformly convex Banach space and K be a nonempty closed
convex subset of E. Let S,S : K → K be two asymptotically nonexpansive self-mappings
with {k()n }, {k()n } ⊂ [,∞) and T,T : K → E be two asymptotically nonexpansive nonself-
mappings with {l()n }, {l()n } ⊂ [,∞) such that

∑∞
n=(k

(i)
n – ) < ∞ and

∑∞
n=(l

(i)
n – ) < ∞ for

i = , , respectively, and F = F(S) ∩ F(S) ∩ F(T) ∩ F(T) 
= ∅. Let {xn} be the sequence
defined by (.) and the following conditions hold:
(a) {αn} and {βn} are two real sequences in [ε,  – ε] for some ε ∈ (, );
(b) ‖x – Tiy‖ ≤ ‖Six – Tiy‖ for all x, y ∈ K and i = , .

Then limn→∞ ‖xn – Sixn‖ = limn→∞ ‖xn – Tixn‖ =  for i = , .

Proof Set hn = max{k()n ,k()n , l()n , l()n }. For any given q ∈ F , limn→∞ ‖xn – q‖ exists by
Lemma .. Now, we assume that limn→∞ ‖xn – q‖ = c. It follows from (.) and

∑∞
n=(hn –

) < ∞ that

lim
n→∞

∥∥( – αn)
(
Sn xn – q

)
+ αn

(
T(PT)n–yn – q

)∥∥ = c

and

lim sup
n→∞

∥∥Sn xn – q
∥∥ ≤ lim sup

n→∞
k()n ‖xn – q‖ = c.

Taking lim sup on both sides in (.), we obtain lim supn→∞ ‖yn – q‖ ≤ c and so

lim sup
n→∞

∥∥T(PT)n–yn – q
∥∥ ≤ lim sup

n→∞
l()n ‖yn – q‖ ≤ c.

Using Lemma ., we have

lim
n→∞

∥∥Sn xn – T(PT)n–yn
∥∥ = . (.)

By the condition (b), it follows that

∥∥xn – T(PT)n–yn
∥∥ ≤ ∥∥Sn xn – T(PT)n–yn

∥∥
and so, from (.), we have

lim
n→∞

∥∥xn – T(PT)n–yn
∥∥ = . (.)

Since

‖xn – q‖ ≤ ∥∥xn – T(PT)n–yn
∥∥ +

∥∥T(PT)n–yn – q
∥∥

≤ ∥∥xn – T(PT)n–yn
∥∥ + l()n ‖yn – q‖.

http://www.fixedpointtheoryandapplications.com/content/2012/1/224
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Taking lim inf on both sides in the inequality above, we have

lim inf
n→∞ ‖yn – q‖ ≥ c

by (.) and so

lim
n→∞‖yn – q‖ = c.

Using (.), we have

lim
n→∞

∥∥( – βn)
(
Snxn – q

)
+ βn

(
T(PT)n–xn – q

)∥∥ = c.

In addition, we have

lim sup
n→∞

∥∥Snxn – q
∥∥ ≤ lim sup

n→∞
k()n ‖xn – q‖ = c

and

lim sup
n→∞

∥∥T(PT)n–xn – q
∥∥ ≤ lim sup

n→∞
l()n ‖xn – q‖ = c.

It follows from Lemma . that

lim
n→∞

∥∥Snxn – T(PT)n–xn
∥∥ = . (.)

Now, we prove that

lim
n→∞‖xn – Txn‖ = lim

n→∞‖xn – Txn‖ = .

Indeed, since ‖xn – T(PT)n–xn‖ ≤ ‖Snxn – T(PT)n–xn‖ by the condition (b). It fol-
lows from (.) that

lim
n→∞

∥∥xn – T(PT)n–xn
∥∥ = . (.)

Since Snxn = P(Snxn) and P : E → K is a nonexpansive retraction of E onto K , we have

∥∥yn – Snxn
∥∥ ≤ βn

∥∥Snxn – T(PT)n–xn
∥∥

and so

lim
n→∞

∥∥yn – Snxn
∥∥ = . (.)

Furthermore, we have

‖yn – xn‖ ≤ ∥∥yn – Snxn
∥∥ +

∥∥Snxn – T(PT)n–xn
∥∥ +

∥∥T(PT)n–xn – xn
∥∥.

http://www.fixedpointtheoryandapplications.com/content/2012/1/224
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Thus it follows from (.), (.) and (.) that

lim
n→∞‖xn – yn‖ = . (.)

Since ‖xn – T(PT)n–xn‖ ≤ ‖Sn xn – T(PT)n–xn‖ by the condition (b) and

∥∥Sn xn – T(PT)n–xn
∥∥

≤ ∥∥Sn xn – T(PT)n–yn
∥∥ +

∥∥T(PT)n–yn – T(PT)n–xn
∥∥

≤ ∥∥Sn xn – T(PT)n–yn
∥∥ + l()n ‖yn – xn‖.

Using (.) and (.), we have

lim
n→∞

∥∥Sn xn – T(PT)n–xn
∥∥ =  (.)

and

lim
n→∞

∥∥xn – T(PT)n–xn
∥∥ = . (.)

It follows from

∥∥xn+ – Sn xn
∥∥ =

∥∥P[
( – αn)Sn xn + αnT(PT)n–yn

]
– P

(
Sn xn

)∥∥
≤ αn

∥∥Sn xn – T(PT)n–yn
∥∥

and (.) that

lim
n→∞

∥∥xn+ – Sn xn
∥∥ = . (.)

In addition, we have

∥∥xn+ – T(PT)n–yn
∥∥ ≤ ∥∥xn+ – Sn xn

∥∥ +
∥∥Sn xn – T(PT)n–yn

∥∥.
Using (.) and (.), we obtain that

lim
n→∞

∥∥xn+ – T(PT)n–yn
∥∥ = . (.)

Thus, using (.), (.) and the inequality

∥∥Sn xn – xn
∥∥ ≤ ∥∥Sn xn – T(PT)n–xn

∥∥ +
∥∥T(PT)n–xn – xn

∥∥,
we have limn→∞ ‖Sn xn – xn‖ = . It follows from (.) and the inequality

∥∥Sn xn – T(PT)n–xn
∥∥ ≤ ∥∥Sn xn – xn

∥∥ +
∥∥xn – T(PT)n–xn

∥∥
that

lim
n→∞

∥∥Sn xn – T(PT)n–xn
∥∥ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/224
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Since

∥∥xn+ – T(PT)n–yn
∥∥ ≤ ∥∥xn+ – Sn xn

∥∥ +
∥∥Sn xn – T(PT)n–xn

∥∥ + l()n ‖xn – yn‖,

from (.), (.) and (.), it follows that

lim
n→∞

∥∥xn+ – T(PT)n–yn
∥∥ = . (.)

Again, since (PTi)(PTi)n–yn–, xn ∈ K for i = ,  and T, T are two asymptotically non-
expansive nonself-mappings, we have

∥∥Ti(PTi)n–yn– – Tixn
∥∥

=
∥∥Ti

[
(PTi)(PTi)n–yn–

]
– Ti(Pxn)

∥∥
≤ max

{
l() , l()

}∥∥(PTi)(PTi)n–yn– – Pxn
∥∥

≤ max
{
l() , l()

}∥∥Ti(PTi)n–yn– – xn
∥∥ (.)

for i = , . It follows from (.), (.) and (.) that

lim
n→∞

∥∥Ti(PTi)n–yn– – Tixn
∥∥ =  (.)

for i = , . Moreover, we have

‖xn+ – yn‖ ≤ ∥∥xn+ – T(PT)n–yn
∥∥ +

∥∥T(PT)n–yn – xn
∥∥ + ‖xn – yn‖.

Using (.), (.) and (.), we have

lim
n→∞‖xn+ – yn‖ = . (.)

In addition, we have

‖xn – Tixn‖ ≤ ∥∥xn – Ti(PTi)n–xn
∥∥ +

∥∥Ti(PTi)n–xn – Ti(PTi)n–yn–
∥∥

+
∥∥Ti(PTi)n–yn– – Tixn

∥∥
≤ ∥∥xn – Ti(PTi)n–xn

∥∥ +max
{
sup
n≥

l()n , sup
n≥

l()n

}
‖xn – yn–‖

+
∥∥Ti(PTi)n–yn– – Tixn

∥∥
for i = , . Thus it follows from (.), (.), (.) and (.) that

lim
n→∞‖xn – Txn‖ = lim

n→∞‖xn – Txn‖ = .

Finally, we prove that

lim
n→∞‖xn – Sxn‖ = lim

n→∞‖xn – Sxn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/224
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In fact, by the condition (b), we have

‖xn – Sixn‖ ≤ ∥∥xn – Ti(PTi)n–xn
∥∥ +

∥∥Sixn – Ti(PTi)n–xn
∥∥

≤ ∥∥xn – Ti(PTi)n–xn
∥∥ +

∥∥Sni xn – Ti(PTi)n–xn
∥∥

for i = , . Thus it follows from (.), (.), (.) and (.) that

lim
n→∞‖xn – Sxn‖ = lim

n→∞‖xn – Sxn‖ = .

This completes the proof. �

Now, we find two mappings, S = S = S and T = T = T , satisfying the condition (b) in
Lemma . as follows.

Example . [] LetR be the real line with the usual norm | · | and let K = [–, ]. Define
two mappings S,T : K → K by

Tx =

⎧⎨
⎩– sin x

 , if x ∈ [, ],

 sin x
 , if x ∈ [–, ),

and

Sx =

⎧⎨
⎩x, if x ∈ [, ],

–x, if x ∈ [–, ).

Now, we show that T is nonexpansive. In fact, if x, y ∈ [, ] or x, y ∈ [–, ), then we have

|Tx – Ty| = 
∣∣∣∣sin x


– sin

y


∣∣∣∣ ≤ |x – y|.

If x ∈ [, ] and y ∈ [–, ) or x ∈ [–, ) and y ∈ [, ], then we have

|Tx – Ty| = 
∣∣∣∣sin x


+ sin

y


∣∣∣∣
= 

∣∣∣∣sin x + y


cos
x – y


∣∣∣∣
≤ |x + y|
≤ |x – y|.

This implies that T is nonexpansive and so T is an asymptotically nonexpansive mapping
with kn =  for each n≥ . Similarly, we can show that S is an asymptotically nonexpansive
mapping with ln =  for each n≥ .
Next, we show that two mappings S, T satisfy the condition (b) in Lemma .. For this,

we consider the following cases:

http://www.fixedpointtheoryandapplications.com/content/2012/1/224
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Case . Let x, y ∈ [, ]. Then we have

|x – Ty| =
∣∣∣∣x +  sin

y


∣∣∣∣ = |Sx – Ty|.

Case . Let x, y ∈ [–, ). Then we have

|x – Ty| =
∣∣∣∣x –  sin

y


∣∣∣∣ ≤
∣∣∣∣–x –  sin

y


∣∣∣∣ = |Sx – Ty|.

Case . Let x ∈ [–, ) and y ∈ [, ]. Then we have

|x – Ty| =
∣∣∣∣x +  sin

y


∣∣∣∣ ≤
∣∣∣∣–x +  sin

y


∣∣∣∣ = |Sx – Ty|.

Case . Let x ∈ [, ] and y ∈ [–, ). Then we have

|x – Ty| =
∣∣∣∣x –  sin

y


∣∣∣∣ = |Sx – Ty|.

Therefore, the condition (b) in Lemma . is satisfied.

Theorem. Under the assumptions of Lemma ., if one of S, S,T and T is completely
continuous, then the sequence {xn} defined by (.) converges strongly to a common fixed
point of S, S, T and T.

Proof Without loss of generality, we can assume that S is completely continuous. Since
{xn} is bounded by Lemma ., there exists a subsequence {Sxnj} of {Sxn} such that {Sxnj}
converges strongly to some q∗. Moreover, we know that

lim
j→∞‖xnj – Sxnj‖ = lim

j→∞‖xnj – Sxnj‖ = 

and

lim
j→∞‖xnj – Txnj‖ = lim

j→∞‖xnj – Txnj‖ = 

by Lemma ., which imply that

∥∥xnj – q∗∥∥ ≤ ‖xnj – Sxnj‖ +
∥∥Sxnj – q∗∥∥ → 

as j → ∞ and so xnj → q∗ ∈ K . Thus, by the continuity of S, S, T and T, we have

∥∥q∗ – Siq∗∥∥ = lim
j→∞‖xnj – Sixnj‖ = 

and

∥∥q∗ – Tiq∗∥∥ = lim
j→∞‖xnj – Tixnj‖ = 

for i = , . Thus it follows that q∗ ∈ F(S) ∩ F(S) ∩ F(T) ∩ F(T). Furthermore, since

http://www.fixedpointtheoryandapplications.com/content/2012/1/224
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limn→∞ ‖xn – q∗‖ exists by Lemma ., we have limn→∞ ‖xn – q∗‖ = . This completes the
proof. �

Theorem . Under the assumptions of Lemma ., if one of S, S, T and T is semi-
compact, then the sequence {xn} defined by (.) converges strongly to a common fixed point
of S, S, T and T.

Proof Since limn→∞ ‖xn – Sixn‖ = limn→∞ ‖xn – Tixn‖ =  for i = ,  by Lemma . and
one of S, S, T and T is semi-compact, there exists a subsequence {xnj} of {xn} such that
{xnj} converges strongly to some q∗ ∈ K . Moreover, by the continuity of S, S, T and T,
we have ‖q∗ – Siq∗‖ = limj→∞ ‖xnj – Sixnj‖ =  and ‖q∗ – Tiq∗‖ = limj→∞ ‖xnj – Tixnj‖ = 
for i = , . Thus it follows that q∗ ∈ F(S)∩ F(S)∩ F(T)∩ F(T). Since limn→∞ ‖xn – q∗‖
exists by Lemma ., we have limn→∞ ‖xn – q∗‖ = . This completes the proof. �

Theorem . Under the assumptions of Lemma ., if there exists a nondecreasing func-
tion f : [,∞)→ [,∞) with f () =  and f (r) >  for all r ∈ (,∞) such that

f
(
d(x,F)

) ≤ ‖x – Sx‖ + ‖x – Sx‖ + ‖x – Tx‖ + ‖x – Tx‖

for all x ∈ K , where F = F(S) ∩ F(S) ∩ F(T) ∩ F(T), then the sequence {xn} defined by
(.) converges strongly to a common fixed point of S, S, T and T.

Proof Since limn→∞ ‖xn – Sixn‖ = limn→∞ ‖xn – Tixn‖ =  for i = ,  by Lemma ., we
have limn→∞ f (d(xn,F)) = . Since f : [,∞)→ [,∞) is a nondecreasing function satisfy-
ing f () = , f (r) >  for all r ∈ (,∞) and limn→∞ d(xn,F) exists by Lemma ., we have
limn→∞ d(xn,F) = .
Now, we show that {xn} is a Cauchy sequence in K . In fact, from (.), we have

‖xn+ – q‖ ≤ [
 +

(
hn – 

)]‖xn – q‖

for each n ≥ , where hn = max{k()n ,k()n , l()n , l()n } and q ∈ F . For any m, n, m > n ≥ , we
have

‖xm – q‖ ≤ [
 +

(
hm– – 

)]‖xm– – q‖
≤ eh


m––‖xm– – q‖

≤ eh

m––eh


m––‖xm– – q‖

≤ · · ·
≤ e

∑m–
i=n (hi –)‖xn – q‖

≤ M‖xn – q‖,

whereM = e
∑∞

i=(h

i –). Thus, for any q ∈ F , we have

‖xn – xm‖ ≤ ‖xn – q‖ + ‖xm – q‖
≤ ( +M)‖xn – q‖.
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Taking the infimum over all q ∈ F , we obtain

‖xn – xm‖ ≤ ( +M)d(xn,F).

Thus it follows from limn→∞ d(xn,F) =  that {xn} is a Cauchy sequence. Since K is a
closed subset of E, the sequence {xn} converges strongly to some q∗ ∈ K . It is easy to prove
that F(S), F(S), F(T) and F(T) are all closed and so F is a closed subset of K . Since
limn→∞ d(xn,F) = , q∗ ∈ F , the sequence {xn} converges strongly to a common fixed point
of S, S, T and T. This completes the proof. �

4 Weak convergence theorems
In this section, we prove weak convergence theorems for the iterative scheme defined by
(.) in uniformly convex Banach spaces.

Lemma. Under the assumptions of Lemma ., for all q,q ∈ F = F(S)∩F(S)∩F(T)∩
F(T), the limit

lim
n→∞

∥∥txn + ( – t)q – q
∥∥

exists for all t ∈ [, ], where {xn} is the sequence defined by (.).

Proof Set an(t) = ‖txn+(–t)q –q‖. Then limn→∞ an() = ‖q –q‖ and, fromLemma.,
limn→∞ an() = limn→∞ ‖xn – q‖ exists. Thus it remains to prove Lemma . for any t ∈
(, ).
Define the mapping Gn : K → K by

Gnx = P
[
( – αn)Sn x + αnT(PT)n–P

(
( – βn)Snx + βnT(PT)n–x

)]

for all x ∈ K . It is easy to prove that

‖Gnx –Gny‖ ≤ hn‖x – y‖ (.)

for all x, y ∈ K , where hn = max{k()n ,k()n , l()n , l()n }. Letting hn =  + vn, it follows from  ≤∏∞
j=n hj ≤ e

∑∞
j=n vj and

∑∞
n= vn < ∞ that limn→∞

∏∞
j=n hj = . Setting

Sn,m =Gn+m–Gn+m– · · ·Gn (.)

for eachm ≥ , from (.) and (.), it follows that

‖Sn,mx – Sn,my‖ ≤
(n+m–∏

j=n

hj

)
‖x – y‖

for all x, y ∈ K and Sn,mxn = xn+m, Sn,mq = q for any q ∈ F . Let

bn,m =
∥∥tSn,mxn + ( – t)Sn,mq – Sn,m

(
txn + ( – t)q

)∥∥. (.)
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Then, using (.) and Lemma ., we have

bn,m ≤
(n+m–∏

j=n

hj

)
γ –

(
‖xn – q‖ –

(n+m–∏
j=n

hj

)–

‖Sn,mxn – Sn,mq‖
)

≤
( ∞∏

j=n

hj

)
γ –

(
‖xn – q‖ –

( ∞∏
j=n

hj

)–

‖xn+m – q‖
)
.

It follows from Lemma . and limn→∞
∏∞

j=n hj =  that limn→∞ bn,m =  uniformly for
allm. Observe that

an+m(t) ≤ ∥∥Sn,m(
txn + ( – t)q

)
– q

∥∥ + bn,m

=
∥∥Sn,m(

txn + ( – t)q
)
– Sn,mq

∥∥ + bn,m

≤
(n+m–∏

j=n

hj

)∥∥txn + ( – t)q – q
∥∥ + bn,m

≤
( ∞∏

j=n

hj

)
an(t) + bn,m.

Thus we have lim supn→∞ an(t) ≤ lim infn→∞ an(t), that is, limn→∞ ‖txn + ( – t)q – q‖
exists for all t ∈ (, ). This completes the proof. �

Lemma . Under the assumptions of Lemma ., if E has a Fréchet differentiable norm,
then, for all q,q ∈ F = F(S)∩ F(S)∩ F(T)∩ F(T), the limit

lim
n→∞

〈
xn, j(q – q)

〉

exists, where {xn} is the sequence defined by (.). Furthermore, if Ww({xn}) denotes the set
of all weak subsequential limits of {xn}, then 〈x∗ – y∗, j(q – q)〉 =  for all q,q ∈ F and
x∗, y∗ ∈Ww({xn}).

Proof This follows basically as in the proof of Lemma . of [] using Lemma . instead
of Lemma . of []. �

Theorem. Under the assumptions of Lemma ., if E has a Fréchet differentiable norm,
then the sequence {xn} defined by (.) converges weakly to a common fixed point of S, S,
T and T.

Proof Since E is a uniformly convex Banach space and the sequence {xn} is bounded by
Lemma ., there exists a subsequence {xnk } of {xn}which convergesweakly to some q ∈ K .
By Lemma ., we have

lim
k→∞

‖xnk – Sixnk‖ = lim
k→∞

‖xnk – Tixnk‖ = 

for i = , . It follows from Lemma . that q ∈ F = F(S)∩ F(S)∩ F(T)∩ F(T).
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Now, we prove that the sequence {xn} converges weakly to q. Suppose that there exists
a subsequence {xmj} of {xn} such that {xmj} converges weakly to some q ∈ K . Then, by
the same method given above, we can also prove that q ∈ F . So, q,q ∈ F ∩ Ww({xn}). It
follows from Lemma . that

‖q – q‖ =
〈
q – q, j(q – q)

〉
= .

Therefore, q = q, which shows that the sequence {xn} converges weakly to q. This com-
pletes the proof. �

Theorem . Under the assumptions of Lemma ., if the dual space E∗ of E has the
Kadec-Klee property, then the sequence {xn} defined by (.) converges weakly to a com-
mon fixed point of S, S, T and T.

Proof Using the samemethod given inTheorem., we can prove that there exists a subse-
quence {xnk } of {xn}which converges weakly to some q ∈ F = F(S)∩F(S)∩F(T)∩F(T).
Now, we prove that the sequence {xn} converges weakly to q. Suppose that there exists a

subsequence {xmj} of {xn} such that {xmj} converges weakly to some q∗ ∈ K . Then, as for q,
we have q∗ ∈ F . It follows from Lemma . that the limit

lim
n→∞

∥∥txn + ( – t)q – q∗∥∥
exists for all t ∈ [, ]. Again, since q,q∗ ∈Ww({xn}), q∗ = q by Lemma .. This shows that
the sequence {xn} converges weakly to q. This completes the proof. �

Theorem . Under the assumptions of Lemma ., if E satisfies Opial’s condition, then
the sequence {xn} defined by (.) converges weakly to a common fixed point of S, S, T

and T.

Proof Using the same method as given in Theorem ., we can prove that there exists a
subsequence {xnk } of {xn} which converges weakly to some q ∈ F = F(S)∩ F(S)∩ F(T)∩
F(T).
Now, we prove that the sequence {xn} converges weakly to q. Suppose that there exists a

subsequence {xmj} of {xn} such that {xmj} converges weakly to some q̄ ∈ K and q̄ 
= q. Then,
as for q, we have q̄ ∈ F . Using Lemma ., we have the following two limits exist:

lim
n→∞‖xn – q‖ = c, lim

n→∞‖xn – q̄‖ = c.

Thus, by Opial’s condition, we have

c = lim sup
k→∞

‖xnk – q‖ < lim sup
k→∞

‖xnk – q̄‖ = lim sup
j→∞

‖xmj – q̄‖ < lim sup
j→∞

‖xmj – q‖ = c,

which is a contradiction and so q = q̄. This shows that the sequence {xn} converges weakly
to q. This completes the proof. �
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