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Abstract

In this paper, we prove a strong convergence theorem by the hybrid method for
finding a common element of the set of fixed points of a finite family of nonspreading
mappings and the set of solutions of a finite family of variational inequality problems.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Then a mapping
T :C — Cis said to be nonexpansive if || Tx — Ty|| < ||lx — y|| for all x,y € C. Recall that the
mapping T : C — C is said to be quasi-nonexpansiveif || Tx—p|| < |x—p|,Vx € Cand Vp €
F(T), where F(T) denotes the set of fixed points of T. In 2008, Kohsaka and Takahashi
[1] introduced the mapping T called the nonspreading mapping in Hilbert spaces H and
defined it as follows: 2|| Tx — Ty||® < || Tx — y||? + |lx — Ty||%, Vx,y € C.

Let A : C — H. The variational inequality problem is to find a point u € C such that

(Au,v—u) >0 (1.1)

for all v € C. The set of solutions of (1.1) is denoted by VI(C, A).

The variational inequality has emerged as a fascinating and interesting branch of math-
ematical and engineering sciences with a wide range of applications in industry, finance,
economics, social, ecology, regional, pure and applied sciences; see, e.g., [2-5].

A mapping A of C into H is called inverse-strongly monotone (see [6]) if there exists a

positive real number o such that
(x—y,Ax - Ay) > a|Ax - Ay|?

for all x,¥ € C. Throughout this paper, we will use the following notation:

1. — for weak convergence and — for strong convergence.

2. w(x,) = {x:Ix,, — x} denotes the weak w-limit set of {x,,}.

In 2008, Takahashi, Takeuchi and Kubota [7] proved the following strong convergence
theorems by using the hybrid method for nonexpansive mappings in Hilbert spaces.
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Theorem 1.1 Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let
T be a nonexpansive mapping of C into H such that F(T) # ) and let xo € H. For C; = C
and uy € Pc,xy, define a sequence {u,} of C as follows:

Yn =0ylhy + (1 _an)um
Conn={z€Cy:lyn—2l < llu.-2l},

Ups1 = PC,Hle) neN,
where 0 < a, <a<1forall n € N. Then {u,} converges strongly to zo = Pr(r)%xo.

In 2009, Iemoto and Takahashi [8] proved the convergence theorem of nonexpansive

and nonspreading mappings as follows.

Theorem 1.2 Let H be a Hilbert space, and let C be a nonempty closed convex subset of H.
Let S be a nonspreading mapping of C into itself, and let T be a nonexpansive mapping of
C into itself such that F(S) N F(T) # (. Define a sequence {x,} as follows.

XIEC,

Xp+l = QpXy + (1 - an)(,anxn + (1 - lgn) Txn)

for all n e N, where {a,},{B,} C [0,1]. Then the following hold:
(i) Ifliminf,_ o ay(1—ay) >0 and y o2 (1 B,) < 00, then {x,} converges weakly to
v e F(S).
(i) IfY 2 an(l—a,) =00 and y o2 Bu < 00, then {x,} converges weakly to v € F(T).
(iii) Ifliminf,_ o a,(1 — o) > 0 and liminf,_,» B,(1 — B,) > 0, then {x,} converges
weakly to v € F(S)NF(T).

Inspired and motivated by these facts and the research in this direction, we prove the
strong convergence theorem by the hybrid method for finding a common element of the
set of fixed points of a finite family of nonspreading mappings and the set of solutions of
a finite family of variational inequality problems.

2 Preliminaries
In this section, we collect and give some useful lemmas that will be used for our main
result in the next section.

Let C be a closed convex subset of a real Hilbert space H, let P¢ be the metric projection
of H onto C, i.e., for x € H, Pcx satisfies the property

lx — Pcx|| = min ||lx — y|l.
yeC

The following characterizes the projection Pc.

Lemma 2.1 (See [9]) Given x € H and y € C. Then Pcx =y if and only if the following
inequality holds:

x-—y3,y-2)>0 VzeC.
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Lemma 2.2 (See [8]) Let C be a nonempty closed convex subset of H. Then a mapping
S: C — C is nonspreading if and only if

[1Sx = Syl|* < [l = y[|* + 2(x — Sx,y — Sy)
forall x,y € C.

Example 2.3 Let R denote the reals with the usual norm. Let T: R — R be defined by

x—1 ifxe(-00,0],

—(x+1) ifxe(0,00)

Tx =

forallx e R.
To see that T is a nonspreading mapping, if x,y € (0, 00), then we have Tx = —(x + 1) and

Ty = —(y + 1). From the definition of the mapping 7', we have

1T - Ty = |-+ 1) - (<@ + D)

=ly-x*=lx-yP
and

20— Tx,y—Ty) =2(x +x+Ly+y+1)
=2(2x+1,2y+1)

=2(2x+1)(2y+1)>0 (sincex,y > 0).
The above implies that
|Tx = Ty)* = lx = y* < lx = y* + 2(x — Tx,y — Ty).

For every x,y € (—00,0], we have Tx = x — 1 and Ty = y — 1. From the definition of T, we
have

1Tx-Ty? = |x-1-(y-1)|’

= lx -yl
and
2(x — Tx,y — Ty) =2(x— (x-1),y- (y—l))=2.
From above, we have

1T — Ty = lx = y* < [x = y* + 2(x - Tx,y - T).
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Finally, for every x € (—00,0] and y € (0,00), we have Tx =x — 1 and Ty = —(y + 1). From
the definition of T, we have

|Tx - Ty)* =[x =1+ y +1° = |x + yI%,
lx — y[2 =% — 2wy + y*
=x? +2xy +y* — dxy
> % +2xy+ 9> (since —4xy > 0)

= (x+9)°
and

2(x—Tx,y - Ty) = 2(x—(x—1),y+ (y+1)>
=2(1,2y+1)
=2(2y+1)>0 (sincey>0).

From above, we have

| T — Ty|* = |x+ 9> = (x +9)?
<lx-yP

< |x—y|2 +2(x—Tx,y — Ty).
Hence, for all x,y € R, we have
|Tx — Ty|* < |x — y|* + 2(x — T,y — Ty).
Then T is a nonspreading mapping.

Lemma 2.4 (See [1]) Let H be a Hilbert space, let C be a nonempty closed convex subset
of H, and let S be a nonspreading mapping of C into itself. Then F(S) is closed and convex.

Lemma 2.5 (See [9]) Let H be a Hilbert space, let C be a nonempty closed convex subset
of H, and let A be a mapping of C into H. Let u € C. Then for 1. > 0,

u=Pc(I-2Au < uecVICA),
where Pc is the metric projection of H onto C.

Lemma 2.6 (See [10]) Let C be a closed convex subset of a strictly convex Banach space E.
Let {T, : n € N} be a sequence of nonexpansive mappings on C. Suppose (-, F(T,) is
nonempty. Let {\.,} be a sequence of positive numbers with Y -, A, = 1. Then a mapping S
on C defined by

S(x) = Z An Tux
n=1

Jor x € C is well defined, nonexpansive and F(S) = (-, F(T,,) holds.
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Lemma 2.7 (See [11]) Let E be a uniformly convex Banach space, C be a nonempty closed
convex subset of E, and S : C — C be a nonexpansive mapping. Then I — S is demi-closed
at zero.

Lemma 2.8 (See [12]) Let C be a closed convex subset of H. Let {x,} be a sequence in H
and u € H. Let q = Pcu. If {x,,} is such that w(x,) C C and satisfies the condition

%, —ull < llu—gl, VneN,
then x, — q, as n — 0.

In 2009, Kangtunyakarn and Suantai [13] introduced an S-mapping generated by
Ti,...,Tnx and Aq,..., Ay as follows.

Definition 2.1 Let C be a nonempty convex subset of a real Banach space. Let {T;}Y, be
a finite family of (nonexpansive) mappings of C mto 1tself Foreachj=1,2,...,N,leta; =
(o/l,az,aa) €1 x I x1,wherele[0,1] and 0‘1 + ozz + oz3 = 1. Define the mapping S: C — C
as follows:

Uy=1,
Uy = oy Ty + ay Uy + a3,
Uy = & Toly + a3y + o2,
Us = Ol?TgUz +a§’L[2 +a§1,

(2.1)

Uy = oN Ty Unog + oY MUy + a7,
(2.2)

S= UN = OliVTNUN,l + aQIL[N,l + Olg\ll.
This mapping is called an S-mapping generated by T1,..., T and o, &g, ..., N
The next lemma is very useful for our consideration.

Lemma 2.9 Let C be a nonempty closed convex subset of a real Hilbert space. Let {T;}¥,
be a finite family of nonspreading mappings of C into C wzth ﬂl 1F(T) 7! /8 amd let aj =
(o, d),al) eI x I x1,j=1,2,3,...,N, where = [0,1], &, + o} + &y = 1, &}, &} € (0,1) for
allj=1,2,...,N -1 and ol € (0,1], od €10,1), 0/2 €[0,1) forall j=1,2,...,N. Let S be
the mapping generated by Ty,..., Ty and o1, c,...,an. Then F(S) = ﬂﬁl F(T;) and S is a
quasi-nonexpansive mapping.

Proof It easy to see that ﬂf\il F(T;) CF(S). Let xg € F(S) and x* € ﬂf\il F(T;). Since {T;}¥,
is a finite family of nonspreading mappings of C into itself, for every y € C, we have

[T = 5 (1T -+ =), 23)

This implies that

> V¥yeCandi=12,...,N. (2.4)

|7 =2 <y -+
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From the definition of S and (2.4),

|Sx0 —2||* = [N T Un1x0 + o) Un 10 + g — 5%

= N (T Unaxo — &%) + @ (Un 120 — x*) + & (w0 — %) ||

< o | TnUnaxo — || + & | Unaxo — & |* + @ 0 — 27
< (1- o) | Un-120 —x || +aj [Jao — ¥ H

= (- o) e ™ (Tn-1Un-2%0 — &) + oy~ (Un—ax0 — &*)
+ o™ (w0 =) * + 0 o - 7|

< (1) | Tnaalvao =2 [+ 0 Uvao -2
+ oy o =2 ) + o o - 2|

< (=) (1) [tnaamo —° " + 0 o )

+ o on —x* H

(1) (1=} ) [th-amo = | + 0 (1) o~

+aj ||x0 —x* ||

N
(1) [t oo -5+ (1— ITa- a3>)||xo—x P
]

j=N-1

N

j=N-1

N

(1 ag)”ngxo—x H +<l nl o/ )on—x*Hz

[0 - oo - +(1 [T-ed) o+

:Z Egz E:Z ce

T
S

(1= 0) o (Tio %) + (1= e} (0 ) |

N
+<1 1 a3)||xo—x ||
j=2

(1 =) (e | Tieo =2 + (1= x}) o0 —°[

—-

T
S

— oy (L— o) Trxo — xoll) + (1 -T10- 0‘3)) o

j=2

(1— o) (o0 — 2 [|* = e} (1~ o) [ Taxo — 5011%)

—-

T
S

=<

N
+ <1 1 ozs )”xo —X || (2.5)
j=2
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From (2.5), we have

N
||xo—x| 51—[1 Ol3 ||x0—x || —041(1 oel)||T1x0—x0||)
j=2

N
+<1 ]_[1 (x3>”x0— *
j=2

2

’

which implies that
%0 =% | < [0 — & |* = &} (1 = }) [ Tio — 0 1% (2.6)

Since 0/1 €(0,1) forallj=1,2,...,N —1and (2.6), we have xy € F(T1). From x = T1x¢ and
the definition of S, we have

Ll1x0 = Ol% T1x0 + (X%xo + (X%xo =Xq.

From (2.5) and xq € F(L;), we have

N N
o= " < T10- a1 (1-TT00-))) o=

j=3 j=3

Z

= T1(1 - )| e? Tolhixo + a2 Uixo + adxg — |

i3

N
+<1 1 (x3>”x0—x ||
j=3

(1 =) o (Tawo — ") + (1) (0 ") |

N
+<1 1 (x3>”x0—x ||
j=3

N
Hl Ol3 ocl||T2x0—x*H2+(1—0{12)||x0—x*||2
j=3

~

—-

i
w

— a7 (1-0o7) | Taxo — %0l1%)

«(1-T10-h o

j=3

N

Hl 0‘3 ([0 —* H — o (1-af) | Taxo — %0 |I*)
j=3

2

’

N
+<1 Hl a3)||x0— *
j=3
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which implies that
|0 — % || < [0 — & |* — a2 (1 = @) Taxo — %0 1% 2.7)

Since 0/1 €(0,1) forallj=1,2,...,N —1and (2.7), we have xy € F(T,). From the definition
of S and xg = Toxg, we have

L[zxo = 0512 Tzulxo + oz%Lleo + a§x0 =X0-

By continuing in this way, we can show that xy € F(T;) and xo € F(U;) for all i =

1,2,...,N -1
Finally, we shall show that x¢ € F(Ty).
Since

0= Sxo — X0 = a{vTNUN_le + Oléqu_le + C(gvxo — X0

N
= oy (Tnxo — o),

and a{\[ € (0,1], we obtain Tyxy = xg so that xy € F(Ty). Then we have x( € ﬂﬁlF(Ti).
Hence, F(S) C ﬂf\il F(T)).

Next, we show that S is a quasi-nonexpansive mapping. Let x € C and y € F(S). From
(2.5), we can imply that

N
I1S% = y1* < [ T(1 - ) (e =11 - & (1 - 07) [ Tox = 1))
j=2

+ (1 - ﬁ(l —a{,)> lla — y|I?

Jj=2

< llx = yII*.
Then we have the S-mapping is quasi-nonexpansive. 0

Example 2.10 Let 77 : [-1,1] — [-1,1] be a mapping defined by

x+1 :
== ifxe(0,1],
T2 (0,1]

=1 ifx e [-1,0]

forallx € [-1,1].
Let T, : [-1,1] — [-1,1] be a mapping defined by

22 ifxe(0,1],

sz =
=42 jfx € [-1,0]

forallx € [-1,1].
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To see that T is a nonspreading mapping, observe that if x,y € (0,1], we have Tix = ’%1

and Ty = y+1 . Then we have

x+1 y+12
Tix— Ty = |— - —
|T1x — Tyl 5 5
1 2
—le—yl
and
2x—Tix,y—Tiy) = 2 +1 y+l
x— Thx, =2x—— ),y [T=—
W,y = 11y 5 ) 5
fEet o
2 2
Sx-DO-1)
= —(X — —_
2
>0 (sincex <1,y<1, then(x-1)(y-1)>0)

From above, we have

lx—y1* + 2(x — Tox,y — Toy) > |x —y|*

= Z|x—)’|2
= |Tix - Tyy|*
For every x,y € [-1,0], we have Tix = ’”1 and Ty = %ﬂ From the definition of T;, we
have
Tyx— Toyl? = —-x+1 -y+1 2
S ) 2
y-x|°
2
1 2
p— x_
4I l
and

2(x—Twx,y—Tyy) = 2<x— <1%x>,y— (1%>>

3x-1 3y-1
31l y-l
2 2

1
= g(Sx -1D)By-1)
= % (3x(3y-1)-(3y-1))

1
= §(9xy—3x—3y+1)

>0 (since -1 <x,y <0, then 9xy,-3x,-3y > 0).

Page 9 of 24
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From above, we have

|x—y|2 +2(x—Tx,y—Tyy) > |x—y|2

1 2
> _x—
Z 3 lx =yl
= |Tix - Tyyl*
Finally, for every x € (0,1] and y € [-1,0], we have T1x = ’%1 and Tyy = _2“. From the
definition of T7, we have
T Tyl x+1 —y+12
x— =|— -
ey 2 2

1 2
=—|x+
4I b4

s (5o (75
-1
2

o)

and

1l
[\

’

2

NI= NI= N= N

(x-1)By-1)
(*By-1)-(By-1))
(Bxy—x-3y+1)
(Byx -1+ (1 -x)
>0 (since 0O<x<land-1<y<0, then3y(x-1),(1-x)> 0).
From above, we have

lx— 9% + 2(x — Thx,y — T1y) > |x —y[>
R 2xy +y2
= x% + 2xy + % — dxy
> x> +2xy +9*>  (since —4xy > 0)

(x + )

\

1
> Z(&Hy)2

= |Tix - Tyy|*
Then for all x,y € [-1,1], we have
|Tix — Tiy)* < |x—y* + (x — Tix,y — T1y).

Hence, we have T; is a nonspreading mapping.
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Next, we show that T is a nonspreading mapping. Let x,y € (0,1], then we have Tox =
2 and Ty = 5* 2 From the definition of T5, we have

x+2 y+22
Tox — Toy|? = |—= - 2=
| Tox — Tyl 3 3 ‘
1 2
—§|x—y|

and

et o () (132)
< ~2 2~ 2>

= 5-Di-1)

>0 (since0<x,y<1, then (x—1)(y—1)>0).

O |

From above, we have

e —y|? + 2(x — Tox,y — Toy) > |x -y

v

1 2
_x_
9| bl

= | Tox — Toy|*.

For every x,y € [-1,0], we have Tyx = 2%" and Ty = ? From the definition of T,, we

have
2-x 2—y2
Tox—Toy? = |—= - 22
|T> 29 ‘ 3 3
2
y—x
_‘3
1
—lx-y
and

2x— Tox,y— Toy) = 2 2-x 2=y
o Tyt 2fe- (357)o- (552))

dx—-2 4y-2
A2

3 7 3
8

- S@x-D@y-1)

= S(Zx@y -1 -(2y-1)

8
= 5(4xy—2x—2y+1)

>0 (since -1 <x,y <0, then 4xy, —2x, -2y > 0).
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From above, we have

|x—y|2 +2(x— Tox,y — Toy) > |x—y|2

1 2
> —|x-
9| |

|T2x— T2y|2.

Finally, for every x € (0,1] and y € [-1,0], we have Trx = L and Toy = =%. From the

definition of T,, we have

x+2 2-y >

Tox — Toy|? =
| Tox — Tyl 3 3

1 2
=—|x+
9| 9

and

e 8 62)

(x-1D(2y-1)
(x(2y-1) - (2y-1))

(2xy—x—-2y+1)

O| 00 O| O| V|

(2y(x-1) + (1 -x))

>0 (since0<x<1land-1<y<0, then2y(x-1),(1-x)>0).
From above, we have

e = y1” + 2(x — Tox,y — Tay) > |x -y
= x? —2xy+y2
= x% + 2%y +y* — 4wy

> (x+9)* (since —4xy > 0)

v

1 2
—|x+
9| b4

| Tox — Toyl.
Then for every x,y € [-1,1], we have

| Thx — T2y|2 < |x—y|2 +2(x — Tox,y — Try).
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Hence, we have T is a nonspreading mapping. Observe that 1 € F(T;) N F(T,). Let the
mapping S : [-1,1] — [-1,1] be the S-mapping generated by T3, T, and a1, oo, where o =
(é, %, %) and (%, %, %). From Lemma 2.9, we have 1 € F(S).

3 Main result

Theorem 3.1 Let C be a nonempty closed convex subset of a Hilbert space H. For every
i=12,...,N, let A;: C — H be an a;-inverse strongly monotone mapping, and let {T;},
be a finite family of nonspreading mappings with § = (X, F(T;) N X, VI(C, A;) # @. For
everyi=1,2,...,N, define the mapping G;: C — C by Gix = Pc(I - LA;)xVx € C and A €
le,d] C (0,2c;). Let p; = (a{,aé,aé) elxIxI,j=12,3,...,N, where I = [0,1], a{ + oté +
o =1, €(0,1) forall j=1,2,...,N -1 and oV € (0,1], o € [0,1) &} € (0,1) for all
j=1,2,...,N, and let S be the S-mapping generated by Ty, T5,..., T and p1, p2,..., pn- Let
{x,} be a sequence generated by x, € C; = C and

N o
Zn =) i1 8,Gixn,

Vi = OpXy + BuSxy + VuZn, (3.1)

C;’1+1 = {Z € Cn: ”yn _Z” = ”xn _Z||}1

X1 =Pc, %1, VYn=>1,

where {ot,}, {Bu} {Yn} € [0,1], @y + B + Yu = 1 and suppose the following conditions hold:

N
() lim & =8'€(0,1), Vi=12,..,Nand ) & =1,
n— 00

i=1

(i) {fotu} {Bul {yu} € [a,b] C (0,1).
Then the sequence {x,} converges strongly to Pzx;.

Proof First, we show that (I — AA;) is a nonexpansive mapping for every i =1,2,...,N. Let

x,y € C. Since A is an o;-inverse strongly monotone and A < 2«;, we have

|| I-AA)x— (I - )\Ai)y||2 = ||x —y—AMAx—Ay) ||2
= [lx = I = 24 (x -y, Aix — Ay) + A [|Aix — Ayl
< e =ylI* = 20:h[|Asx = Ay |1 + A2 Asx - Ay 1?
= lle =11 + (. = 200) [ A — Ay ||®
< llx-yII”.
Thus (I — AA;) is a nonexpansive mapping for every i =1,2,...,N. Since P¢ is a nonex-
pansive mapping, we have G; is a nonexpansive mapping for every i =1,2,...,N. From

Lemma 2.5, we have

F(G;) =F(Pc(I-2A)) = VI(C,A;), Vi=12,...,N. (3.2)
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From (3.2), VI(C, A;) is closed and convex. Let z € §. From (3.2), we have z € F(Pc(I — AA;))

for everyi=1,2,...,N. By nonexpansiveness of G;, we have

N
<> 8Ll — 2l = s — 2. (3.3)

i=1

N
> 8(Gixy — 2)

i=1

2w —zll =

Next, we show that C,, is closed and convex for every n € N. It is obvious that C, is closed.

In fact, we know that for z € C,,
lyn —zll <|lxx —z|| is equivalentto |y, —x,,||2 + 209y — %, %y —2) < 0.
So, for every z;,z, € C, and ¢ € (0,1), it follows that

Iy = %ull® + 2(y = %o %00 — (21 + 1 - D)22))
= (2000 = % X0 = 21) + 1y — % ]1%)
+ (1= 2) (200 = %0 Xn = 22) + (|90 — %ul®)
<0,
then, we have C,, is convex. Since VI(C, A;) is closed and convex for everyi=1,2,...,N, we
have (Y, VI(C,A,;) is closed and convex. From Lemma 2.4, we have ([, F(T}) is closed

and convex. Hence, we have § is closed and convex. This implies that Py is well defined.
Next, we show that § C C, for every n € N. Let z € §, then we have

Iy =2l = [|etn(@n = 2) + Bu(Sxn — 2) + Yul2n — 2) |
< ayllxn =zl + BullSxn — 2l + vullzn — 2|l

< ll%n —zll.

It follows that z € C,,. Hence, we have § C C, for every n € N. This implies that {x,} is well

defined. Since x,, = Pc, %1, for every w € C,,, we have

llcn =21l < lw—21ll, VmeN. (3.4)
In particular, we have

%0 = %11l < IPgxr — %1l (3.5)

By (3.4) we have {x,} is bounded, so are {G;x,}, {T;x,} for every i =1,2,...,N, {z,}, {y.}
and {Sx,}. Since x,,,1 = Pc,,,%1 € Cys1 C C, and &, = Pc, %1, we have

0 < (xl — XXy _xn+1>
= (X1 — Xy Xy — X1 + X1 — K1)

2
< =l =21l + o = &1 11 = Xt Il
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which implies that
”xn _xIH = ”xm—l _x1||~
Hence, we have lim,,_, o, ||x, — x1 || exists. Since

2
196 = Xns1 1> = N6 — 21 + 1 — X1 ||

2 2
= ”xn _xl” + 2(xn — X1 X1 _xn+1) + ”xl _xn+1||

2 2
= [l =117 + 2% — X1, %1 — X + X — K1) + 1% — X ||

= [lxn _x1||2 = 2|l _x1||2 + 200, — 21, % — Xp41) + |l _xW+1”2

< [l = Xa * = Nl — 221,

it implies that

lim ||x, — %441 = 0.

n— o0
Since w41 = Pc,,, %1 € Cyy1, we have

Iyn = X1 ll < %0 = Xpsr -
By (3.7) we have

lim ”yn _xVH-l” =0.

n—00
Since

lyn = %nll < N1¥n = X1l + (%01 — %l
by (3.7) and (3.8), we have

lim ||y, — x| = 0.

n— o0
Next, we will show that

lim ||, — Sx,|| = 0.

n— 00
Foreveryi=1,2,...,N, we have

|Pc(l - 14)x, 2|

| Pell = 2A0)x, - Pe(l - 2A)z|)?

IA

| = 1A%, — (- 24z

%0 — 2 = MA, — Ai2)|)?

= |l — zlI* + A2 Ay — Aizl|* = 20 (%, — 2, Aty — Ai2)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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2,52 2 2
< ll%n —zlI” + A% Aixy — Aiz|l” - 2Aai[|Aix, — Aiz|l

= [l — 2lI* = 220 — M) [|Aix,, — Azl (3.11)
From the definition of y, and (3.11), we have

2 2 2 2
lyn —zlI” < anllxn — 2zl + BullSxn — 2|I” + Vullzn — 2|

N
; 2
<l — 2l + BullSxu = 2I1* + v Y _ 8| Pel - AA)x, — 2|
i=1
2 2
< ayllxn —2z[" + BullSxn — 2|

N
¥ ) 8 (Il = 2 = 2204 = ) A - Aiz])

i=1

2 2 2
= %y = 2|17 + BullSxn — 2I|” + yaullxn — 2]

N
—7n ) 8,1 (2ei = A)l|Aw, - Aiz])®
i=1
N
<l =2l = v Y 85120t = 1) | A, — Aizll*.
i=1
It follows that
N
Vi D Suh(20t; = WAy — Aizl)* < Nl = 21> = llyw - 21>
i=1

< (% — 2l + 19 = 211 1y = %ull.
From conditions (i), (ii) and (3.9), it implies that
lim ||Ax, —Aiz| =0, Vi=12,...,N. (3.12)
n—00
Since

| Pl = 2A)%, — 2|* < (T = 1A%, — (I = AA)zZ, Pc(I = AA ), — 2)

%(H (I = A — (L= AA)e|? + | Pell = A, — 2]
— || = A%, — (I = 1Az = Pl - 1A%, + 2|°)

1
5 (=2 + | Pt = 3A ), —z|?

— [ = Pell = 1A%y — Ay~ A2) )

IA

1
5 (=2l + | Pt = 3A ), —z|°
= |20 = Peld = 1A |* = [ A (A ~ Ai2) |

+ 2A(x, — Pc(I = AA) %, Ay — Aiz)),
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it implies that

|Pc(l = 240)x, — 2|* < Il — 2117 = |20 = Pell = 24, |

+ 21|20 — Pl = AA)%y || | Ay — Azl (3.13)
From the definition of y, and (3.13), we have

2 2 2 2
lyn —zlI” < anllxn — 2zl + BullSxn — 2II” + Vullzn — 2|

N
< (U= y)ln = 2% + 7 > 85| Pell — A%, — 2
i=1

N

< U=y ln =207+ 7w D 85 (160 — 2117 = [ — Pe(l = A,
i=1
+ 24 |20 — Pc(I = 1A% || | A — Aizl))
N ) 5
= lln = 21> = v Y 85 [0 — Pc(l = A, |
i=1
N .
+29n Y 8|2 = Pe(l = A%, || A, - Aizll,
i=1
which implies that
N ) )
Vi D 84| = Pell = XA ||~ < ll2n = 211 = llyn — 211
i=1
N .
+29n Y 8|0 — Pl = AADx, | 1A, — Aizll
i=1
= (”xn =zl + lyn _Z”)“yn —xull
N .
+ 29 ) ik ay = Poll = RA)x, | [ Ay — Azl
i=1
From conditions (i), (ii), (3.9) and (3.12), we have
lim |Pc(I = A%, —%4]| =0, Vi=1,2,...,N. (3.14)
n— 00
Since
N .
lzn = xall <Y 84| Pl — AA)xn — %, ),
i=1

from (3.14), we have

lim ||z, — x| = 0. (3.15)
n— 00
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Since
Vn —Xu = lgn(an _xn) + yn(zn _xn)
from (3.9) and (3.15), we have
lim ||Sx, —x,| =0
n—0o0
Next, we will show that
lim ||T;U;_1x, — Ui1x,]| =0, Vi=1,2,...,N. (3.16)
n— o0
From the definition of y,,, we have

lyn = 2lI* < ulln =21 + Bull St = 2II* + Vallza — 2II>

< (= B)llxn —zl* + Bt (TnUn-1%n — 2)
+ oy (Un-1%n — 2) + 0 (%, — 2) |

< @ = Blwn —2l* + Bu(od | TnUn-1%n — 2)1* + 03 [ U160 — 21|
+ oy 1%y = zl|* = o &b | Ty Un—1%n = Un-12a %)

< (L= B)llxn —zl* + Ba((1 — &) 1 Un-1%4 — 2]
+ o} [y — 201> = o) o) | Ty U1 — Un1%?)

= (L= Bl — 21> + Ba((1 = ) o ™ (Tn-1 Un—2% — 2)
+ o MUy %, —2) + &l (x, — 2) ||
+ o |y — 2)1* — e o | T U, — UN—lxn||2)

< @ =Bl —zl* + Bul((1 - ") (e | T Un—2% — 21
+ o) M Un-axn — 201> + 0 |l — 2|
— oy o) M| Tver U2y — Un-a%al)?)
+ o loen — 2II” — oy o | Tne Un—1%n — Un—1%u 1)
< (L= Bl —21” + B (1 = 03") (1 = 03™") I Un—0 = 2II?
+ oy Hloew — 2lI* = o Moy | T U2 — U2l
+ o3 [|xn — 201> = o) o) | Ty U1 — Un1% %)

= (L= B)llwn = 21* + Bu((1 = 0d) (1 — ™) | Uno — 2|
+(1— ) o M wn — 201> — o oy (1 — o) | Tver Un-an — Un—o%ll®

N 2 2
+ o} loen — 2II* — o o | Ty U120 — Un-1%n 1)

N
= (1= Bu)llxn _Z”z + lgn( 1_[ (1 _aé)”UN—an _Z||2
j=N-1
N
1= TT - ad) Jlin — 21

j=N-1
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— NN (1 = ) | Ty U2 — U241

— o) | TnUn-1%, — Un—1%|I*
N .
= (= Blxn =z + Bu| [] (1- )| (Tn2ln-sxs —2)
j=N-1

2
+ oy 2 (Un-3%n —2) + o) 2 (x, — 2)

N

1= TT =) | s — 21

j=N-1

N-Tg N1 2
-0 (1 = ) I Twoa Un—an — Un—2% |

2
— o | TnUn 1%, — Un-1%,]|

N

< (= B)llxn —zlI* + Ba H (1- Olé)(a{\[_zﬂ Tn-aUn-3%, — 2|

j=N-1

+ oy | Un-sxn — 2II* + 3 2l — 2|

N-24N-2 2
- I Ty—2Un-3% — Un-3%4|7)

N

+|1- H(l—ag) ||x,,—z||2

j=N-1

N1 N1 2
- (1 - o) | Tn-a Un—2%n — Un—2% |

— o b | Ty Un—1%n — Un-aa )
N
< (=Bl =21+ Bu| [T (- b)((1-ed2) 1 Un-sxs - 2]
J=N-1

-2 2 _ N2 N2 2
+ oy P lx, — 2] - | Tn—2Un—3%n — Un—-3%,1")

N

+(1- H(l—ag) ||x,,—z||2

j=N-1

N1 N1 2
- (1 - o) | Tn-1 Un—2%n — Un—2%u |

— o b | Ty Un-1%n — Un-aa )
N .
= (=Bl — 21> + Bu| [ (1-cd) I Un-szn -2l
Jj=N-2
N .
+l1- T (0 -ed) ) lxn - 20
j=N-2

N

- o Pa) 1_[ (1= ) I T2 Un-3%0 — Un—3%,]l”
j=N-1
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— NN (1 = ) | Ty U2 — U241

— o o) (| T Unr-1%6n — Uni-16a I
=
N .
< (1= B)llxn—zl” + Bu| [ [(1 - o) Lo, — 2117
j=1

N
1-TT(-eb) ) Ix - 212

j=1
N .
—aja} [ [ (1= o)1 Tallos — Ui,
j=2
N .
—a2ab ™ T (- ) Tvmaln-an — Un—sal?
j=N-1

N1 -1 2
- (1= o)) | Tn-a Un—2%n — Un—2%u |
2
— o) | T U 1% — Un-1%,
2
= |lxy — 2|

N
_ﬁnal l_[ 1 013 ”Tlxn_xn”
j=2

N

N-2 N-2 j 2

— By 20 [T (1- ) I Tn-aln-s — Un-32u
j=N-1

—,3n N-1 N 1(1 o) )||TN_1L[N 2Xy — L[N—zxr:”2

— Buoy o) || T Un—1%, — U1, )1 (3.17)

From (3.17) and condition (ii), we have

N
2
Buotory [ T = ob) 1 T = al® < 11 — 2117 = 1y — 2l

j=2
= (”xn =zl + lyn _Z”)“yn =%

Form (3.9), we have

lim ||T1x, —x,| = 0. (3.18)
n— 00
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By using the same method as (3.18), we can conclude that
lim | T;U;1x, — Uiax,|| =0, Vi=1,2,...,N.
n—00
Let w(x,) be the set of all weakly w-limit of {x,}. We shall show that w(x,) C §. Since {x,}
is bounded, then w(x,) # ¥. Let g € w(x,), there exists a subsequence {x,,} of {x,} which

converges weakly to g.
Put Q: C — C defined by

N
Qx=) 6§'Gx, VxeC. (3.19)

i=1

Since G; = Pc(I —AA;) is a nonexpansive mapping, foreveryi=1,2,...,N, from Lemma 2.6
and 2.5, we have

F(Q =[F(G) = VI(C,A4). (3.20)

Since

I — Qull < 1% — zull + [12, — Quey |

N N
> 8,Gixn— Y _8'Giay
i=1 i=1

N

= [|xn =zl +

= %0 — zull + (8, - 8') Gxs

i=1

N
< Mot = zull + |85 = 8 Gl

i=1

from the condition (i) and (3.15), we have
lim ||x, — Qx,|| = 0. (3.21)
n—0o0
From (3.21), we have
lim [1x,, - Q[ = 0.
11— 00

From (3.19), it is easy to see that Q is a nonexpansive mapping. By Lemma 2.7 and x,,, — ¢
as i — 00, we have g € F(Q) = ﬂf\il F(G;) From (3.2), we have

N
g€\ VI(C A)). (3.22)
i=1

Next, we will show that g € F(S). Assume that g # Sq. From the Opial property, (3.10) and
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(3.16), we have

liminf[|x,, — qll* < liminf ||x,, — Sq||
11— 00 11— 00

= liminf”xni — Sk, + (Sx, — Sq) ||2
11— 00
= liminf ([l — Sxn, > + 1S%, = Sqll* + 2(s, — Sk;» S, — Sq))
1— 00
= liminf || Sx,, — Sql|*
11— 00
= lim inf||af[ TnUn-1%y, + aé\[UN_lx,,l. + aévx,,i
1—> 00
2
- af[TNUN_lq - aQIUN_lq - ag\[q”

= liminf”afl(TNUN_lx,,i - TNUN—lq)

+ o Uy 1%, - Uy 1) + o (@ — )|
< limiinf(ey" | T Un-1%6, — T Un-1q]?
+ 0y || Un-1%n, = Unaaq ) + o 1%, — q11%)
< liminf(en” (| Un-16n, — Un-1q1®
+ 2(Un-1%n, — TnUn-1%, Un-19 — TnUn-19))
+ 0 || Un-1%s, = Unaq ) + 0 1%, — q11%)
= liminf((1 - o3") | Un-1, = Un1g)l® + 03I, = q1?)

= hlrgglf((l — o) | e M T Un-2%n; — Tn-1Un-29)

+ o) MUy, — Un-2q) + 05 (%, — q) ”2 + o3[l — q||2)
< tim inf((1 - o) (o' Tre-a Uy -2, — -1 Un g1

+ 0 M Un-2%n; — Un-2q > + & I, — %) + & %, — 1)
< hfﬁg}f((l - aév) (Ol{\[_l(IIUNfzxn,‘ —Un-ql?

+ 2(Un—2%n;, — TnoaUn—2%n;, Un—2g — T UN—2Q>)

+ ) M Unoan, — Unoaql® + o, — 1) + 0 I, — 11?)

= timinf((1 - o) (1 - @) ™) | Un-2%, - Un-2q”

N-1 2, N 2
+ a3 o, — qll?) + 3 %, —g11%)

i—00
j=N-1

+ (1-‘ i (l—aé)) 26 —q||2)

N
lim inf( [T (- ) Un-axn, — Un-rqll?
J

IA
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N
< liminf<1_[(l o) | Ui, — Uoq®
j=1
N .
+ (1 - l—[(l - aé)) ll%; — q”2>
j=1
N
= liminf<1_[(1 o) %, — gl
j=1
N
+ (1 l_[(l ag)) ”xn, 6]||2>
j=1

= liminf|x,, — q|I*.
11— 00

This is a contradiction. Then, we have g € F(S). From Lemma 2.9, we have
qe( |F(T). (3.23)

From (3.22) and (3.23), we have ¢ € §. Hence, w(x,) C §. Therefore, by (3.5) and
Lemma 2.8, we have {x,} converges strongly to Pgzx;. This completes the proof. O

The following result can be obtained from Theorem 3.1. We, therefore, omit the proof.

Corollary 3.2 Let C be a nonempty closed convex subset of a Hilbert space H. For every
i=1,2,...,N,let A;: C — H be an a;-inverse strongly monotone mapping, andlet T : C —
C be a nonspreading mapping with § = F(T) N ﬂf\il VI(C,A;) #0. For everyi=1,2,...,N,
define the mapping G;: C — C by Gix = Pc(I — LMA;))x ¥Yx € C and ) € [c,d] C (0,2w;). Let
{x,} be a sequence generated by x, € C, = C and

Zp = Zz =1 nGx”’

Y =Xy + B TXy + Vizus (3.24)

Cun={z€ Cy:llyn -zl < llxn — 2},

Xn+l = PCn+1x11 Vn = 1)

where {a,}, {Bu}, {vn} € [0,1], @y + By + Y = 1 and suppose the following conditions hold:

N
() lim 8, =8€(0,1), Vi=12,...,Nand > osh=1

i=1

(i) {orn}, {Bul {¥u} S [, 6] C (0,1).

Then the sequence {x,} converges strongly to Pzx;.

Corollary 3.3 Let C be a nonempty closed convex subset of a Hilbert space H. Let A :
C — H be an a-inverse strongly monotone mapping, and let {T;}Y, be aﬁmtefamzly of
nonspreading mappings with § = ﬂl E(T)N VI(C A) #0. Let pj = (al,az,as) elxIxl,

j=12,3,...,N, wherel = [0,1], a1+a’2+a3=1 o), €(0,1) forallj=1,2,...,N -1 and
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N
o

€(0,1], ) €10,1), oté €(0,1) forallj=1,2,...,N,and let S be the S-mapping generated

by Ty, Ts,..., Ty and py, pa, ..., pn- Let {x,} be a sequence generated by x; € C; = C and

Yn = 0pXy + lgnsxn + VnPC(I - }‘A)xm
Cun={z€ Cy:llyn—zll < lxn —zll}, (3.25)

Xn+l = PCn+1xlr Vn = 1)

where {a,}, {Bn}, {vu} C la,b] C (0,1), @y + By + Y =1 and A C [c,d] C (0,2a). Then the
sequence {x,} converges strongly to Pzx;.
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