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1 Introduction

In the literature, there are plenty of extensions of the famous Banach contraction princi-
ple [1], which states that every self-mapping T defined on a complete metric space (X, d)
satisfying

d(Tx, Ty) < kd(x,y) for eachx,y € X, (1)

where k € [0;1), has a unique fixed point, and for every xy € X, the sequence {T"x¢},en
is convergent to the fixed point. Some of the extensions weaken the right side of the in-
equality in the condition (1) by replacing k with a mapping; see, e.g., [2—4]. In other results,
the underlying space is more general; see, e.g., [5-8]. In 1969, Nadler [9] extended the Ba-
nach contraction principle to set-valued mappings. For other extensions of the Banach
contraction principle, see [10-21] and the references therein.

Recently, Wardowski [22] introduced a new concept of contraction and proved a fixed
point theorem which generalizes the Banach contraction principle in a different way than
in the known results from the literature. In this paper, we present an improvement and
generalization of the main result of Wardowski [22]. To set up our results, in the next
section, we introduce some definitions and facts.

Let (X, d) be a metric space and let CB(X) denote the class of all nonempty bounded
closed subsets of X. Let H be the Hausdorff metric with respect to d, that is,

H(A,B) = max{sup d(u, B, sup d(v,A)}

ueA veB
for every A, B € CB(X), where d(u, B) = inf{d(u,y) : y € B}.
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Theorem 1.1 (Nadler [9]) Let (X, d) be a complete metric space and let T : X — CB(X) be
a set-valued map. Assume that there exists k € [0,1) such that

H(Tx, Ty) < kd(x,y) foreachx,y € X. (2)
Then T has a fixed point.

In 1989 Mizoguchi and Takahashi [13] proved the following generalization of Theo-
rem 1.1.

Theorem 1.2 (Mizoguchi and Takahashi [13]) Let (X,d) be a complete metric space and
let T : X — CB(X) be a set-valued map satisfying

H(Tx, Ty) < a(d(x,y))d(x,y) foreachx,y € X,

where « : [0,00) — [0,1) satisfies limsup,_, ,+ a(t) < 1 for each r € [0,00). Then T has a
fixed point.

2 Main results
Let F: (0,00) - R and 6 : (0,00) — (0,00) be two mappings. Throughout the paper, let
A be the set of all pairs (F,0) satisfying the following:

(81) 6(t,) # 0O for each strictly decreasing sequence {¢,};

(83) F is strictly increasing;

(83) For each sequence {o,},eny of positive numbers, lim, @, = 0 if and only if
lim,,_, o F(a,,) = —00;

(84) Ift, | 0 and 6(t,) < F(t,) — F(ty11) for each n € N, then ) 7, ¢, < 00.

Example 2.1 Let 6,(¢) = t for each ¢ € (0,00), where T > 0 is a constant, and let F :
(0,00) — R be a mapping satisfying lim, .o+ ¥*F(x) = 0 for some k € (0,1) where F :
(0,00) — R is strictly increasing. Then the proof of the main result in [22] shows that
(F1,01) € A. We give the details for completeness. Using (84), the following holds for every
neN:

F(t,) < F(ty-1) -1 < F(ty—a) - 21 < --- < F(ty) — nt. (3)
By (3), the following holds for every n € N:
thE(t,) — thE(t) < tr (F(to) — nt) — thF(to) = ~tant < 0. (4)

Since lim,,_, o t’;F(t,,) = 0, letting n — oo in (4), we obtain lim,_, nt’,j = 0. Then there

exists n; € N such that nt’; <1 for n > n;. Consequently, we have ¢, < A forall m > n.
nk

Thus, Y07, £, < 00 (note that Y o) - < 00).
nk

Example 2.2 Let F,(¢) = In¢ and let 65(¢) = —In(x(¢)) for each ¢ € (0,00), where o :
(0,00) — [0,1) satisfying

limsupa(t) <1 foreachr e [0,00).

t—rt
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Now, we show that (F;,6,) € A. It is easy to see that F, and 6, satisfy (6;)-(83). To show
(84), assume that ¢, | 0 and

—In(a(ty)) <Int, —Inty Vnel

Then t,,1 < a(t,)t, for each n € N. Since limsup,_, o+ a(£) < 1, then there exist ny € N and

0 < r <1suchthat «(t,) < r for n > ngy. Thus, t,.1 < rt, for each n > ngy, and so Z:il t, < 0.

Example 2.3 Let F3(¢) = Int + ¢ and let 63(¢) = T for each ¢ € (0,00), where t > 0 is a
constant. Now, we show that (F3,63) € A. We only show (84). Suppose that £, — 0 and

T <(Int, +t,)—(ntq +t,1) VYneN.
Then
Si1<e’s, VYnel,

where s, = £,e. Since e™* <1, then from the above we get > - s, < 00,and s0 Y o, ¢, < 00
(note that ¢, < s, for each n € N).

Now, we state the main result of the paper.

Theorem 2.4 Let (X,d) be a complete metric spaces, let T : X — CB(X) be a set-valued
mapping and let (F, %) € A. Assume that either T is compact valued or F is continuous

from the right. Furthermore, assume that
Q(d(x,y)) + F(H(Tx, Ty)) < F(d(x,y)) Vx,y € X with Tx # Ty. (5)
Then T has a fixed point.

Proof Letxy € X and x; € Txy. If Txg = Txy, then x; € Txy = Tx; and «; is a fixed point of T'.
So, we may assume that Tx, # Tx;. Since either T is compact valued or F is continuous
from the right, x; € Tx¢ and F(d(x1, Tx1)) < F(H(Txo, Tx1)) + w then there exists x, €
Tx such that (note that F is increasing)

Fld(e, ) < F(H(To, ) + 200 2)) (6)
From (5) and (6), we have
0/(d(xo, 1)) + F(d(x1, %))
< 0(d(xo ) + E(H(Txo, i) + w < F(d(xo,m) + w,
and so
bldo.x)) | F(d(x1,%,)) < F(d(xo,x1)). (7)

2


http://www.fixedpointtheoryandapplications.com/content/2012/1/215

Amini-Harandi Fixed Point Theory and Applications 2012, 2012:215 Page 4 of 7
http://www.fixedpointtheoryandapplications.com/content/2012/1/215

We may also assume that Tx; # Tx; (otherwise, x; € Tx, = Tx;). Proceeding this manner,

we can define a sequence {x,} in X satisfying

Xpe1 € Ty, < F(t,) — F(t+1), foreachmeN, (8)

6(z,)
2

where t, = d(x,,,x,,,1). Since 0(¢,,) > 0 then from (8), we have F(¢,) > F(t,,1) for each n € N.
Since F is strictly increasing, then we deduce that {z,} is a nonnegative strictly decreasing
sequence and so is convergent to some r > 0, lim,_, » ¢, = r. Now we show that r = 0. On

the contrary, assume that r > 0. From (8), we get
1 n
=Y 0(t) <F(t) = F(ty1) foreachneN. )
23

Since {#,} is strictly decreasing, then from (&;) we get 6(¢,) /4 0. Thus, >, 6(£;) = 00, and
then from (9), we have lim,,_, o F(,) = —00. Then by (d3), t, — 0, a contradiction. Hence,

lim ¢, = 0. (10)

n—00

From (8), (10) and (84), we have

d(x;,%i41) < 00.

™
M

Then, by the triangle inequality, {x,} is a Cauchy sequence. From the completeness of X,
there exists x € X such that lim,,_, , x, = x. Now, we prove that x is a fixed point of T. To
prove the claim, we may assume that Tx,, # Tx for sufficiently large #n € N. On the contrary,
assume that Tx,, = Tx for each i € N. Since Tk is closed, x,,41 € Tx,, = Tx and x,,,,1 — %,
then x € Tx, and we are finished.

From (5), we have (note that x,,,; € Tx,, and Tx, # Tx for n > N)

F(d(xmb Tx)) <0 (d(x,,,x)) + F(d(xml, Tx))

< 0(d(xy,%)) + F(H(Tx,, Tx)) < F(d(x4,%)). (11)
Since d(x,,x) — 0, then (11) together with (83) imply that
d(x, Tx) = lim d(x,.1, Tx) = 0,
n—00
and so d(x, Tx) = 0. Hence, x € Tx (note that Tx is closed). O
Remark 2.5 By Example 2.1, Theorem 2.4 is an extension and improvement of Theo-
rem 2.1 of Wardowski [22]. From Example 2.2, we infer that Theorem 2.4 is a generaliza-

tion of the above mentioned Theorem 1.2 of Mizoguchi and Takahashi.

Now, we illustrate our main result by the following example.
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Example 2.6 Consider the complete metric space (X = {0,1,2,3,...},d), where d is de-
fined as

x=y,
xX+y xFy.

d(x’y) =

Let T: X — CB(X) be defined as

{0,1,2,3,...}, x=0,
X =
fx—Lx,x+1,...}, x>0.

Letf: X — X be given by

y 0, x=0,
X =

x—1, x>0.
Now, we show that T satisfies (5), where 0(¢) = 1 for each ¢ € (0,00) and F(x) = Inx + x
for each x € (0,00). To show the claim, notice first that H(Tx;, Tx;) = d(fx1,fx,) for each

x1,% € X. Now let x1, %, € X with fx; # fx,. Since d(fxy, fx;) — d(x1,%3) < -1, then we have

d )
Med(f’“m)’d(’”’”) <e!, foreach xy,x, € X with fx; #fx.
d(x1,%2)

Thus, from the above, we have

1 < [Ind(x1,%2) + d(x1,%2) | — [Ind(fer, foxz) + d(fx, %) ]
= F(d(xl,xz)) - F(d(fxl,fX2)).

Therefore, (note that H(Tx;, Tx;) = d(fx1, fx»))
1< F(d(xl,xz)) - F(H(Txl, TXZ))
Then, by Theorem 2.4, T has a fixed point.
Now, we show that T does not satisfy the condition of Nadler’s theorem. On the contrary,
assume that there exists a function k € [0,1) such that
H(Txl, Txg) < kd(xl,xz)
for all x1,x, € X. Then
d(fx1,fx2) < kd(x1,%2).

Then, for each x; >1 and x5 = x; + 1, we have

2x1 —1 < k(2x1 +1), for eachx; > 1.
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Hence,

. 2961 -1
1= lim <
x—00 2x1 + 1

a contradiction.

Example 2.7 For each ¢ € (0,00), let F(¢) = —% and let

_mTr’ 0<t<l,
04(t) =
1, 1<t

Then it is easy to see that (F4,0s4) € A, but F, does not satisfy the condition (F3) of the
definition of F-contraction in [22].

Now, by using the technique in [23], we present a new coupled fixed point result. For
more details on coupled fixed point theory, see [23—-25] and the references therein.

Corollary 2.8 Let (M, p) be a complete metric space and let (F, %) eA.Letf :-MxM—>M
be a mapping satisfying

0(p(x,u) + p(,) + E(p(f(x,9).f ,v)) + p(f(y,%),f (v, u)))
< F(px,u) + p(y) (12)

for each x,y,u,v € M. Then f has a coupled fixed point (xo,%0), that is, f(x0,y0) = %o and
fo,%0) = ¥o.

Proof Let X = M x M and let d be the metric on M which is defined by

d((x,y), (u, v)) =pl,u) + p(y,v).

Then it is straightforward to show that (X, d) is a complete metric space. Let T: X — X
be defined by T'(x,y) = (f(x,7),f(y,%)). From (12), we get

0(d((x,9), (u,v))) + F(d(T(x,9), T(u,v))) < F(d((x,9), (w,v)))

for each (x,%), (&, v) € X. Then from Theorem 2.4 we deduce that T has a fixed point g =
(*0,%0). Then (xo,y0) is a coupled fixed point of f. O
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