Li and Qiu Fixed Point Theory and Applications 2012, 2012:195 ® Fixed Point Theory and App|icati0n5
http://www.fixedpointtheoryandapplications.com/content/2012/1/195 a SpringerOpen Journal

Ishikawa-hybrid proximal point algorithm for

NSVI system

Hong Gang Li" and Min Qiu

"Correspondence: lihg12@126.com
College of Mathematics and
Physics, Chongging University of
Posts and Telecommunications,
Chongging, 400065, China

@ Springer

Abstract

A nonlinear set-valued inclusions system framework for an Ishikawa-hybrid proximal
point algorithm is developed and studied using the notion of an (A, n)-accretive
mapping. Convergence analysis for the algorithm of solving the nonlinear set-valued
inclusions system and existence analysis of solution for the system are explored along
with some results on the resolvent operator corresponding to the (A, n)-accretive
mapping in a Banach space. The result that the sequence generated by the algorithm
converges linearly to a solution of the system with the convergence rate || ¥ is
proved.
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1 Introduction

The nonlinear set-valued inclusions system, which was introduced and studied by Has-
souni and Moudafi [1], is a useful and important extension of the variational inequality
and variational inclusions system. In recent years, various variational inclusions systems
and nonlinear set-valued inclusions systems have been intensively studied. For example,
Kassay and Kolumbdn [2], Chen, Deng and Tan [3], Yan, Fang and Huang [4], Fang, Huang
and Thompson [5], Jin [6], Verma [7], Li, Xu and Jin [8], Kang, Cho and Liu [9] et al. in-
troduced and studied various set-valued variational inclusions systems. For the past few
years, many existence results and iterative algorithms for various variational inclusions

systems have been studied. For details, please see [1-28] and the references therein.

Example 1.1 In 2001, Chen, Deng and Tan [3] have studied the problem associated with
the following system of variational inequalities, which is finding (x,y) € H x H (H, Hilbert
space) such that

(T +x—y,w—x) > pei1(x) — pe1 (W),
(tS(x) +y —x, w—y) > ta(y) — pea(w)  (Yw e H),

1)

where ¢; : H— R U oo is a proper, convex, lower semicontinuous functional and d¢;(-)

denotes the subdifferential operator of ¢; (i =1,2).
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Example 1.2 Let X be a real g-uniformly smooth Banach space, and S, T, M;, M, : X — X
be four single-valued mappings. Find x,y € X such that

0ex—y+pT(y)+ pM(x),
0ey—x+1tSx) +tMy(y),

()

which is studied by Jin in [6].

Inspired and motivated by Examples 1.1-1.2 and recent research work in this field (see
[7, 8]), in this paper, we will introduce and discuss the problem associated with the follow-
ing class of new nonlinear set-valued inclusions systems (NSVI Systems), which is finding
(x,9) € X x X for any f,g : X — X such that z € S(x), w € T(y), and

fx) € F(z,y) + M(y),
g() € Gw,x) + N(x),

(3)

where X is a real g-uniformly smooth Banach space, A,B: X — X, 1,12 : X x X — X, and
F,G:X x X — X are single-valued mappings; M : X — 2X is a set-valued (4, n;)-accretive
mapping and N : X — 2% is a set-valued (B, n,)-accretive mapping, and S, T : X — CB(X)
are two set-valued mappings.

Iff(x) = —x, g00) = —y, Fw, ) = pT () — y, G(,%) = tS(x) —x, N = tM> and M = pM, ("),
then the problem (3) reduces to Example 1.1. If M; = M, = 3¢, ¢; : H—> RU o0 is a
proper, convex, lower semicontinuous functional and d¢;(-) denotes the subdifferential
operator of ¢; (X = H, Hilbert space, and i = 1,2), then the problem (3) changes to Exam-
ple 1.2.

If X is a real g-uniformly smooth Banach space, and G(-,-) = N(y,g(x)), f(u) = u and
S(u) = Q(u)(u € X), then the problem (3) reduces to the problem associated with the fol-
lowing variational inclusions:

For any u € X, find x € X and y = Q(x) such that

u e N(yg®) +M(y), (4)

which is developed by Li in 2010 [8].

The main purpose of this paper is to introduce and study a generalized nonlinear set-
valued inclusions system framework for an Ishikawa-hybrid proximal point algorithm us-
ing the notion of (4, n)-accretive due to Lan-Cho-Verma [10] in a Banach space, to anal-
yse convergence for the algorithm of solving the system and existence of a solution for
the system and to prove the result that sequence {(x",y")}>°, generated by the algorithm
converges linearly to a solution of the nonlinear set-valued inclusions system with the

convergence rate | ¥||.

2 Preliminaries

Let X be a real g-uniformly smooth Banach space with a dual space X', (-,-) be the dual
pair between X and X', 2X denote the family of all the nonempty subsets of X, and CB(X)
denote the family of all nonempty closed bounded subsets of X. The generalized duality
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mapping J; : X — 2% is defined by

Ji@) ={f eX :(x.f) = %Il

r

where g > 1 is a constant. Let us recall the following results and concepts.

=7}, VxeX,

Definition 2.1 A single-valued mapping 1 : X x X — X is said to be t-Lipschitz contin-
uous if there exists a constant 7 > 0 such that

In@y|| <tlx-yl, VxyeX.

Definition 2.2 A single-valued mapping A : X — X is said to be
(i) accretive if

(A1) = A(x2), Jgx1 = %2)) = 0, Vay, %3 € X;
(ii) strictly accretive if A is accretive and (A(x1) — A(x2), /(%1 — x3)) = 0 if and only if

X1 = X2, VX, %2 € X;

(ili) r-strongly n-accretive if there exists a constant r > 0 such that
(AGr) = AX2), T (n(x1,%2))) = rller — 2219, Va1, %2 € X;

(iv) y-Lipschitz continuous if there exists a constant y > 0 such that
[A@1) - A@)|| < vl — %l VaLx €X;

(v) Letf:X — X be a single-valued mapping. A is said to be (o, ¢)-relaxed cocoercive
with respect to f if for any %, x5 € X, there exist two constants o, ¢ > 0 such that

(A1) = A(x2), o (f(x1) = f(x2))) = =0 || A@x1) = A@2) | * + @lloe1 — 219

Definition 2.3 A set-valued mapping S : X — CB(X) is said to be
(i) D-Lipschitz continuous if there exists a constant & > 0 such that

D(S(x),S() <allx-yl, VxyeX,

where D(-,-) is the Hausdorff metric on CB(X).

(ii) B-strongly n-accretive if there exists a constant 8 > 0 such that
(ty — w2, Jg(n(x,9))) = Bllx = yll7,  Vx,y € X,uy € S(x),uz € S().
Definition 2.4 LetA:X — X and n: X x X — X besingle-valued mappings. A set-valued

mapping M : X — 2% is said to be

(i) accretive if

(1 — 12, Ty (%,9) = 0, Y,y € X, uy € M(x),u5 € M(y);
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(ii) n-accretive if
(= w2, Jy(n(%,9))) = 0,  Vx,y € X,u1 € M(x), uz € M(y);
(iii) m-relaxed n-accretive, if there exists a constant m > 0 such that
(1 — w2, J(n(x,9))) = —mllx = y1l7,  Vx,y € X,u1 € M(x), u € M(y);

(iv) A-accretive if M is accretive and (A + pM)(X) = X for all p > 0;
(v) (A, n)-accretive if M is m-relaxed n-accretive and (A + pM)(X) = X for every p > 0.

Based on [10], we can define the resolvent operator R?X,[ as follows.

Lemma 2.5 ([10]) Let n: X x X — X be a t-Lipschitz continuous mapping, A : X — X be
an r-strongly n-accretive mapping, and M : X — 2% be a set-valued (A, n)-accretive map-
ping. Then the generalized resolvent operator R‘:;Z,I : X — X is 7Y/ (r — mp)-Lipschitz con-
tinuous; that is,

gq-1

| RS2 () = R 0| < lx—yll forallx,yeX,

r—mp
where p € (0,r/m), g > 1.

Remark 2.6 The (A4, n)-accretive mappings are more general than (H, 17)-monotone map-
pings, A-monotone operators and n-subdifferential operators in a Banach space or a
Hilbert space, and the resolvent operators associated with (A, n)-accretive mappings in-
clude as special cases the corresponding resolvent operators associated with them, respec-
tively [3-6, 9, 25].

In the study of characteristic inequalities in g-uniformly smooth Banach spaces X, Xu
[14] proved the following result.

Lemma 2.7 ([14]) Let X be a real uniformly smooth Banach space. Then X is q-uniformly
smooth if and only if there exists a constant c; > 0 such that for all x,y € X,

e+ Y17 < 16017 + aly, Jo () + cqlly 1.
Lemma 2.8 ([8]) Let a,b,c > 0 be real, for any real ¢ > 1, ifa? < b? + ¢, then
a<b+c.

3 Existence theorem of solutions
Let us study the existence theorem of solutions for the inclusions system (3).

Theorem 3.1 Let X be a Banach space, f,g : X — X be two single-valued mappings,
F:X x X — X bea (1, )-Lipschitz continuous mapping and G : X x X — X be a (ua, va)-
Lipschitz continuous mapping, n; : X x X — X be a t;-Lipschitz continuous mapping
(i=1,2), A: X — X be an ri-strongly n,-accretive mapping, B : X — X be an ry-strongly
na-accretive mapping, M : X — 2% be a set-valued (A, m)-accretive mapping and N : X —
2X be a set-valued (B, n,)-accretive mapping. Then the following statements are mutually
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equivalent:
(i) An element (x,y) is a solution of the problem (3);
(i) For (x,y) € X x X, z € S(x) and w € T(y), the following relations hold:

x= RO (AR) + pif () - mF(z,9), o
¥ =RR(BO) + pag(y) - p2G(w, %)),
where p; > 0 is a constant (i = 1,2);
(ili) For (x,y) € X x X,z € S(x), w e T(y), and any 1 > 1 > 0, the following relations hold:

2= (L= Mx + ARy (AR) + pif (%) - 1F(2,9)),

(6)
¥ = (1= Ny + 2R (BE) + pag(y) = p2Glw, %)),

where p; > 0 is a constant (i = 1,2);

Proof This directly follows from the definition of Rﬁl’:’,{,l, Rﬁ;’?}v, and the problem (3) for
i=1,2. O

Theorem 3.2 Let X be a g-uniformly smooth Banach space. Let f,g : X — X be two single-
valued Ky or ky-Lipschitz continuous mappings, respectively, n; : X x X — X be a single-
valued t;-Lipschitz continuous mapping (i = 1,2), F,G : X x X — X be two single-valued
(1, v1) or (uo, vo)-Lipschitz continuous mappings, respectively. Let A : X — X be single-
valued ry-strongly ni-accretive, w,-Lipschitz continuous, (o1, ¢1)-relaxed cocoercive with
respect to f, and B : X — X be single-valued ry-strongly ns-accretive, wy-Lipschitz contin-
uous, (0, ¢p)-relaxed cocoercive with respect to g. Let S, T : X — X be two set-valued y
or yy-Lipschitz continuous mappings, respectively. If M : X — 2% is a set-valued (A, n)-
accretive mapping and N : X — 2% is a set-valued (B, n,)-accretive mapping, and the fol-

lowing condition holds:

¥ (prpyr + h) < T(r — mip1), (P2 p2ys + bp) < T(ry — mz02),

7)

q .49 q q 9.4 q
L= \‘%wl +Cupr K]+ qo1w] — qen, = \q/w2 + CqPo Ky + qOrw, — q¢Pa,

where c,; > 0 is the same as in Lemma 2.7 and p; € (0, ;—’l (i =1,2), then the problem (3) has
asolutionx’,y € X,z e S(x"), w e T(y").

Proof Define two mappings Q;, Q2 : X — X as follows:

Qi) = (1 - A)x + AR, (A@) + pif (%) — ;F(,9),
Q) = (1= 1)y + ARX(BY) + pagy) = p2G(w,)) ®)
(Vx,y € X,z € S(x),w € T(y)).

For elements x1, x5, 91,y € X, if letting

Q; = Ax;) — pf (i) — ;o F(ziy))  (i=1,2),
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then by (8), Lemma 2.5 and Lemma 2.7, we have

| Qi) = Qi) || = (1= A)as + ARL™ (1) = (1= )y = AR, (S2)]|

< (=)l — 22| + AR (S21) = Ry ™ () |
gq-1

< (1= W)l — 22| + A——— [ (| Ez,32) - F(za, 1))
r —mp

+ [ AGrr) = AGxz) — o1 (F (1) = f (x2))

I} ©)

and by (1, v1)-Lipschitz continuity of F(:,-) and y;-Lipschitz continuity of S, we obtain

|E(z2,52) = E(ziy)|| < mallzz =zl + villy2 = nll
< myillxa —x1ll +villyz =yl (10)

Since A is w; -Lipschitz continuous and (o7, ¢ )-relaxed cocoercive with respect to f, and
f is k1-Lipschitz continuous so that for z; € S(x1), z2 € S(x,), we have

|AGer) = AGxz) = 1 (F (1) = f(x2)) |
< A1) = AGe2) | " + cqoif |f (1) = fx2) |
- q{A(x1) = Ax2), T4 (f (1) — f (x2)))

< (of + cqpi + gor0] - qo1) x5 — 1|17, (11)

Combining (9), (10) and (11), we can get

|Qu(x1) - Qi)

gq-1

T
<@ =W)llxr — x|l + A———[pr(pa1allxz — 21l + v lly2 = 31
r —mp;

q q.q q q a4 q
+ \ﬂ/wl + cqpi it + qoof — gpi(of + ¢qpii] + goro] — qen)llx: —x ]

741
< (@=X) + 261 [lx1 — %2l + A ————villy2 =l (12)
r —mip1
where
-1
6 = L(mum + \q/wf + cgpil + qo1o] — qer).
r —mp1

For elements x1, x5, 91,92 € X, z; € S(x;), y; € T(y;) (i = 1,2), if letting
©; = B(y:) + p2g(i) = p2G(win %) (i=1,2),
then by using the same method as the one used above,

|Q201) = Qu(2)]| = | = A)y1 + AREZ(O1) = (1= A)ya — AR, (©,)
<@ =Mlyr =2l + A ||R];;,712\1(@1) - Rﬁfj\,(@z) [

Page 6 of 18
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-1

q
<@ =My =2l + )»FZ_T—(/OZ |G (w2, 22) — Glwy, 1)

my 02
+|BOn) — B(ya) - p2(g0n) —g(2))||)
A
< h————pavalles =21l + [(1 = 1) + 262 ]lly2 = 3 (13)
ry —my 03
hold, where
0, = L(,Oz,uz)/z + \‘%a)g + cqulcg + qaza)g - 61902).
ry — my 3
If setting
A
I'n =6, I'p = P1v1,
r —myp1 (14)
741
[y = pava, Ty =06,
ry —my Py

a = ([1Qux1) — Qi) I, 1Q2 (1) — Q2(3’2)||2T and b = (|lx1 - %21, lly1 - %217, then from (12),
(13) and (14), we have a < (1 — A)E + AW¥h, where

1 0 n T
E- o ow= " TP 0<a<l, (15)
0 1 Iy T

where W is called the matrix for nonlinear set-valued inclusions system. By using [16], we
have

llall <@ —=2)+A[¥b]. (16)
Letting
1| = max{I'y, 12, a1, T2}

It follows from (16), the assumption of the condition (7) and S(x), T(y) € CB(X) that
0<||¥| <1, (1-A) +A|¥]| <1, and there exist x,y" € X and z' € S(x'), w" € T(y") such
that

Q) =x,
Q) =y

Therefore, the following relations hold for Theorem 3.1(ii)-(iii):

& = RYL(AR) + pf () = mFE,y)),

. P 17)
Y =R (BY) + pag(y) — p2GW',x)),

where p; > 0 is a constant (i = 1,2). Thus, by Theorem 3.1, we know that (x’,y",z,w) is a
solution of the problem (3). This completes the proof. d

Page 7 of 18
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4 Ishikawa-hybrid proximal algorithm

In 2008, Verma developed a hybrid version of the Eckstein-Bertsekas [11] proximal point
algorithm, introduced the algorithm based on the (4, )-maximal monotonicity frame-
work [7] and studied convergence of the algorithm, and so did Li, Xu and Jin in [12]. Based
on Theorem 3.1, we develop an Ishikawa-hybrid proximal point algorithm for finding an

iterative sequence solving the problem (3) as follows.

Algorithm 4.1 Let X be a g-uniformly smooth Banach space. Let f,g : X — X be two
single-valued «; or k,-Lipschitz continuous mappings, respectively, n; : X x X — X be a
single-valued t;-Lipschitz continuous mapping (i = 1,2), F,G: X x X — X be two single-
valued (u1,v1) or (ua,va)-Lipschitz continuous mappings, respectively. Let A : X — X
be single-valued r;-strongly 7;-accretive, w;-Lipschitz continuous, (01, ¢1)-relaxed coco-
ercive with respect to f, and B : X — X be single-valued r,-strongly n,-accretive, w,-
Lipschitz continuous, (03, ¢;)-relaxed cocoercive with respect to g. Let S, 7 : X — X be
two set-valued y; or y,-Lipschitz continuous mappings, respectively, M : X — 2X be a set-
valued (A, n1)-accretive mapping and N : X — 2% be a set-valued (B, ,)-accretive map-
ping. Suppose that {a/}7°, {BI1520, {1520, {]'}020 and {p/}52, (i =1,2) are ten nonneg-

ative sequences such that

lim &' =0, nli)nolo ¢ =0, o =limsupe) <1,

n—00 H—> 00

>
B =limsup B/ <1, pi”Tpi<—l (i=1,2),
m

n—00 i

then we can get !,y € X and z! € S(x!), w! € T(y*) as follows.
Step 1: For arbitrarily chosen initial points x° € X, y° € X, we choose suitable z° € S(x),
w0 € T(y°), setting

1’ =(1-ad)x’ +ale?,

= (1 - :Bf)xo + ﬁ{)d?;
where €?, d? satisfy

e = R (AG®) + plf () + Y EE, )]
félollel—x I (2% €S,

I = RO (AG®) + oS () + YF (), 5°)
<) — | (2 € Sw)),

and

W= (1-ad)y® +adel,

yr=Q0-B)° +pYds,
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where €9, d satisfy

e = R (BO®) + 92 r°) = p§ G v, x|
ssgnez—y I W e T,
IS~ RO (BOO) + p5g(1) ~ 3 G(w3,2°))|
<D~ (Wl e T(LWO)).

By using Nadler [15], we can choose suitable z' € S(x!), w' € T(y') such that

I2° =2 < 1+ 1D(S(), S(x)),
[w® —w'| < @+ DD(TGH), T(H),
120 - 211 < 1+ HDSWO), S(UY)),
w9 —will <@+ 1)D(T(VO), T(VY)).

Therefore, we obtain x!,y! € X and z!' € S(x!), w* € T(y') and give the next step for gen-
erating sequences {x"}°°,, {y"}r2y, {27152, and {w"}72,.

Step 2: From «',y! € X and 2! € S(xl), w! € T(y'), the sequences {x"}22,, {y"}2,, {z"}2,
and {w"};°, are generated by the iterative procedure

u =1 -oaf)x" +afef,
xMl = (1- ﬂf)x” + Brdy,
lef = Ry, (AG™) + pif (") + o F (2", y"))|

(18)
<& ||€1 X" (2" € S(x")),
I} = Ry (A" + off ") = o F(f, ")
< §1”||df —u"| (2 € S")),
and
Vi=(1-ah)y" +alel,
Y= (1-BY)y" + Bidsy,
”e2 an B()/n +p2g(yn nG(Wn’xn))” (19)

<gr ||e2 —-y'll W' e TG,
I = Ry (BO™) + p5g(v") = 5 G(wh, )|
< §2 ||d3 -V (W2 e T(v")).

By using Nadler [15], we can choose suitable z"*! € S(x"*1), w"*! € T(y"*!) such that

Iz =2 < (1+ ;) D(S@"), S(™1)),

20
I —=w™H| < L+ )D(T KM, TH™), 0

forn=0,1,2,....

Page9of 18
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Remark 4.2 If we choose some suitable operators A, B, 1, m, F, G, S, T, M, N, f,g and a
space X, then Algorithm 4.1 can degenerate to a number of known algorithms for solving
the system of variational inequalities and variational inclusions (see [2—-6, 8-10, 25]).

5 Convergence of Ishikawa-hybrid proximal Algorithm 4.1

In this section, we prove that {(x",y", 2", w")}32, generated by Ishikawa-hybrid proximal
Algorithm 4.1 converges linearly to a solution (x',y,z,w’) of the problem (3) as the con-
vergence rate ||W||.

Theorem 5.1 Let X be a q-uniformly smooth Banach space. Let f,g : X — X be two
single-valued k1 or iy-Lipschitz continuous mappings, respectively, n; : X x X — X be a
single-valued t;-Lipschitz continuous mapping (i = 1,2), F,G : X x X — X be two single-
two valued (ju1,v1) or ((a, v2)-Lipschitz continuous mappings, respectively. Let A : X — X
be a single-valued ri-strongly n1-accretive and an-Lipschitz continuous mapping, and let
B: X — X be a single-valued ry-strongly ny-accretive and w,-Lipschitz continuous map-
ping. Let S, T : X — X be two set-valued y, or y,-Lipschitz continuous mappings, respec-
tively, A be (01, ¢1)-relaxed cocoercive with respect to f and B be (04, p2)-relaxed cocoercive
with respect to g. Suppose that M : X — 2% is a set-valued (A, n)-accretive mapping and
N : X — 2% is a set-valued (B, n,)-accretive mapping, and the following conditions hold:

max{oy 1 y1 + h, o1 frvi6i(1 + pr — B1o1)s
Bapava(1+ 202602), (paptaya + o)} < T174(ry — my 1),
2/-‘51(1—611)91 4 b 912 <1-6,,

a1+p1 ar+p1 (21)
(1= Ba + Pobh) + 3(1 —atg + 020,) Bab + a6 < 1,
L= \‘/wf + cq,of/clq + qalwf - qo1, b= \q/wg + cqulcg + qoza)g - qvs,
-1 -1
0= S —(p1pan +h), 0= = —(paitayn + o),

r—mip1 rp—m2p2

and eight nonnegative sequences {ct]'}o2q, {BI'}020s 1600, {8]'Yo2o and {p]'}o2, (i = 1,2)
satisfy the following conditions:

lim & = lim ¢/ =0, a; =limsupa! <1, (22)
n—oo ! nooo’t nooo |
r»
Bi =limsup B/’ <1, ol pi< —. (23)
n—00 i

Then the problem (3) has a solution (x',y,z ,w)z € S(x'), w € T(y'), and the sequence
{x", 9" )0, generated by Ishikawa-hybrid proximal Algorithm 4.1 converges linearly to a
solution (x',y") of the problem (3) as the convergence rate

(1| = max{l — (o1 + B1) + (1 + Br)6h + (2 — 201 + 161) 161,

7971
o frvibh———— (1 + p1 — Bip1),
r —mip1
1— B2 +28205(2 —ctx + 2603) + 2621 — g + 026,),

(1= B+ B2ba) +3(1 — g + a262) P + /32'92}; (24)

where c; > 0 is the same as in Lemma 2.5, p; € (0, %) (i=1,2).
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Proof Let (x",y,2,w") (z € S(x"), w € T(y")) be the solution of the problem (3), then for
any A >0,

& = (1= + AR (AR + pf () - piF(E,y)),

(25)
¥ = A3y’ + AR BO) + pagly’) - Gl )

For n > 0, we write

R e a{’RA"“ (A") + p]'f (&™) + pI'F(2", y™)),
£ = (1 - B + ﬁfRA (AT + plf (s)) + p]'F(2y,y™)) (26)
(25 € S(s1)).

It follows from the hypotheses of the mappings A, f, F, S, M, n; and R‘: 1,,"[1\4 in Algo-
rithm 4.1 that

st =&l < [ (L- )"+ af R (A (") + pif (") + 07 F (2"5"))
- (1-of)x — o Ry (A() + pif () ~ p{F(25)) |

T4

[(1 a1)+a1(91]||x x*H+a{’

-
Ju" =« < [ (1 -ei)a” +aitef
- (L-al)w' ~ o RGN (A() + pif () - {F(2) |
< (=)o -] +of|ef Ry (A() + oif () = p{E(2,5)) |
< (L-of) 2" =" + el ~ RGN (A(") + o1 () = p7E("5"))|
+al [ROR (A(") + pf (&) - PIF(2",5"))
~ R (A() + o1 () = oI () |
< (1-a)|x" ~a'| + gl ef ~ "]

T .
ol | | sy -y

+ \‘%a)f +cq(p!) 'kl + qor0l — qor | " - x| ]
SOl Al B8 AR A Bt

rof— st mn " =2+ y -y

- mpy

+ \‘/a)f + cq(,ol”)qlclq + g — qpi||x" —x|]

< (1—a{’+§‘1 +a191)||x —x || +& ||u —-X ||

+of
r —

Page 11 0of 18
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that is,
* * i
Ist = < [0 -ad) + a0l -] vt
. 1 ’
|u" —«|| < 1—5{'(1—“f+€1"+0lf91(”‘))”"n_x ”

q-1
1 . T

o V1 (27)
1-&"" = mypf

-1
where 6,(n) = rlfmlp” (o' ays + \‘%wf +cq(pf Ykl + qoiw? — qg1), 2" € S(x") and ™ € S(x).

From (24)-(27) and (13), we have

[a7 -« = (1= B) [+ -]
+BIRGT (AR + ol () - pYE(25))
_Rﬁfnzlvf( (s7) + pif (s7) + pIF(23.5")) |

gq-1

< <(1 -B)+ ﬁ?rl_tin(pfmm

m, Py

+ \‘%a)f +cq(p!) i + gor0l — q<p1)> st =«

A
r —mipy

= (1) + )5t~ |+l =y | 28

By Algorithm 4.1, x"*! — x" = B(d — x") and u" — x" = &/ (¢! — x"), we have
[ =t < | (1= B7)x" + Brdy - (1- BY)x"
— BRI (A(SY) + P (57) = P F (25,57 |
< BY i - RO (A(SY) + pf (1) - pIE(23.5)) |
< By (i = Ryl (A ") + pif () = oI (21,5")) |
+ | RAM (A ") + pif (") = (L")
= Ry (A(st) + pif (s1) = o E(25.5)) )
< By - u”|
+ BRI (AGW") + o7f () = pE(215")
— RO (A(SY) + ol (s7) - o E(250)) |
< Bl |y - u”|

T
B et = ey =7

+ \‘%a)f +cq(p!) i + qor0l - qor |57 - u"||]
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< gt et -
741

g Pilst =t ey -]

+ By

+ \q/wf + cq(p{‘)qqu +qo10! — g ||sf —u" H]

q-1
" T

+ By [of iy + \‘%wf +cq(p!) ki + qorof — qen] |87 - u” |

n
r — m P

= oot = e -2+ B -

q-1
n T

; ol + o + cq(p7) il + gor0of - o]

- mipf
x (s =] + " 2" + 2" "]}
<o =2+ (& + pronm) 4"~ 7|
+BUE ) (| 2| + " =) + pren sy -«
<t = |+ (g + 280000n) + B [ - |
)

+ B¢l + 01(m) | = x| + BlO1(m)||s} — x| (29)
It follows from (26)-(29) that

[t =" < ot =g+ e - |
<g et x|+ [cr +2B761(n) + B!

1
+ ﬁl”({{’ + Gl(n)) @ (1 —of + &+ a{’@l(n))
1

(=) -of + a{'eun))] % |

1 7971

a}’l
n-1 n
1-¢&f ry—mip;

NW"—f

V1

. [ﬂ{’(é{’ +61(m)

+ (1= BY')Blaf6i(n)pf v

’

n
ry —nmpy

and

[t =] <

SiTp [c{' +2B161(n) + B¢

1
+BI(g + 61(m) - (1-of + & +af6:(n)
1

+(1-B)(1-af + 011"91(14))] [

1 -1

+—
1-¢

Tq

[ﬂ{“ (6 + 6 et

Jivr-s

) (30)

+ (1= B])Blet61(n) pyv

n
ry —mip
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where

7971
O1(n) =

P— 2l + \/w1 +Cq(i01) K+ qor] - qe1).

For n > 0, we write

s = (L-ag)y" + af RS (BO) + p3¢0") = p3 GW", 2"))
(w" e T("),

657 = (L= BY)y" + BRR) (B(S5) + 03 s3) — 3 G (w5, x")
(wh € T(sh)).

(31

By using the hypotheses of the mappings B, g, G, T, N, n, and R % in Theorem 5.1, and
the same method as the one above, we can get

sz =5 < [(1-a)y" + 3RS (BO”) + p5g(v) = P G(w",2")

~ (1= a3)y g R (BO) + 028 (y) = ;mG(w,))) |

-L'q

sof o x| (- ed) + o]y -],

[V =5 = (1= e3)y" + eyes - (1= )y
- BRI (BO) + p5g(y) - oG (w ) |
< (-ag) [y -y']| + ez]les - R (BO!) + p3g(4) - 05 G(w", ")) |
+a HRB i (BO) + 058 (") - 03 G(w",5"))
~RIN(BOY) +p5g () - 3G (w,2))|
<(@-a)|y" -y + 57| e; -]

9
v i -2+ oda) |-y |

747!
(2 ay +0‘292)||J/ -y H +&) HV -y || +0‘22_72pg;0§l

that is,

* q_l * *
Ist-5'| <ot ptal x| + (1 v adint) |~ ]

my 0y
1 ’
v -yl = ;=g -t +atoatm) -]
71" 0ot
+ = Sna2p2 2z—mngux -x |, (32)

where o (e} —y") =v" —y", and 6,(n) =

ro— mzp ('02 H2y2 + \/(1)2 + Cq(pg)qKZ + q02w2 q(pZ)
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Moreover, we have

| =y | = (- B2)y" + B3dy - (1= B3)y
- B3R (B(Y) + p5g () - p5G(w',))|
< (=B ly" =yl + B3 ds ~ R (B() + o8 (") = 5 G (w3,a")) |
+ B3 | Ry% (BO) + p5g (V") = 03 G(w5, "))
—RN(BOY) + 052 () - P56 (w',2))|
=@=-)y -yl +&pylds -y + By | - 55

T N )
+ ﬂgmﬂgl)z ||x” —X || + ﬂ;’ez(n) ||Vn —y ||

L
<@-Br+g+pre)y -y +  —

- mypl pyvafa” — |

+ Gy =y [+ 5ls -y |+ Aot v -y,

for (19) y™*! —y" = B3 (d5 - y").
It follows from (26) that
et = =< [ (- B5)y" + By - (1= B5)y"
— BIROT (B(s3) + 3g(s3) - o3 G(wh,")) |
< B3 lds - Ry (B(s5) + pig(s3) — o3 G (w5, ")) |
91
< B35\ dy v +  —le | = 2| + By 62(m) |5 —v"|
=gy =y + =y )+ &y =y + v -51)
+ B30 (|5 =y + |y =)
=gy -y + @+ a8y -y
+ (6385 + By6(m) |V =y | + B162(m) |55 = 5. (33)

Combining (30), (31), (32), (33) and (19), we have

n+1

* 1 nen n n *
bt -5 < s 0 85288+ 208) - |

791
+ ﬁfmpﬁ’w [ =x"|| + (2B26:(n) + ¢ B5) |v* =¥

5(et o) - ||
1 n nen n
< m(l—ﬂz +2,82§2 +2¢,

+(2BY62(n) + &3 BY) (2 - af + a6 (n))

1-&f
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Bt (1) ] |~ |

+ ! (,3" Al P"V2+ﬁ"(§"+92(n))a"LP"V2
1-2¢3 zrz—mmﬁ’ 2 2 2ry—mypy

gq-1
+(2B562(n) + &3 BY) ol py vy ‘ ) " =] (34)

1- 5” ry — W 0y

By using (22) and (23), let

. 1 n n nen
ap; = limsup i |:§1 +28761(n) + B¢

n—00 -6

+BL(L + 61(n)) 1-of + &' +aj61(n)

- sl(
(=B (Lo + o0y ))]

=1- (0 + B1) + (o1 + B)61(n) + (2 — 2011 + 161(n)) Br61 (),

741

1 1
=1 6 "
ap ly[isip 1—¢ [,31 (Cl + 1(”)) - 51”0{1 e v

7771
+(1-B7)Bloton(n) v ———
( ,31),31 1 1 ( )/01 1’”1"’”1,01”:|
gq-1

T
= S ————1 + p1 — Bip1),
r —mpy

do1 = limsup 1 By 2 OFvy + ,3”({" + 92(1’1))01an}1\}2 (35)
nsoo 1=208 \"2 ry —mapy 2 2ry—mypy

1 7471
+(2:B;02(”1)+C2n,82) ey 2/02 27)

n
Iy — i Py

gq-1
= Bapava(l + 20096p) ———,
Iy — My P3

. 1 n Hen n
as; = limsup 20 (1 =By +2B585, +24,

n—00 -2 2

+ (2B26,(n) + ¢ BY) (2 -y +aj6,)

b

1-&
+ B3 (¢ +62(m)[(1 - o) + a292(n)]>

=1— B2 +2B262(2 — 013 + 00265) + Bab(1 -ty + ct26s)

= (1= By + B262) + 3(1 — atz + 0262) B2 + P26,

where
. Tq_l
=limsupby(n) = — (o1 + b)),
n—00 r—mp1
. Tq_l
0y =limsupby(n) = ——— (a2 + ).

n—00 ry — my Py
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Let A = (&L =«'[, [y =y )T and B = (" x|l [y ='I)”, then from (33), (34) and

(35), we have @ < Wh, where

W= an  an ) (36)
ax da

which is called the matrix for a nonlinear set-valued inclusions system involving (4, 7n)-

accretive mappings. By using [16], we have

IA] < [11111B]. (37)
Let

]| = max{ai, ar2, a1, a2}

It follows from (21)-(23), Theorem 3.1 and [15] that 0 < ||¥|| < 1 and there exist ",y € X
and z' € S(x"), w € T(y') [17] such that

Qix) =x,
Q) =y

and the sequence {x",y"}°, generated by Ishikawa-hybrid proximal Algorithm 4.1 con-

verges linearly to a solution (x',y") of the problem (3) as the convergence rate

(]| = max{l — (o1 + B1) + (1 + B1)b1 + (2 — 201 + 161) 161,

741
o prvibh—— (1 + p1 — Bip1),
r —mp;

1— B2 +2B205(2 — g + aa6) + Paba(1 — aty + 026s),

(L= By + B262) + 3(1 — oty + 0262) B2 + ,3292},

where ¢; > 0 is the same as in Lemma 2.7, p; € (0, %) (i =1,2). This completes the proof.
O

Remark 5.2 For a suitable choice of the mappings A, B, n;, F, G, M, N, S, T, f, g and X,

we can obtain several known results in [7, 9, 11, 12] as special cases of Theorem 5.1.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HGL presided over and drafted the manuscript, MQ participated in the revisions of the manuscript.

Received: 11 April 2012 Accepted: 12 October 2012 Published: 29 October 2012


http://www.fixedpointtheoryandapplications.com/content/2012/1/195

Li and Qiu Fixed Point Theory and Applications 2012, 2012:195
http://www.fixedpointtheoryandapplications.com/content/2012/1/195

References

1.
2.
3.

22.
23.

24.

25.

26.

27.

28.

Hassouni, A, Moudafi, A: A perturbed algorithms for variational inequalities. J. Math. Anal. Appl. 185, 706-712 (2001)
Kassay, G, Kolumban, J: System of multi-valued variational inequalities. Publ. Math. (Debr.) 54, 267-279 (1999)
Chen, XF, Deng, CX, Tan, MY: New approximation algorithm for a system of generalized nonlinear variational
inequalities. J. Sichuan Univ. Nat. Sci. Ed. 38(6), 813-817 (2001)

. Yan, WY, Fang, YP, Huang, NJ: A new system of set-valued variational inclusions with H-monotone operators. Math.

Inequal. Appl. 8(3), 537-546 (2005)

. Fang, YP, Huang, NJ, Thompson, HB: A new system of variational inclusions with (H, 7)-monotone operators in Hilbert

spaces. Comput. Math. Appl. 49, 365-374 (2005)

. Jin, MM: Approximation algorithm for a class of generalized nonlinear set-valued variational inclusions systems. J.

Sichuan Norm. Univ. Nat. Sci. 29, 1-4 (2006)

. Verma, RU: A hybrid proximal point algorithm based on the (4, )-maximal monotonicity framework. Appl. Math. Lett.

21,142-147 (2008)

. Li, HG, Xu, AJ, Jin, MM: A hybrid proximal point three-step algorithm for nonlinear set-valued quasi-variational

inclusions system involving (A, n)-accretive mappings. Fixed Point Theory Appl. 2010, Article ID 635382 (2010).
doi:10.1155/2010/635382

. Kang, SM, Cho, SY, Liu, Z: Convergence of iterative sequences for generalized equilibrium problems involving

inverse-strongly monotone mappings. J. Inequal. Appl. 2010, Article ID 827082 (2010)

. Lan, HY, Cho, YJ, Verma, RU: On nonlinear relaxed cocoercive inclusions involving (A, n)-accretive mappings in Banach

spaces. Comput. Math. Appl. 51, 1529-1538 (2006)

. Eckstein, J, Bertsekas, DP: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal

monotone operators. Math. Program. 55, 293-318 (1992)

. Li, HG, Xu, AJ, Jin, MM: A Ishikawa-hybrid proximal point algorithm for nonlinear set-valued inclusions problem based

on (A, m)-accretive framework. Fixed Point Theory Appl. 2010, Article ID 501293 (2010). doi:10.1155/2010/501293

. Zou, YZ, Huang, NJ: A new system of variational inclusions involving H(-, -)-accretive operator in Banach spaces. Appl.

Math. Comput. 212, 135-144 (2009)

. Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16(12), 1127-1138 (1991)

. Nadler, SB: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969)

. Horn, RA, Johnson, CR: Matrix Analysis. Cambridge University Press, Cambridge (1986)

. Li, HG: Iterative algorithm for a new class of generalized nonlinear fuzzy set-valued variational inclusions involving

(H, m)-monotone mappings. Adv. Nonlinear Var. Inequal. 10(1), 41-50 (2007)

. Peng, JW, Zhu, DL: Three-step iterative algorithm for a system of set-valued variational inclusions with

(H, n)-monotone operators. Nonlinear Anal. 68, 139-153 (2008)

. Cohen, G, Chaplais, F: Nested monotony for variational inequalities over a product of spaces and convergence of

iterative algorithms. J. Optim. Theory Appl. 59, 360-390 (1988)

. Ansari, QH, Yao, JC: A fixed point theorem and its applications to a system of variational inequalities. Bull. Aust. Math.

Soc. 59,433-442 (1999)

. Allevi, E, Gnudi, A, Konnov, IV: Generalized vector variational inequalities over product sets. Nonlinear Anal. 47,

573-582 (2001)

Kassay, G, Kolumban, J: System of multi-valued variational inequalities. Publ. Math. (Debr.) 54, 267-279 (1999)
Kim, JK, Kim, DS: A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces. J. Convex
Anal. 11(1), 235-243 (2004)

Li, HG: Approximation solutions for generalized multi-valued variational-like inclusions with (G, n)-monotone
mappings. J. Jishou Univ. Nat. Sci. Ed. 30(4), 7-12 (2009)

Cho, SY, Kang, SM: Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative
process. Appl. Math. Lett. 24, 224-228 (2011)

Ye, J, Huang, J: Strong convergence theorems for fixed point problems and generalized equilibrium problems of
three relatively quasi-nonexpansive mappings in Banach spaces. J. Math. Comput. Sci. 1, 1-18 (2011)

Yang, S, Li, W: Iterative solutions of a system of equilibrium problems in Hilbert spaces. Adv. Fixed Point Theory 1,
15-26 (2011)

Chang, SS, Chan, CK, Lee, HWJ, Yang, L: A system of mixed equilibrium problems, fixed point problems of strictly
pseudo-contractive mappings and nonexpansive semi-groups. Appl. Math. Comput. 216, 51-60 (2010)

doi:10.1186/1687-1812-2012-195
Cite this article as: Li and Qiu: Ishikawa-hybrid proximal point algorithm for NSVI system. Fixed Point Theory and
Applications 2012 2012:195.

Page 18 of 18


http://www.fixedpointtheoryandapplications.com/content/2012/1/195
http://dx.doi.org/10.1155/2010/635382
http://dx.doi.org/10.1155/2010/501293

	Ishikawa-hybrid proximal point algorithm for NSVI system
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence theorem of solutions
	Ishikawa-hybrid proximal algorithm
	Convergence of Ishikawa-hybrid proximal Algorithm 4.1
	Competing interests
	Authors' contributions
	References


