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1 Introduction

Throughout this paper, we assume that E is a real Banach space, E" is the dual space of E.
Let C be a nonempty, closed, and convex subset of E and (-,-) be the pairing between
E and E'. We denote the strong convergence and weak convergence of a sequence {x,}
by x, — x and x, — x, respectively, and / : E — 2F s the normalized duality mapping
defined by

Fe={f €E:(wf) = IxI* = IfI’}, VxeE. (11)

In the sequel, we use F(T) to denote the set of fixed points of a mapping T and use R
and R* to denote the set of all real numbers and the set of all nonnegative real numbers,

respectively.

Definition 1.1 Let E be a Banach space.
(1) E is said to be strictly convex if @ <lforallx,ye Ur={z€E:|z| =1} withx #y.
(2) E is said to be uniformly convex if for each ¢ € (0,2], there exists § > 0 such that
@ <1-6 forallx,y € Up with |lx —y| > .
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(3) E is said to be smooth if the limit (1.2)

. x+ty|| —||x
el

t—0 t

1.2)

exists for each x,y € Ug.
(4) E is said to be uniformly smooth if the limit (1.2) is attained uniformly for all
x,y € UE.

Remark 1.2 The basic properties below hold (see (1, 2]).

(1) If E is a real uniformly smooth Banach space, then J is uniformly continuous on
each bounded subset of E.

(2) If E is a strictly convex reflexive Banach space, then /™! is hemicontinuous, that s,
J~1 is norm-to-weak -continuous.

(3) If E is a smooth and strictly convex reflexive Banach space, then J is single-valued,
one-to-one, and onto.

(4) A Banach space E is uniformly smooth if and only if E” is uniformly convex.

(5) Each uniformly convex Banach space E has the Kadec-Klee property; that is, for any
sequence {x,} C E, if {x,} — x € E and ||x,|| — ||x], then x,, — .

(6) A Banach space E is strictly convex if and only if J is strictly monotone; that is,

(x —yx —y*) >0, wheneverx,y € E,x#y, andx € Jx,y €Jy.

(7) Both uniformly smooth Banach spaces and uniformly convex Banach spaces are
reflexive.

(8) E is uniformly convex, then J is uniformly norm-to-norm continuous on each
bounded subset of E.

Let E be a smooth and strictly convex reflexive Banach space, and let C be a nonempty,
closed, and convex subset of E. We assume that the Lyapunov functional ¢ : E x E — R*
is defined by [3, 4]

¢(x,y) = Ixl® = 2(x,Jy) + Iyll>,  ¥x,y€E.
From the definition of ¢, it is easy to see that
(I1ll - ||)’||)2 < ¢xy) < (Ilxll + ||)’||)2~ (1.3)

Let C be a nonempty, closed, and convex subset of E. For each x € E, the generalized
projection [3] Tl¢ : E — C is defined by

¢ (x) = argmin ¢ (x, y).
yeC
Lemma 1.3 3, 4] If C is a nonempty, closed, and convex subset of a smooth and strictly
convex reflexive real Banach space E, then

(1) forx € Eand u € C, one has

u=Ickx) < (u-yJx—Ju)>0, VyeC.
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(2) ¢, c(y) + ¢(Ic(y),y) < dxy), Vx € C,y € E.
(3) ¢(x,y)=0ifand only ifx=y,Vx,y € C.

Remark 1.4 If E is a real Hilbert space H, then ¢(x, y) = ||x — y||? and IT¢ = P¢ (the metric
projection of H onto C).

Definition 1.5 Let E be a smooth, strictly convex, and reflexive real Banach space, C be a
nonempty, closed, and convex subset of E, T : C — C be a mapping, and Fix(T’) be the set
of fixed points of T
(1) A point p € C is said to be an asymptotic fixed point of T if there exists a sequence
{x,} C C such that x, — p and ||x, — Tx,| — 0. We denote the set of all asymptotic
fixed points of T by E(T).
(2) A point p € C is said to be a strong asymptotic fixed point of T if there exists a
sequence {x,} C C such that x,, — p and ||x,, — Tx, || — 0. We denote the set of all
strong asymptotic fixed points of T by F(T).

Definition 1.6 Let E be a smooth, strictly convex, and reflexive real Banach space, and let
C be a nonempty, closed, and convex subset of E.
(1) A mapping T: C — C is said to be closed if for each {x,} C C with x,, — x and
Tx, — y, then Tx = y.
(2) A mapping T : C — C is said to be relatively nonexpansive [5, 6] if Fix(T) # @,
Fix(T) = E(T), and

#(p, Tx) < ¢(p,x), Vx e C,p eFix(T).

(3) A mapping T': C — C is said to be weak relatively nonexpansive [7] if Fix(T) # ¢,
Fix(T) = F(T), and

o(p, Tx) < ¢(p,x), Vxe€ C,peFix(T).

(4) A mapping T : C — C is said to be quasi-¢-nonexpansive (relatively quasi-
nonexpansive) if Fix(T) # ¥ and

o(p, Tx) < ¢(p,x), Vxe C,peFix(T).
(5) A mapping T': C — C is said to be quasi-¢-asymptotically nonexpansive
(asymptotically relatively nonexpansive) if Fix(T) # ¢ and there exists a sequence
{k,} C [1,00) with k, — 1 such that

qb(p, T”x) <k,p(p,x), VxeC,peFix(T), andVn>1.

(6) A mapping T : C — C is said to be total quasi-¢-asymptotically nonexpansive if
Fix(T) # ¢ and there exists nonnegative real sequences {v,} and {u,} with v, — 0,
1y — 0 (as n — 00), and a strictly increasing continuous function ¢ : R* — R* with
£(0) = 0 such that

qb(p, T”x) <o¢px) + v,,{(d)(p, x)) + Uy, VxeC,peFix(T), and Vi > 1.
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Remark 1.7 From Definition 1.6, it is easy to know that

(1) every relatively nonexpansive mapping is closed;

(2) every quasi-¢-asymptotically nonexpansive mapping is a total quasi-¢-
asymptotically nonexpansive mapping, but the converse is not true;

(3) every quasi-¢-nonexpansive mapping is a quasi-¢-asymptotically nonexpansive
mapping with {k,, = 1}, but the converse is not true;

(4) every weak relatively nonexpansive mapping is a quasi-¢-nonexpansive mapping
because it does not require the condition Fix(T') = F (T), but the converse is not true;

(5) every relatively nonexpansive mapping is a weak relatively nonexpansive mapping,
but the converse is not true.

Regarding the iterative methods of nonlinear operator equations for relatively nonex-
pansive mappings, in 2005 Matsushita and Takahashi [5] and in 2008 Plubtieng and Ung-
chittrakool [6] proved the following result, respectively.

Theorem MT Let E be a uniformly convex and uniformly smooth Banach space, let C
be a nonempty closed and convex subset of E. Let T : C — C be a relatively nonexpansive
mapping, and let {a,} be a real sequence in [0,1) with limsup,,_, . o, < 1. Let {x,} be a
sequence defined by

x0 € C chosen arbitrarily,

Y =T Hanfxo + (1= )] Txy),

Cu={z€ C:d(z,y4) < ¢(z,x)}, (1.4)
Qu={z€ C: (¥ —2z,Jx0 = Jxn) = 0},

Xptl = HCnﬁQn (xO)) Vn >0,

where ] is the duality mapping on E. If Fix(T) # 0, then the sequence {x,} converges strongly
to Iix(r)(%0), where Igixr)(-) is the generalized projection from C onto Fix(T).

Theorem PU Let E be a uniformly convex and uniformly smooth Banach space, let C be a
nonempty, closed, and convex subset of E. Let T,S : C — C be two relatively nonexpansive
mappings with Q := Fix(T) NFix(S) # 0. Let {x,} be a sequence defined by

x9 € C  chosen arbitrarily,

Y =T N awhxo + (1 - @n)] Tzy),

20 =T B T + BT T + B JS),

H, ={z€ C:9(z,y,) < bz x,) + a,(||%]1* + 2(z, Jx, — Jx0))},
Wy ={z€ C: (%, —z,Jwo — Jxy) > 0},

(1.5)

X1 = Hp,nw, (K0), Yn >0,

with the following restrictions:

(1) O<ay<landlimsup,_, o, <1;

2) 0<BY, 2, 8P <1, limy o0 B = 0, and liminf,_, - B B > 0.
Then the sequence {x,} converges strongly to T1q(x), where T1q(-) is the generalized projec-
tion from C onto Q.
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In 2010, Su et al. [7] introduced the concept of a countable family of weak relatively
nonexpansive mappings and proved the following theorem which extends and improves
Theorem MT and Theorem PU.

Theorem SXZ Let E be a uniformly convex and uniformly smooth real Banach space, let C
be a nonempty, closed, and convex subset of E. Let {T,,}52,,{Sn}oco : C — C be two count-
able families of weak relatively nonexpansive mappings such that Q = (-, Fix(T,,)) N

(Mo Fix(Sy) # 4.
Let {x,} be a sequence defined by

x9 € C  chosen arbitrarily,

Y =T Sy + (1= @n)Jzn),

20 =T BT + BT Tuitn + B TS k),
Ch={z€ Cr1 N Quo1: (2, y0) < Bz, %)},
Co={z€ C:9(z,50) < P(z,%0)},

Qn=1{z€ Cp1 N Qu1: {xn — 2, Jwo — Jxu) > 0},
Qo =C,

%Xne1 = g, (x0), Yn >0,

(1.6)

with the conditions:
(1) 0 <, <a<lforsomea € (0,1);
(2) ,(11), 5,2), i,g) € (0,1) such that ,3,(11) + /35,2) + ,3,(13) =1 foreach n>1;
(3) liminf,_ o BYBY > 0 and liminf,_.. B2 > 0.
Then the sequence {x,} converges strongly to I1q(xo), where I1q(-) is the generalized projec-

tion from C onto Q2.

In 2011, Chang et al. [8] proved some approximation theorems for common fixed points
of countable families of total quasi-¢-asymptotically nonexpansive mappings which con-
tain several kinds of mappings as their special cases in Banach spaces. Next, Chang et al.
[9] modified the Halpern-type iteration algorithm for a total quasi-¢-asymptotically non-
expansive mapping to have the strong convergence under a limit condition only in the
framework of Banach spaces. Recently, Chang, Lee, and Chan [10] introduced a block
hybrid projection algorithm for solving the convex feasibility problem and the general-
ized equilibrium problems for an infinite family of total quasi-¢-asymptotically nonex-
pansive mappings and they proved strong convergence theorems in a uniformly smooth

and strictly convex Banach space with the Kadec-Klee property.

Theorem CLCY Let E be a uniformly smooth and strictly convex Banach space with
the Kadec-Klee property, let C be a nonempty, closed, and convex subset of E, and let
{Ti}2, : C — C be a countable family of closed, uniformly L;-Lipschitz continuous, and
uniformly total quasi-¢-asymptotically nonexpansive mappings with nonnegative real se-

quences {v,}, {iLn}, and a strictly increasing continuous function ¢ : R* — R* such that


http://www.fixedpointtheoryandapplications.com/content/2012/1/198

Phuangphoo and Kumam Fixed Point Theory and Applications 2012, 2012:198 Page 6 of 23
http://www.fixedpointtheoryandapplications.com/content/2012/1/198

n1=0,v, >0, u, = 0 (as n — 00), and £(0) = 0. Let {x,} be a sequence generated by

x9 € C chosen arbitrarily, Cy = C,

2y =J Mt + (L — @) 2),

Y =T (BuoSxn + 35 B T} %), 1.7)
Cin={veCyu:9yn) < d(vx4) + &4},

Xn+l = Hle (xO)r Vn=>0,

where §, = v, SUp,cq ¢ (@, %)) + n, M, is the generalized projection of E onto C,,,. Let
{Buo}, {Bui}, and {a,} be sequences in [0,1] satisfying the following conditions:

(1) foreachn >0, Buo+ Y oy Bui=1

(2) liminf,_ o BuopBui> 0 foralli>1;

(3) 0 <a, <ac<lforsomea € (0,1).
IfQ2 := N5, Fix(T}) is a nonempty and bounded subset of C, then the sequence {x,} converges
strongly to Tg(xo).

Theorem CLCZ Let E be a uniformly smooth and strictly convex Banach space with
the Kadec-Klee property, let C be a nonempty, closed, and convex subset of E, and let
{Twm)or, : C— C be a countable family of closed, uniformly L,,-Lipschitz continuous, and
uniformly total quasi-¢-asymptotically nonexpansive mappings with nonnegative real se-
quences {v,}, {iLn}, and a strictly increasing continuous function ¢ : R* — R* such that

#1=0,v, >0, u, = 0 (asn— 00),and £(0) = 0. Let {x,} be a sequence generated by

x1 € E  chosen arbitrarily, C; = C,
Vnm =T Hatwhr + (1= 0, Thx,), m =1,
Cun={z€Cy: SUp,;>1 ¢(Zryn,m) <oud(z,x1) + (1 — )z, ) + Enls

Xntl = Hcml(xl), Vn>1,

where &, = v, SUp,,cq s (p(p,xn)) + Wy, and T, is the generalized projection of E onto C.1.
If Q= ("o Fix(T},) is a nonempty and bounded subset of C, then the sequence {x,} con-
verges strongly to Tlg(x1).

Theorem CLC Let E be a uniformly smooth and strictly convex Banach space with
the Kadec-Klee property, let C be a nonempty, closed, and convex subset of E, and let
{Si}2, : C — C be a countable family of closed, uniformly L;-Lipschitz continuous, and
uniformly total quasi-¢-asymptotically nonexpansive mappings with nonnegative real se-
quences {v,}, {4y}, and a strictly increasing continuous function ¢ : R* — R* such that
m=0,v,—0,u,— 0 (asn— 00),and t(0)=0.Let B;: C— E (i=1,2,3,...,N) be
a finite family of continuous and monotone mappings. Let y; : C — R (i = 1,2,3,...,N)
be a finite family of lower semi-continuous and convex functions, and let F;: C x C — R
(i=1,2,3,...,N) be a finite family of bifunctions satisfying the conditions (Al)-(A4). Sup-
pose that Q := (ﬂf\il 5 N (N5, Fix(S;)) is a nonempty and bounded subset of C, where §;
(i=1,2,3,...,N) is the set of the following generalized mixed quasi-equilibrium problems:

Fi(u,y) + (Biu,y — u) + ¥;(y) — ¥i(u) >0, Vye(C,i=12,3,...,N.


http://www.fixedpointtheoryandapplications.com/content/2012/1/198

Phuangphoo and Kumam Fixed Point Theory and Applications 2012, 2012:198 Page 7 of 23
http://www.fixedpointtheoryandapplications.com/content/2012/1/198

Let {x,} be a sequence generated by

x9 € C chosen arbitrarily, Cy = C,

Y =T (BuJxn + 1= Bu)lzn),s

2w = J M@0 + 275 i S} %),

u = KppiKp s Ky K i=1,2,3,...,N,
Cpar = (v € Cyimaxiis, N, ul) < p(v,%,) + &),

Xp+l = HC,,Hl (xo)r Vn = 0,

where &, = v, SUP,,cq s (p(u, %)) + 1, Y = 1, g, ,, is the generalized projection of E onto
Cui- Let {a,,:}, {Bu} be sequences in [0,1] satisfying the following conditions:

(1) foreachn>0,Y > gan; =1

(2) liminf, (1= Bu)otnotty; > 0 for all i > 1.
Then the sequence {x,} converges strongly to Tlg(xo).

In this paper, motivated and inspired by the previously mentioned results, we introduce
a new iterative procedure by the modified block hybrid projection method for solving a
common solution of fixed point problems for two countable families of uniformly total
quasi-¢-asymptotically nonexpansive and uniformly Lipschitz continuous mappings in a
uniformly smooth and strictly convex Banach space with the Kadec-Klee property. Then,
we prove a strong convergence theorem of the iterative procedure generated by these con-
ditions. The results obtained in this paper extend and improve several recent results in this

area.

2 Preliminaries
Definition 2.1 Let C be a nonempty, closed, and convex subset of a real Banach space E.
(1) A mapping T': C — C is said to be nonexpansive it

Tx - Tyl < llx-yll, VxyeC.

(2) A mapping T': C — C is said to be uniformly L-Lipschitz continuous if there exists a
constant L > 0 such that

” T'x - T"yH <Llx-yl, VxyeCVn=>1

Definition 2.2 [11] Let C be a nonempty, closed, and convex subset of a real Banach
space E.
(1) A countable family of mappings {T;}7°, is said to be a uniformly quasi-¢-
asymptotically nonexpansive mapping if (;-; Fix(T;) # ¥ and there exists a sequence
{k,} C [1,00) with k, — 1 such that for each i > 1,

o0
¢(p, T/'x) < ku(p,x), Vxe C,pe( |Fix(T;), and ¥n > 1.
i=1

(2) A countable family of mappings {T;}?° is said to be a uniformly total quasi-¢-
asymptotically nonexpansive mapping if ();5; Fix(T;) # ¥ and there exist
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nonnegative real sequences {v,} and {u,} with v, - 0, u,, — 0 (as n — 00), and a
strictly increasing continuous function ¢ : R* — R* with ¢(0) = 0 such that for each

i>1,

qb(p, Tl"x) < o(p,x) + vng’((i)(p, x)) + U, VxeC,pe ﬂFix(TL-), and Vi > 1.

i=1

Lemma 2.3 [4] Let E be a uniformly smooth and strictly convex real Banach space, and
let {x,} and {y,} be two sequences of E. If ¢(x,,y,) — 0 and either {x,} or {y,} is bounded,
then ||x, — yu|l — 0.

Lemma 2.4 [8] Let E be a uniformly smooth and strictly convex real Banach space with
the Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E. Let {x,,}
and {y,} be two sequences in C and p € E. If x, — p and ¢(x,,y,) — 0, then y, — p.

Lemma 2.5 [8] Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E.Let T : C — C
be a closed and total quasi-p-asymptotically nonexpansive mapping with nonnegative real
sequences {vy,}, {itn}, and a strictly increasing continuous function { : R* — R* such that
v, — 0, uy, = 0 (as n — 00), and ¢(0) = 0. If 11 = 0, then the fixed point set Fix(T) is a
closed and convex subset of C.

Lemma 2.6 [11] Let E be a uniformly convex Banach space, r > 0 be a positive number,
and B,(0) be a closed ball of E. Then for any given sequence {x,}50, C B,(0) and for any
given {1,}02, C (0,1) with Y7, A, = 1, there exists a continuous, strictly increasing, and
convex function g: [0,2r) — [0, 00) with g(0) = 0 such that for any positive integers i, j with
i<j,

2

oo
<D dllall® = Ridig (Il — x11).

n=1

o0
Z Ay

n=1

3 Main results

In this section, we shall use the modified block hybrid projection method to study a
common solution of fixed point problems for two countable families of closed and L;, £;-
Lipschitz continuous and uniformly total quasi-¢-asymptotically nonexpansive mappings
in Banach spaces. For the purpose, we assume the following hypotheses.

(A1) Let {T;}35 : C — C be a countable family of closed, uniformly ;-Lipschitz contin-
uous, and uniformly total quasi-¢-asymptotically nonexpansive mappings with nonneg-
ative real sequences {v,}, {i,} and a strictly increasing function ¢ : R* — R* such that
v, — 0, i, — 0 (as n — 00), 1 = 0, and ¢(0) = 0, and for each i > 1,

o (p, T'x) < p(p, %) + vul (PP, %)) + iy VxEC,p € ﬂFix(Ti), and Vn > 1.

i=1

(A2) Let {S;}35, : C — C be a countable family of closed, uniformly ¢;-Lipschitz contin-
uous, and uniformly total quasi-¢-asymptotically nonexpansive mappings with nonneg-
ative real sequences {«,}, {&,} and a strictly increasing function p : R* — R* such that
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kp — 0, w, — 0 (as n — 00), w; = 0, and p(0) = 0, and for each i > 1,

q)(p, Sf’x) <¢px)+ K,,p(d)(p,x)) +w,, VYxeCpe m Fix(S;), and Vu > 1.

i=1

Theorem 3.1 Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, let C be a nonempty, closed, and convex subset of E, and let {T;}5,
and {S;}7°, satisfy the above conditions (A1)-(A2), respectively.

Suppose that Q := (i Fix(T;)) N (N Fix(Sy)) is nonempty and bounded in C. Let
(Xu)oo1s Wntoors and {z,}52, be sequences generated by

x9 € C  chosen arbitrarily, Cy = C,

20 =] o ftn + 375 WniJ S V)

I =T (Buoxn + Yoy Bui T]%n)s 3.1
Cu1={ve Cy:d(v,yu) < d(v,x0) + &y and $(v,z,) < d(v,x,) + 0.},

X1 = Mg, (%0), Yn >0,

where Sn =V SuppeQ é-(d)(p’xn)) + Un and 9}1 =Kn suppeQ P(¢(P,xn)) + Wy.
Let {o,,;} and {B,,;} be coefficient sequences in [0,1] satisfying the following conditions:

(1) Z?:oo Opi = 1 and Z?:O ,Bn,i =1;
(2) liminf,_, o o0t > 0, and liminf,__, o B0Bu; >0, Vi > 1.
Then the sequence {x,}°°, converges strongly to some point p , where p’ = Tgq(xo).

Proof We shall complete this proof of Theorem 3.1 in seven steps.

Step 1. We will show that © and C,,,; are closed and convex for each n > 0.

In fact, it follows from Lemma 2.5 that Fix(T;) and Fix(S;), for any i > 1, are closed and
convex subsets of C. Therefore, Q2 is closed and convex in C.

Clearly, Cy = C is closed and convex. Suppose that C, is closed and convex for some
n=>1

By the assumption of C,,,3,
¢, yn) < (v, x0) + &5
is equivalent to
V12 =20 ) + lyull? < IVIZ = 2, ) + [lall* + &5

So that 2(v, /) = 2(v,Jyu) = 2V, Jn = Jyn) < 1%all* = lyull® + &n-
Again, by the assumption of C,,1,

d(v,24) < (v, x0) + 6y
is equivalent to
V12 =2, Jz) + 12all* < V1% = 200, ) + |4l + 6,

So that 2<Vy]xn) - 2(V¢]Zn> = 2(Vr]xn _]Zn> =< ”xn”2 - ”Z}'IHZ + 9n~
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Hence, Cpi1 = (v € Cy 2 20, Jx = Jyn) < 11> = lyull® + & and 2(v, Jx,, — Jz,) < |1 -
llz ]I

Step 2. We will show that {x,} is bounded and {¢(x,,x0)} is a convergent sequence for
alln>1.

Indeed, it follows from (3.1) and Lemma 1.3(2) that

+6,,} is closed and convex.

D% %0) = ¢ (¢, (%0), %0)
< ¢(p,x0) — d(p, ¢, (%0))
<o, x0), Yn>0,peq.

This implies that {¢(x,,x0)} is bounded. By virtue of (1.3), the sequence {x,} is also
bounded.

By the assumption of C,, we have C,,; C C,, %, = I1¢, (x0) and .41 = I¢,,, (%0).

This implies that x,,,; € C,,;; C C, and

¢(xmx0) = ¢(xn+11x0)’ Vn = 0.

Therefore, {¢p(x,,,%0)} is a convergent sequence. Without loss of generality, we can assume
that

lim ¢(x,,x0) =d > 0. (3.2)

Step 3. We will show that Q C C, for all n > 0.
It is obvious that & C Cy = C. Suppose that Q2 C C, for some n > 1. For any given p € €2,
from (3.1) and Lemma 2.6, we compute

¢(p,yn) = ¢<]9J_1 (ﬂn,O]xn + Zﬁn,z’]Tl'nxn)>

i=1
2

0
IBn,OIxn + Z ﬁn,i]Tinxn

i=1

00
= ||P||2 - 2<P: ﬁn,O]xn + Z ﬂn,i]Tinxn> +

i=1

< IpI* = 2800 J6n) =2 Builp,J T/ %)
i=1

= 2
+ Buoll®all® + D Bui | T/

i=1
- ﬁn,OIBn,ig( ”]xn _]Tl'nxn ”)
= Buod (P %) + (1= Buo) Pl

0 0

=23 Budp T + D Bui| Tl
i=1 i=1

- ﬁn,OIBn,ig( ”]xn _]Tinxn ”)

= ,Bn,0¢(p’ xn) + Z ,Bn,i¢(p7 Tlnxn) - ﬁn,()/sn,ig(”]xn _]Tl'nxn H)

i=1
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= ,371,0¢(p’xn) + Z ,Bn,i[¢(p’xn) + Vn§(¢(p’ xn)) + Mn]

i=1

- ,Bn,OIBVl,ig( ”]xn _]Tinx” ”)

= (ﬂn,o + Zﬂn,i)d’(p’xn) + Z,Bn,i[vn;((p(p)xn)) + Mn]

i=1 i=1
- ,Bn,oﬂn,ig( ||]xn —JT} %y ”)
< @, xn) + vl (D@s%n)) + 1 — BuoBruig (| Jon =TT/ %,]|)
= d’(lﬂ,xn) + Vy Sug§(¢(P;xn)) + Un = ,Bn,oﬂn,ig(”]x” _]Tinxn ||)
pe

= ‘f’(lﬂ, xn) + é,-:n - lgn,Oﬁn,ig(”]xn _]Tl‘nxn ”) (33)
It follows that
¢, yn) < O, %) + 1, Where §, = v, sug;“(qb(p,xn)) + e (3.4)
pE

From (3.1) and Lemma 2.6, we compute

¢(P, Zn) = ¢ (P,fl (an,Oan + Z an,ijs?yn>)

i=1

00 2
n

an,O]xn + Zan,ijsi yn

i=1

00
= ||19||2 - 2<19, an,O]xn + Zan,JS;’yn> +

i=1

< 1P1? = 200 (2 J0) =2 Y i, IS ) + nollxal® + Dt [ Sy
i=1 i=1
— 3,00, 8 (|9 = JS]'7a )
[} o 9
= 09 (P, 50) + L= cn) DI =2 cnip.JS7a) + > |17
i=1 i=1
- an,Oan,ig( ”]yn _]S:lyl'l H)

[o¢]
= 0@ %) + Y i (P S/Vn) = nonig (| = IS! )

i=1
< a0t (p,x,) + Zan,i[¢(prx) + ;c,,,o(q)(p,x)) B “’n]
i=1
- Oln,oan,ig(”]yn = JSiyn H)
= <ozn,o + Zan,i>¢([9,xn) + Zan,i[Knp(¢(p’x)) + o
i=1 i=1
— 0@ ([ Jyn = IS yu])
< o(p,x,) + Knp(d)(p,x)) + W, — an,oan,g(nb’n = IS yn ”)
< d(p, %) + Kn sup (¢, %)) + @ = Wno0enig (| = IS 92|
pe

= ¢(P7xn) + 0, — an,Oan,ig(“]yn —]Sfyn ”) (3.5)
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It follows that

op,z0) <P, x,) +0,, whereb, =k, SUPP(¢(P,9C)) + Wy. (3.6)

pe

By the assumptions of {v,}, {1}, {x,}, and {w,}, and from (3.3) and (3.5), we obtain

= Vusup L (@ xn)) + n — 0 (as n— ), 3.7)
peQ
and
On = kcusup p(P(P, %)) + W, — 0 (as n— 00). (3.8)
peR

So, we get p € C,,1. This implies that Q@ C C, for all # > 0, and the sequence {x,} is well
defined.

Step 4. We will show that there exists some point p” € C such that x,, — p’.

In fact, since {x,} is bounded and E is reflexive, then there exists a subsequence {x,,} C
{x,,} such that x,, = p" (some point in C).

Since C,, is closed and convex and C,,; C C,, it follows that C, is weakly closed and
p’ € C, foreach n > 0.

In view of x,,;, = Mg, (x0), we have

¢(xni!x0) =< ¢(P*:x0); Vni > 0.
Since the norm || - || is weakly lower semi-continuous, we have

liminf ¢ (x,,, 20) = lim inf{ ||, 1> = 2, Jico) + [Ix01 }

n;— 00

> P 1% = 2(p " Jxo) + Ixo I = ¢ (P, %0),

and so

¢ (p'%0) <liminf(x,,,%0) < limsup ¢ (x,,, %0) < (p,%0).

nj—>00 nj— 00

This implies that lim,, e ¢ (%, %0) = ¢(p’,%0), and so [|x,, || — [Ip[. Since x,, — p’, and
by virtue of the Kadec-Klee property of E, we obtain

. .
lim x,, =p, asmn — o0.
n;—00

The sequence {¢(x,,%0)} is convergent, and lim,, oo ¢(¥,,%0) = ¢(p’, %0), which implies
that 1im,,_, o0 ¢ (x,,%0) = ¢(p’,%0). If there exists some subsequence {%4;} C {x,} such that
Xy = G then from Lemma 1.3(2) we have

o(p'q)

hm ¢(xn,~rxni)
ni,n/%oo

= lim ¢ (xy,l., HCn, (xo))

1j,1j—> 00
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< lim_[¢(x,%0) - ¢(Tc, (%0),%0) ]

ni,n/'%OO

= lim_[¢(x, %) = P, %0)]

11— 00
= ¢(p’%0) —(p x0) = 0.

This implies that p" = g, and so
lim x, =p. (3.9)

n—00

Step 5. We will show that lim,,, « [|/x, — Jy,|l = 0 and lim,,_, » [|Jx,, — Jz,|| = 0 as n — oo.
Since x,,,1 € C,41 C Cy, by the definition of C,,,;, we have

O (K41, %) = ¢(xn+1, nCn(xO))
< ¢ (Xni1,%0) — (T, (%0), %0)

= @(Xus1,%0) — @ (%, X0). (3.10)

Since lim,,_, o (%, %0) exists, and we are taking n — oo in (3.10), then ¢ (x;41,%,) — 0.
It follows from Lemma 2.3 that

lim |1 — %, = 0. (3.11)
Hn—0oQ
By the definition of C,,; and x,,,1 € Cy41, we get

¢(xn+lryn) S ¢(xn+1;xn) + En! and

(3.12)
¢(xn+1r Zn) =< ¢(xn+1: xn) + 971'
From ¢(x,,,1,%,) — 0, &, — 0, and 6,, — 0, as # — 00, we obtain
OdXui1,y0) = 0, and  P(x,41,2,) > 0, asn— oo. (3.13)
Since lim,_, o0 %, = p_, by virtue of Lemma 2.4, we get
limy,=p, and limz,=p. (3.14)
n—00 n—0o0
It follows from (3.9) and (3.14) that
lim ||x, =y, =0, and lim |x, -z,| =0. (3.15)
n— o0 n— 00
Since J is uniformly continuous on each bounded subset of E, then
lim | Jx, =y, =0, and lim |Jx, —Jz,| =0. (3.16)
n—0o0 n—0o0

Step 6. We will show that p” € Q, where  := (75, Fix(T3)) N (M5, Fix(S))).
(6.1) First, we will show that p” € (", Fix(T).
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For any i > 1 and for any p € , it follows from (3.3), (3.7), (3.15), and (3.16) that

A

BuoBuig ([ 6w =T %) < ¢ %) = 6, 3n) + &n

1% 1> = lyull* = 205 Jtn = Jyn) + &n

(el 1m0 (ol = e l) = 2, 60 = Ty + &0
(eall + ysll) (16 = 2all) = 20011 s = Jyull + &

— 0, asun— oo.

IA

By the condition liminf,,_, o B4,084: > 0, Vi > 1, we obtain

g(”]x,, —JT!x, ||) — 0, asu— oo.
It follows from the property of g that

”]xn —JTx, H — 0, asun— oo. (3.17)
Since x, — p and J is uniformly continuous on each bounded subset of E, it yields that
Jaw —Jp'.

Hence, from (3.17) we get

JT'x, — Jp, asn— 0o,Vi>1. (3.18)
Since J71: E" — E is norm-to-weak -continuous, we also have

T'x, —~p, asn— 0o,Vi>1. (3.19)

Again, since for any i > 1,

77 - |

= (77| - '

p* < H](Ti"x,,) —]p* || — 0, asun— oo,

from (3.19) and the Kadec-Klee property of E, it follows that

lim T'x,=p . (3.20)

n—00

On the other hand, by the assumption that for each i > 1, T; is uniformly L;-Lipschitz

continuous, we get

|77 = T7 | < [ T7 ot = Tt |+ [ T 1 = 6 |
+ ||xn+1 - xn” + Hx” — Tl."x,, H

< (Li + Dllxnsr —xall + ” Tl’nﬂxnﬂ —Xn+l ” + ”xn - T/'x, ”
It follows from (3.9), (3.11), and (3.20) that

lim | 7/*"'%, - T/%,| =0, and lim T/, =p,
n— 00

n—00
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and so

lim Ti’”lx,, = lim T;T'x,= lim Tjp =p.
n— o0 n— o0 n—00

In view of (3.20) and the closeness of T, it yields that T;p" = p for all i > 1. This implies
that

p e[ \Fix(T). (3.21)

i=1

(6.2) Next, we will show that p* € (7, Fix(S)).
For any i > 1 and for any p € Q, it follows from (3.5), (3.8), (3.15), and (3.16) that

IA

¢(p’xn) - ¢(P,Zn) + 9}1
012 = Nl zull* = 2(p, Jotn — Jzu) + 6,
= (Iull + Nzall) (11 ll = 12 ll) = 240, o = Jzu) + O

(all + 12 1) (1 = 2 ll) = 21211V = 2|l + 6

an,Oan,ig( ||])’n ~JSiYn ” )

IA

— 0, asm— oo.

By the condition liminf,_, o ;00 > 0, Vi > 1, we obtain

g(yn =JS!ya|) > 0, asn— oo.
It follows from the property of g that

|7yn =78 yu]| = 0, asn— oo. (3.22)
Since y, — p" and J is uniformly continuous on each bounded subset of E, it yields that
Jyn—Jp.

Hence, from (3.22) we have

JSiy, — Jp, asnm— 0o,Vi> 1. (3.23)
Since J7!: E" — E is norm-to-weak -continuous, we also have

Sy, —\p* asn — o0o,Vi>1. (3.24)
Again, since for any i > 1,

IStyall = 2711 = Sty | = Vel = W (Siwn) = b’ = 0, asn— oo,
from (3.24) and the Kadec-Klee property of E, it follows that

lim Sy, =p. (3.25)
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On the other hand, by the assumption that for each i > 1, S; is uniformly ¢;-Lipschitz

continuous, we have

”S;Hlyn - S;’yn H = ”S;Hlyn - S;Hlyml ” + ”S;Hlynﬂ — Xn+l ” + %041 — %l
120 = yull + |70 = Sty
=< Ez”_yn _yn+1|| + ||Sl;‘1+1yn+1 —Xn+l || + ||xn+1 - xn”

1% = yull + 90 = Si9a .
Fromx, — p’, y, — p" and Sy, — p’, as n — oo, we obtain
lyn = ynall = 0, ||S;l+1yn+1 — Xn+l ” — 0, and “yn - S;lyn ” — 0, asn— o0.
And it follows from (3.11) and (3.15) that
lim || S'*'y, = S/'y.| =0, and lim Sy, =p,
n—00 n—oo
and so

lim S/"*'y, = lim S;S'y, = lim Spp =p.

n—00

In view of (3.25) and the closeness of S;, it yields that S;p” = p” for all i > 1. This implies
that

p e[ \Fix(S). (3.26)
i=1

From (3.21) and (3.26), we can conclude that p € Q:= (7, Fix(T})) N (N5, Fix(S))).
Step 7. Finally, we will show that x,, — p" = TIg(xo).
Let w = g (). Since w € 2 C C,, and x,, = I¢, (%), we have

¢(xn7x0) =< ¢(W1x0)1 Vn = 0.
This implies that
¢(p',%0) = lim §(x,,20) < P(w,x0). (3:27)

In view of the definition of ITg(xo), from (3.27), we have p’ = w. Therefore, x, — p’ =
Mga(xo)-
This completes the proof of Theorem 3.1. O

Theorem 3.2 Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E. We assume
the following:

(B1) Let {T;}2, : C — C be a countable family of closed, uniformly L;-Lipschitz continu-
ous, and uniformly quasi-$-asymptotically nonexpansive mappings with a real sequence
{k,} C [1,00), k,, — 1.
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(B2) Let {S;}, : C — C be a countable family of closed, uniformly £;-Lipschitz continu-
ous, and uniformly quasi-p-asymptotically nonexpansive mappings with a real sequence
{l,} C[1,00), 1, — 1.

Suppose that  := (75 Fix(T3)) N (N Fix(Sy)) is a nonempty and bounded in C. Let
(Xu)oors (Yntoors and {z,}52, be sequences generated by

x0 € C  chosen arbitrarily, Cy = C,

2 =] et Joon + 3235 i ST n),

Vn =T (Buofn + Yooy Buid T1'%n), (3.28)
Cun ={v € Cy: 0, 34) < DV, ) + &y and d(v,z,) < P(v, ) + 0},

Xptl = HC,,Hl (xo)’ Vn = 0,

where &, = sup,,cq(kn — 1)(¢(p, %)) and 6, = sup,eq ([, — 1)(¢ (0, %))
Let {a,,;} and {B,,;} be coefficient sequences in [0,1] satisfying the following conditions:
M) XZoomi=land 3 7 Bui=1;
(2) liminf, . o oy, >0 and liminf, . o B,o0Bn: >0, Vi>1.

Then the sequence {x,}°°, converges strongly to some point p’, where p = Ig(xo).

Proof Since {T;}7%, {S;}7% are countable families of closed and uniformly quasi-¢-
asymptotically nonexpansive mappings, by virtue of Remark 1.7(2), {T;}?°, {S;}?°, are
countable families of closed and uniformly total quasi-¢-asymptotically nonexpansive
mappings with nonnegative sequences v, = k, -1, u, = 0, and «, = [, - 1, w, = 0, re-
spectively, and a strictly increasing and continuous function ¢ (¢) = p(£) = ¢, £ > 0. Hence,
& = suppeg(kn -1)(¢(p,x,)) > 0and 6, = suppEQ(l,, -1)(¢(p,x,)) = 0 (as n — 00). There-
fore, all the conditions in Theorem 3.1 are satisfied. The conclusion of Theorem 3.2 can
be obtained from Theorem 3.1 immediately. 0

Theorem 3.3 Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E. We assume
the following:

(C1) Let {T}}$25, : C — C be a countable family of closed and quasi-¢-nonexpansive map-
pings.

(C2) Let {S;}5, : C — C be a countable family of closed and quasi-¢-nonexpansive map-
pings.

Suppose that Q := (i, Fix(T;)) N (N, Fix(S;)) is nonempty and bounded in C. Let
(Xu)oo1s (Yntoors and {z,}52, be sequences generated by

x0 € C  chosen arbitrarily, Cy = C,

zn =) oo n + 335 nifSiyn),

In =T BuoSsn + 3275 Bui Tien), (3.29)
Cun ={ve Cy:9(vyn) < @V, x4) and ¢(v,z,) < P(v,x0)},

Xn+l = HC,,Hl (xo)r Vn > 0)

and let {a,,;} and {B,,,;} be coefficient sequences in [0,1] satisfying the following conditions:
V) XX i =1, and Y5, Bui = 1;
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(2) liminf, o @y 00y; >0, and liminf,_, oo BBy >0, Vi > 1.

Then the sequence {x,}°°, converges strongly to some point p', where p’ = Tlg(xo).

Proof Since {T;}75, {S;}5 are countable families of closed and quasi-¢-nonexpansive
mappings, by Remark 1.7(3), {T;}55, {S;}75 are countable families of closed and quasi-
¢-asymptotically nonexpansive mappings with nonnegative sequences k, =1 and /, = 1,
respectively. Hence, &, = suppeg(k,, - 1)(¢(p,x,)) =0and 6, = suppeg(l,, - 1)(¢(p,x,)) = 0.
Therefore, all the conditions in Theorem 3.2 as ‘Q2 is bounded in C’ and ‘for each i > 1,
{T:}75, {Si)55, are uniformly L;, ¢;-Lipschitz continuous’ are of no use here. Thus, all the
conditions in Theorem 3.2 are satisfied. The conclusion of Theorem 3.3 can be obtained

from Theorem 3.2 immediately. O

Theorem 3.4 Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E. We assume
the following:
(D1) Let {T;}$2, : C — C be a countable family of weak relatively nonexpansive mappings.
(D2) Let {S;}5, : C — C be a countable family of weak relatively nonexpansive mappings.
Suppose that Q := (i, Fix(T;)) N (N5, Fix(S;)) is nonempty and bounded in C. Let

()01, {ynloey, and {z,}5°, be sequences generated by

x9 € C chosen arbitrarily, Cy = C,

2Zn = TN n,0 % + 2005 I Siyn),

Y =T (BuoJxn + D ooy Buid Tixn)s (3.30)
Con1 ={ve€ Cy: 9 yn) < d(v,x4) and (v, z,) < (v, x4)},

Xn+l = HCm.l (x())’ Yn=>0,

and let {,,;} and {B,,;} be coefficient sequences in [0,1] satisfying the following conditions:
@) Z;fo a,;=1and Z;’:’O Bri = 1;
(2) liminf,_, o &t 00 > 0 and iminf,_, o0 BuoBni > 0, Vi > 1.

Then the sequence {x,}°°, converges strongly to some point p’', where p = Ig(xo).

Proof Since {T;}7%, {S;}{5, are countable families of weak relatively nonexpansive map-
pings, from Remark 1.7(4), {T;}%%, {S;}5, are countable families of quasi-¢-nonexpansive
mappings. Therefore, all the conditions in Theorem 3.3 are satisfied. The conclusion of

Theorem 3.4 can be obtained from Theorem 3.3 immediately. O

Theorem 3.5 Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E. We assume
the following:

(EL) Let {T;}35, : C — C be a countable family of relatively nonexpansive mappings.

(E2) Let {S;}32, : C — C be a countable family of relatively nonexpansive mappings.
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Suppose that Q := (i, Fix(T;)) N (N5, Fix(S;)) is nonempty and bounded in C. Let
(Xuoo1s (Yntoors and {z,}52, be sequences generated by

x9 € C  chosen arbitrarily, Cy = C,

2Zn =] a0/ + 3075 0 JSiyn),

I =T (BuoSxn + 335 B Tikn)s (3.31)
Con ={vE€ Cy: 9, yn) < d(v,x,) and ¢(v,z,) < $(v, %)},

Xn+l = HC,Hl (x()): Vn >0,

and let {o,,;} and {B,,} be coefficient sequences in [0,1] satisfying the following conditions:
(1) XS oni=Land 335 Bui=1;
(2) liminf,_ o y00y; >0 and liminf,_ o ByoBu; >0, Vi > 1.
Then the sequence {x,}°°, converges strongly to some point p’, where p = Tg(xo).
Proof Since {T;}7°,, {S;}, are countable families of relatively nonexpansive mappings, it
follows from Remark 1.7(5) that {T;}{°, {S;}{5, are countable families of weak relatively
nonexpansive mappings. Therefore, all the conditions in Theorem 3.4 are satisfied. The
conclusion of Theorem 3.5 can be obtained from Theorem 3.4 immediately. O

Remark 3.6 Theorems 3.1-3.5 generalize, improve, and extend the corresponding results
in [5-8, 11-18], and [19] in the following aspects:

(a) For the framework of spaces, we extend the space from a uniformly smooth and
uniformly convex Banach space to a uniformly smooth and strictly convex real Banach
space with the Kadec-Klee property. (Note that each uniformly convex Banach space must
have the Kadec-Klee property.)

(b) For the mappings, we extend the mappings from a nonexpansive mapping, a rel-
atively nonexpansive mapping, a weakly relatively nonexpansive mapping, a quasi-¢-
nonexpansive mapping or a quasi-¢-asymptotically nonexpansive mapping to a total
quasi-¢-asymptotically nonexpansive mapping.

(c) We extend a countable family of closed and uniformly L;-Lipschitz continuous
and uniformly total quasi-¢-asymptotically nonexpansive mappings to two countable
families of closed and uniformly L;-Lipschitz continuous and uniformly total quasi-¢-
asymptotically nonexpansive mappings.

4 Deduced theorem

If we take i =1 in Theorem 3.1, then we obtain the following result.

Theorem 4.1 Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E. We assume
the following:

(F1) Let T : C — C be a closed, uniformly L-Lipschitz continuous, and uniformly total
quasi-p-asymptotically nonexpansive mapping with nonnegative real sequences {v,}, {{t,},
and a strictly increasing function ¢ : R* — R* such that v, — 0, , — 0 (as n — 0),
£(0) =0, and

(0, T"x) < p(p, %) + vl (P, %)) + 1w,  Vx € C,p € Fix(T), and Vn > 1.
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(F2) Let S : C — C be a closed, uniformly £-Lipschitz continuous, and uniformly total
quasi-p-asymptotically nonexpansive mapping with nonnegative real sequences {k,}, {wy},
and a strictly increasing function p : R* — R* such that k, — 0, w, — 0 (as n — 00),
0(0) =0, and

qb(p, S”x) <o(p,x) + K,,,o(qﬁ(p,x)) +w,, VYxeC,peFix(S), andVn > 1.

Suppose that Q := Fix(T) N Fix(S) is nonempty and bounded in C. Let {x,}7°1, {¥u}0215
and {z,}2, be sequences generated by

xo0 € C  chosen arbitrarily, Cy = C,

2p =] @ + (1= ,)JS"yn),

Y =T (B + A= B T"x,), (4.1)
Crn1 ={ve€ Cy: 9, yn) <P, x4) + &y and p(v,z4) < (v, %) + 6},

Xp+l = ch+1 (x())! Vn > 0;

where &, = v, SUpeq £ (P(p, %)) + 1y and 0, = ki SUpeq P(A (P, %1)) + Wy
Let {ot,} and {B,} be coefficient sequences in [0,1] satisfying the following conditions:
(1) 0 <, <a<lforsomea € (0,1);
(2) 0 <B,<B<1forsomepe(0,1).

Then the sequence {x,}°°, converges strongly to some point p’', where p = Ig(xo).

If we set S” = I (identity mapping) foralli =1,2,3,... in Theorem 3.1, then we obtain the

following result.

Theorem 4.2 Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E. We assume
the following:

(G1) Let {T;}%, : C — C be a countable family of closed, uniformly L;-Lipschitz continu-
ous, and uniformly total quasi-¢-asymptotically nonexpansive mappings with nonnegative
real sequences {v,}, {|t,}, and a strictly increasing function { : R* — R* such that v,, — 0,
My — 0 (as n— 00), 1 =0, and £(0) = 0, and for each i > 1,

¢(p, Tl"x) < o(p,x) + v,,{(d)(p,x)) + Uy, VxeC,pe mFix(T,-), andV¥n > 1.

i=1

(G2) Suppose that Q := (2, Fix(T;) is nonempty and bounded in C. Let {x,}32,, {yu}o21,

and {z,};°, be sequences generated by

x9 € C chosen arbitrarily, Cy = C,

Zp =] N @Sy + (1= n)lyn),

I =T BuoSn + 235 B T} %), (4.2)
Crnn={ve Cu:0(v,yn) < (v xn) + &},

Xn+l = HC,H.l (x())r Yn=>0,
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where &, = v, SUP,cq C(p(p,x)) + py. Let {o,} and {B,,;} be coefficient sequences in [0,1]
satisfying the following conditions:

(1) 0 <, <ac<lforsomea € (0,1);

2) Yo Bni=1

(3) liminf, . By0Bu:>0,Vi>1.

Then the sequence {x,}°°, converges strongly to some point p’, where p = Ig(xo).

Remark 4.3 Theorem 4.2 contains the result of Chang et al. [8].

5 Applications
Now, we apply Theorem 3.5 to prove a strong convergence theorem concerning two max-
imal monotone operators in Banach spaces.

Let E be a smooth, strictly convex, and reflexive real Banach space, and let A : E — E’
be a maximal monotone operator. For each r > 0, we can define a single value mapping
Ji:E— DA)byJ. =(+ rA)7YJ, and such a mapping J, is called the resolvent of A. It is easy
to prove that A™1(0) = F(J,) for all » > 0. Using Theorem 3.5, we can obtain the following
strong convergence theorem for maximal monotone operators.

Theorem 5.1 Let E be a uniformly smooth and strictly convex real Banach space with the
Kadec-Klee property, and let C be a nonempty, closed, and convex subset of E. We assume
the following:

(H1) Let A, B be two maximal monotone operators from E to E’, and let ]2, ]2 be the
resolvent of A and B, respectively, where r > Q.

(H2) Suppose that Q := A71(0) N B1(0) is nonempty, and let {x,}°°,, {ya}2;, and {z,}2,
be sequences generated by

x9 € C chosen arbitrarily, Cy = C

2Zn =] o fin + 305 CnilTpyn)

Y =T BTt + 55, BuilTiixn) (5.1)
Crnn ={ve Cu:0(v,yn) < p(vsx4) and ¢(v,z,) < ¢ (v, %)}

Xn+l = HC,Hl (x()): Yn=>0,

where r, > 0 with liminf,_, o 1, > 0, and let {«,,;} and {B,;} be coefficient sequences in [0,1]
satisfying the following conditions:
(1) Z:):OO Qi = 1, and Zlo:() /371,1' =1

(2) liminf, o &y 00,; >0, and liminf, ., o B, 0B, >0, Vi > 1.
Then the sequence {x,}°°, converges strongly to some point p’, where p = Ig(xo).

Proof It is well known that for each i > 1, ]f: is a relatively nonexpansive mapping (see, for
example, [5, 6, 19]). Therefore, for each p € F(];?) and w € E, we have

o(p.Jw) < d(p,w).

Again, by the same method, we can prove that the set of strong asymptotically fixed points

oo

F(U315) = E07) =47 ).

i=1
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This implies that {]2}?51 is a countable family of weak relatively nonexpansive mappings
with the common fixed point set (2, F (];‘:) = A71(0). By a similar way, we can prove that
{]f o is a countable family of weak relatively nonexpansive mappings with the common
fixed point set (72, F (]f:) = B71(0). Hence, the conclusion of Theorem 5.1 can be obtained
from Theorem 3.5 immediately. O

Remark 5.2 Theorem 5.1 improves and extends Theorem 4.1 of Chang et al. [10] from
one maximal monotone operator to two maximal monotone operators.
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