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coincidence point theorems in intuitionistic fuzzy normed spaces (IFNS). Our results
generalize and extend recent coupled fixed point theorems in IFNS.
MSC: 47H09; 47H10; 54H25

Keywords: IFNS; t-norm and t-conorm; tripled fixed point; tripled coincidence point

1 Introduction and preliminaries
The evolution of fuzzy mathematics commenced with an introduction of the notion of
fuzzy sets by Zadeh [] in  as a new way to represent vagueness in every day life. The
idea of intuitionistic fuzzy sets (IFS) was introduced by Atanassov []. Saadati and Park
[, ] introduced intuitionistic fuzzy normed spaces (IFNS). For the detailed survey on
fixed point results in fuzzy metric spaces, fuzzy normed spaces and IFNS, we refer the
reader to [–]. Recently coupled fixed point theorems have been proved in IFNS; for de-
tails of these we refer to Gordji [] and Sintunavarat et al. []. More recently, tripled fixed
point theorems have been introduced in partially ordered metric spaces by Berinde [].
In this paper, we have proved tripled fixed point and tripled coincidence point theorems
in IFNS. Now we give some definitions, examples and lemmas for our main results.
For the sake of completeness, we recall some definitions and known results in a fuzzy

metric space.

Definition . ([]) Let X be any set. A fuzzy set A in X is a function with domain X and
values in [, ].

Definition . ([]) A binary operation ∗ : [, ] × [, ] → [, ] is called a continuous
t-norm if
() ∗ is associative and commutative;
() ∗ is continuous;
() a ∗  = a for all a ∈ [, ];
() a ∗ b ≤ c ∗ d whenever a≤ c and b ≤ d.

Example . Three typical examples of continuous t-norms are a ∗ b = min{a,b} (min-
imum t-norm), a ∗ b = ab (product t-norm), and a ∗ b = max{a + b – , } (Lukasiewicz
t-norm).
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Definition . ([]) A binary operation � : [, ]× [, ] –→ [, ] is called a continuous
t-conorm if
() � is associative and commutative;
() � is continuous;
() a �  = a for all a ∈ [, ];
() a � b≤ c � d whenever a ≤ c and b ≤ d.

Example . Two typical examples of continuous t-conorms are a � b =min{a+ b, } and
a � b =max{a,b}.

Using the continuous t-norm and continuous t-conorm, Saadati and Park [] introduced
the concept of intuitionistic fuzzy normed spaces.

Definition . ([]) The -tuple (X,μ,υ,∗,�) is called an intuitionistic fuzzy normed
space (for short, IFNS) if X is a vector space, ∗ and � are continuous t-norm and continu-
ous t-conorm respectively and μ, υ are fuzzy sets on X × (,∞) satisfying the following
conditions: for all x, y ∈ X and s, t > ,

(IF) μ(x, t) + υ(x, t) ≤ ;
(IF) μ(x, t) > ;
(IF) μ(x, t) =  if and only if x = ;
(IF) μ(αx, t) = μ(x, t

|α| ) for all α �= ;
(IF) μ(x, t) ∗ μ(y, s)≤ μ(x + y, t + s);
(IF) μ(x, ·) : (,∞) –→ [, ] is continuous;
(IF) μ is a non-decreasing function on R

+,

lim
t→∞μ(x, t) =  and lim

t→
μ(x, t) = , ∀x ∈ X, t > ;

(IF) υ(x, t) < ;
(IF) υ(x, t) =  if and only if x = ;
(IF) υ(αx, t) = υ(x, t

|α| ) for all α �= ;
(IF) υ(x, t) � υ(y, s) ≥ υ(x + y, t + s);
(IF) υ(x, ·) : (,∞) –→ [, ] is continuous;
(IF) υ is a non-increasing function on R

+,

lim
t→∞υ(x, t) =  and lim

t→
υ(x, t) = , ∀x ∈ X, t > .

In this case (μ,υ) is called an intuitionistic fuzzy norm.

Definition . ([]) Let (X,μ,υ,∗,�) be an IFNS. A sequence {xn} in X is said to be:
() convergent to a point x ∈ X with respect to an intuitionistic fuzzy norm (μ,υ) if for

any ε >  and t > , there exists k ∈N such that

μ(xn – x, t) >  – ε and υ(xn – x, t) < ε, ∀n≥ k.

In this case, we write (μ,υ) – limn→∞ xn = x.
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() Cauchy sequence with respect to an intuitionistic fuzzy norm (μ,υ) if for any ε > 
and t > , there exists k ∈ N such that

μ(xn – xm, t) >  – ε and υ(xn – xm, t) < ε, ∀n,m≥ k.

Definition . ([]) An IFNS (X,μ,υ,∗,�) is said to be complete if every Cauchy sequence
in (X,μ,υ,∗,�) is convergent.

Definition . ([, ]) Let X and Y be two IFNS. A function g : X –→ Y is said to be
continuous at a point x ∈ X if for any sequence {xn} in X converging to a point x ∈ X,
the sequence {g(xn)} in Y converges to g(x) ∈ Y . If g is continuous at each x ∈ X, then
g : X –→ Y is said to be continuous on X.

Examples . Let (X,‖ · ‖) be an ordinary normed space and φ be an increasing and
continuous function from R

+ into (, ) such that limt→∞ φ(t) = . Four typical examples
of these functions are as follows:

φ(t) =
t

t + 
, φ(t) = sin

(
π t

t + 

)
, φ(t) =  – e–t , φ(t) = e

–
t .

Let ∗ and � be a continuous t-norm and a continuous t-conorm such that

a ∗ b ≤ ab≤ a � b for all a,b ∈ [, ].

For any t ∈ (,∞), we define

μ(x, t) =
[
φ(t)

]‖x‖, υ(x, t) =  –
[
φ(t)

]‖x‖, ∀x ∈ X,

then (X,μ,υ,∗,�) is an IFNS.

For further details regarding IFNS, we refer to [].

Definition . ([]) Let (X,μ,υ,∗,�) be an IFNS. (μ,υ) is said to satisfy the n-property
on X × (,∞) if

lim
n→∞

[
μ

(
x,knt

)]np = , lim
n→∞

[
υ
(
x,knt

)]np = ,

where x ∈ X, p > , and k > .

Throughout this paper, we assume that (μ,υ) satisfies the n-property on X × (,∞).

Definition . ([]) Let X be a non-empty set. An element (x, y, z) ∈ X ×X ×X is called
a tripled fixed point of F : X ×X ×X –→ X if

x = F(x, y, z), y = F(y,x, y) and z = F(z, y,x).

Definition . Let X be a non-empty set. An element (x, y, z) ∈ X × X × X is called a
tripled coincidence point of mappings F : X ×X ×X –→ X and g : X –→ X if

g(x) = F(x, y, z), g(y) = F(y,x, y), and g(z) = F(z, y,x).

http://www.fixedpointtheoryandapplications.com/content/2012/1/187
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Definition . ([]) Let (X,�) be a partially ordered set. Amapping F : X×X×X –→ X
is said to have the mixed monotone property if F is monotone non-decreasing in its first
and third argument and is monotone non-increasing in its second argument; that is, for
any x, y, z ∈ X

x,x ∈ X, x � x =⇒ F(x, y, z) � F(x, y, z),

y, y ∈ X, y � y =⇒ F(x, y, z) � F(x, y, z)

and

z, z ∈ X, z � z =⇒ F(x, y, z) � F(x, y, z).

Definition . Let (X,�) be a partially ordered set, and g : X –→ X. A mapping F :
X × X × X –→ X is said to have themixed g-monotone property if F is monotone g-non-
decreasing in its first and third argument and is monotone g-non-increasing in its second
argument; that is, for any x, y, z ∈ X,

x,x ∈ X, g(x) � g(x) =⇒ F(x, y, z) � F(x, y, z),

y, y ∈ X, g(y) � g(y) =⇒ F(x, y, z) � F(x, y, z)

and

z, z ∈ X, g(z) � g(z) =⇒ F(x, y, z) � F(x, y, z).

Lemma . ([]) Let X be a non-empty set and g : X –→ X be a mapping. Then there
exists a subset E ⊆ X such that g(E) = g(X) and g : E –→ X is one-to-one.

2 Main results
Theorem . Let (X,μ,υ,∗,�) be a complete IFNS, � be a partial order on X and suppose
that

a ∗ b ≥ ab and a � a = a (.)

for all a,b ∈ [, ]. Suppose that F : X×X×X –→ X has the mixedmonotone property and

μ
(
F(x, y, z) – F(u, v,w),kt

) ≥ μ(x – u, t) ∗ μ(y – v, t) ∗ μ(z –w, t),

υ
(
F(x, y, z) – F(u, v,w),kt

) ≤ υ(x – u, t) � υ(y – v, t) � υ(z –w, t)
(.)

for all those x, y, z, u, v, w in X for which x� u, y� v, z � w, where  < k < . If either
(a) F is continuous or
(b) X has the following property:

(bi) if {xn} is a non-decreasing sequence and (μ,υ) – limn–→∞ xn = x, then xn � x
for all n ∈N,

(bii) if {yn} is a non-decreasing sequence and (μ,υ) – limn–→∞ yn = y, then yn � y for
all n ∈N,

http://www.fixedpointtheoryandapplications.com/content/2012/1/187
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(biii) if {zn} is a non-decreasing sequence and (μ,υ) – limn–→∞ zn = y, then zn � z for
all n ∈N,

then F has a tripled fixed point provided that there exist x, y, z ∈ X such that

x � F(x, y, z), y � F(y,x, y), z � F(z, y,x).

Proof Let x, y, z ∈ X be such that

x � F(x, y, z), y � F(y,x, y), z � F(z, y,x).

As F(X ×X ×X)⊆ X, so we can construct sequences {xn}, {yn} and {zn} in X such that

xn+ = F(xn, yn, zn), yn+ = F(yn,xn, yn),

zn+ = F(zn, yn,xn), ∀n≥ .
(.)

Now we show that

xn � xn+, yn � yn+, zn � zn+, ∀n≥ . (.)

Since

x � F(x, y, z), y � F(y,x, y), z � F(z, y,x),

(.) holds for n = . Suppose that (.) holds for any n≥ . That is,

xn � xn+, yn � yn+, zn � zn+. (.)

As F has themixed monotone property so by (.) we obtain

⎧⎪⎪⎨
⎪⎪⎩
F(xn, y, z) � F(xn+, y, z), (i)

F(x, yn, z) � F(x, yn+, z), (ii)

F(x, y, zn)� F(x, y, zn+), (iii)

∣∣∣∣∣∣∣∣

which on replacing y by yn and z by zn in (i) implies that F(xn, yn, zn) � F(xn+, yn, zn); re-
placing x by xn+ and z by zn in (ii), we obtain F(xn+, yn, zn) � F(xn+, yn+, zn); replacing
y by yn+ and x by xn+ in (iii), we get F(xn+, yn+, zn) � F(xn+, yn+, zn+). Thus, we have
F(xn, yn, zn)� F(xn+, yn+, zn+), that is, xn+ � xn+. Similarly, we have

⎧⎪⎪⎨
⎪⎪⎩
F(y,x, yn+) � F(y,x, yn), (iv)

F(yn+,x, y) � F(yn,x, y), (v)

F(y,xn+, y) � F(y,xn, y), (vi)

∣∣∣∣∣∣∣∣

which on replacing y by yn+ and x by xn+ in (iv) implies that F(yn+,xn+, yn+) �
F(yn+,xn+, yn); replacing x by xn+ and y by yn+ in (v), we obtain F(yn+,xn+, yn) �

http://www.fixedpointtheoryandapplications.com/content/2012/1/187
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F(yn,xn+, yn); replacing y by yn in (vi), we get F(yn,xn+, yn) � F(yn,xn, yn). Thus, we have
F(yn+,xn+, yn+) � F(yn,xn, yn), that is, yn+ � yn+. Similarly, we have

⎧⎪⎪⎨
⎪⎪⎩
F(zn, y,x)� F(zn+, y,x), (vii)

F(z, yn,x) � F(z, yn+,x), (viii)

F(z, y,xn) � F(z, y,xn+), (xi)

∣∣∣∣∣∣∣∣
which on replacing y by yn and x by xn in (vii) implies that F(zn, yn,xn) � F(zn+, yn,xn);
replacing x by xn and z by zn+ in (viii), we obtain F(zn+, yn,xn) � F(zn+, yn+,xn); replacing
y by yn+ and z by zn+ in (xi), we get F(zn+, yn+,xn) � F(zn+, yn+,xn+). Thus, we have
F(zn, yn,xn)� F(zn+, yn+,xn+), that is, zn+ � zn+. So, by induction, we conclude that (.)
holds for all n≥ , that is,

x � x � x � · · · � xn � xn+ · · · , (.)

y � y � y � · · · � yn � yn+ · · · , (.)

z � z � z � · · · � zn � zn+ · · · . (.)

Define

αn(t) = μ(xn – xn+, t) ∗ μ(yn – yn+, t) ∗ μ(zn – zn+, t). (.)

Consider

μ(xn – xn+,kt) = μ
(
F(xn–, yn–, zn–) – F(xn, yn, zn),kt

)
≥ μ(xn– – xn, t) ∗ μ(yn– – yn, t) ∗ μ(zn– – zn, t)

= αn–(t). (.)

Also,

μ(zn – zn+,kt) = μ
(
F(zn–, yn–,xn–) – F(zn, yn,xn),kt

)
≥ μ(zn– – zn, t) ∗ μ(yn– – yn, t) ∗ μ(xn– – xn, t)

= μ(xn– – xn, t) ∗ μ(yn– – yn, t) ∗ μ(zn– – zn, t)

= αn–(t). (.)

Now,

μ(yn – yn+,kt) = μ
(
F(yn–,xn–, yn–) – F(yn,xn, yn),kt

)
≥ μ(yn– – yn, t) ∗ μ(xn– – xn, t) ∗ μ(yn– – yn, t)

= μ(yn– – yn, t) ∗ μ(xn– – xn, t) ∗ μ(yn– – yn, t) ∗  ∗  ∗ 

≥ μ(yn– – yn, t) ∗ μ(xn– – xn, t) ∗ μ(yn– – yn, t)

∗ μ(zn– – zn, t) ∗ μ(zn– – zn, t) ∗ μ(xn– – xn, t)

≥ αn–(t) ∗ αn–(t). (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/187


Abbas et al. Fixed Point Theory and Applications 2012, 2012:187 Page 7 of 16
http://www.fixedpointtheoryandapplications.com/content/2012/1/187

Using the properties of a t-norm, (.)-(.) and (.), we obtain

αn(kt) = μ(xn – xn+,kt) ∗ μ(yn – yn+,kt) ∗ μ(zn – zn+,kt)

≥ αn–(t) ∗ αn–(t) ∗ αn–(t) ∗ αn–(t)

≥ (
αn–(t)

) ∀n≥ ,

which implies that

αn(t)≥
(

αn–

(
t
k

))

∀n≥ .

Now, repetition of the above process gives

αn(t)≥
(

αn–

(
t
k

))

≥ · · · ≥
(

α

(
t
kn

))n

∀n≥ .

Hence,

μ(xn – xn+, t) ∗ μ(yn – yn+, t) ∗ μ(zn – zn+, t)

≥
[
μ

(
x – x,

t
kn

)]n

∗
[
μ

(
y – y,

t
kn

)]n

∗
[
μ

(
z – z,

t
kn

)]n

. (.)

It is obvious to note that

t( – k)
(
 + k + · · · + km–n–) < t ∀m > n,  < k < .

Consider

μ(xn – xm, t) ∗ μ(yn – ym, t) ∗ μ(zn – zm, t)

≥ μ
(
xn – xm, t( – k)

(
 + k + · · · + km–n–))

∗ μ
(
yn – ym, t( – k)

(
 + k + · · · + km–n–))

∗ μ
(
zn – zm, t( – k)

(
 + k + · · · + km–n–))

≥ μ
(
xn – xn+, t( – k)

) ∗ μ
(
yn – yn+, t( – k)

)
∗ μ

(
zn – zn+, t( – k)

)
∗ μ

(
xn+ – xn+, t( – k)k

) ∗ μ
(
yn+ – yn+, t( – k)k

)
∗ μ

(
zn+ – zn+, t( – k)k

)
∗ · · ·
∗ μ

(
xm– – xm, t( – k)km–n–) ∗ μ

(
ym– – ym, t( – k)km–n–)

∗ μ
(
zm– – zm, t( – k)km–n–)

≥
[
μ

(
x – x, ( – k)

t
kn

)]
∗

[
μ

(
y – y, ( – k)

t
kn

)]
∗

[
μ

(
z – z, ( – k)

t
kn

)]

∗ · · ·

http://www.fixedpointtheoryandapplications.com/content/2012/1/187
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∗
[
μ

(
x – x, ( – k)

t
kn

)]
∗

[
μ

(
y – y, ( – k)

t
kn

)]
∗

[
μ

(
z – z, ( – k)

t
kn

)]

≥
[
μ

(
x – x, ( – k)

t
kn

)]m–n

∗
[
μ

(
y – y, ( – k)

t
kn

)]m–n

∗
[
μ

(
z – z, ( – k)

t
kn

)]m–n

≥
[
μ

(
x – x, ( – k)

t
kn

)]m

∗
[
μ

(
y – y, ( – k)

t
kn

)]m

∗
[
μ

(
z – z, ( – k)

t
kn

)]m

≥
[
μ

(
x – x, ( – k)

t
kn

)]np

∗
[
μ

(
y – y, ( – k)

t
kn

)]np

∗
[
μ

(
z – z, ( – k)

t
kn

)]np

,

where p >  such thatm < np. Since (μ,υ) has the n-property on X × (,∞), therefore

lim
n→∞

[
μ

(
x – x, ( – k)

t
kn

)]np

= ,

lim
n→∞

[
μ

(
y – y, ( – k)

t
kn

)]np

= , and

lim
n→∞

[
μ

(
z – z, ( – k)

t
kn

)]np

= .

Hence,

lim
n→∞μ(xn – xm, t) ∗ μ(yn – ym, t) ∗ μ(zn – zm, t) = . (.)

Next, we show that

lim
n→∞υ(xn – xm, t) � υ(yn – ym, t) � υ(zn – zm, t) = .

Define

βn(t) = υ(xn – xn+, t) � υ(yn – yn+, t) � υ(zn – zn+, t). (.)

Note that

υ(xn – xn+,kt) = υ
(
F(xn–, yn–, zn–) – F(xn, yn, zn),kt

)
≤ υ(xn– – xn, t) � υ(yn– – yn, t) � υ(zn– – zn, t)

= βn–(t), (.)

υ(zn – zn+,kt) = υ
(
F(zn–, yn–,xn–) – F(zn, yn,xn),kt

)
≤ υ(zn– – zn, t) � υ(yn– – yn, t) � υ(xn– – xn, t)
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= υ(xn– – xn, t) � υ(yn– – yn, t) � υ(zn– – zn, t)

= βn–(t), (.)

and

υ(yn – yn+,kt) = υ
(
F(yn–,xn–, yn–) – F(yn,xn, yn),kt

)
≤ υ(yn– – yn, t) � μ(xn– – xn, t) � μ(yn– – yn, t)

= υ(yn– – yn, t) � υ(xn– – xn, t) � υ(yn– – yn, t)

�  �  � 

≤ υ(yn– – yn, t) � υ(xn– – xn, t) � υ(yn– – yn, t)

� υ(zn– – zn, t) � υ(zn– – zn, t) � υ(xn– – xn, t)

≤ βn–(t) � βn–(t). (.)

Using the properties of a t-conorm, (.)-(.) and (.), we obtain

βn(kt) = υ(xn – xn+, t) � υ(yn – yn+, t) � υ(zn – zn+, t)

≤ βn–(t) � βn–(t) � βn–(t) � βn–(t) = βn–(t) ∀n≥ ,

that is,

βn(t)≤ βn–

(
t
k

)
∀n≥ .

Now, repetition of the above process gives

βn(t)≤ βn–

(
t
k

)
≤ · · · ≤

(
β

(
t
kn

))n

∀n≥ ,

which further implies that

υ(xn – xn+, t) � υ(yn – yn+, t) � υ(zn – zn+, t)

≤
[
υ

(
x – x,

t
kn

)]n

�
[
υ

(
y – y,

t
kn

)]n

�
[
υ

(
z – z,

t
kn

)]n

. (.)

Using the properties of a t-conorm, we get

υ(xn – xm, t) � υ(yn – ym, t) � υ(zn – zm, t)

≤ υ
(
xn – xm, t( – k)

(
 + k + · · · + km–n–))

� υ
(
yn – ym, t( – k)

(
 + k + · · · + km–n–))

� υ
(
zn – zm, t( – k)

(
 + k + · · · + km–n–))

≤ υ
(
xn – xn+, t( – k)

) � υ
(
yn – yn+, t( – k)

)
� υ

(
zn – zn+, t( – k)

)
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� υ
(
xn+ – xn+, t( – k)k

) � υ
(
yn+ – yn+, t( – k)k

)
� υ

(
zn+ – zn+, t( – k)k

)
� · · ·
� υ

(
xm– – xm, t( – k)km–n–) � υ

(
ym– – ym, t( – k)km–n–)

� υ
(
zm– – zm, t( – k)km–n–)

≤
[
υ

(
x – x, ( – k)

t
kn

)]
�

[
υ

(
y – y, ( – k)

t
kn

)]

�
[
υ

(
z – z, ( – k)

t
kn

)]

� · · ·
�

[
υ

(
x – x, ( – k)

t
kn

)]
�

[
υ

(
y – y, ( – k)

t
kn

)]

�
[
υ

(
z – z, ( – k)

t
kn

)]

≤
[
υ

(
x – x, ( – k)

t
kn

)]m–n

�
[
υ

(
y – y, ( – k)

t
kn

)]m–n

�
[
υ

(
z – z, ( – k)

t
kn

)]m–n

≤
[
υ

(
x – x, ( – k)

t
kn

)]m

�
[
υ

(
y – y, ( – k)

t
kn

)]m

�
[
υ

(
z – z, ( – k)

t
kn

)]m

≤
[
υ

(
x – x, ( – k)

t
kn

)]np

�
[
υ

(
y – y, ( – k)

t
kn

)]np

�
[
υ

(
z – z, ( – k)

t
kn

)]np

,

where p >  such thatm > np. Since (μ,υ) has the n-property on X × (,∞), we have

lim
n→∞

[
υ

(
x – x, ( – k)

t
kn

)]np

= ,

lim
n→∞

[
υ

(
y – y, ( – k)

t
kn

)]np

= , and

lim
n→∞

[
υ

(
z – z, ( – k)

t
kn

)]np

= .

So,

limn→∞ υ(xn – xm, t) � υ(yn – ym, t) � υ(zn – zm, t) = . (.)

Now, (.) and (.) imply that {xn}, {yn} and {zn} are Cauchy sequences in X. Since X is
complete, there exist x, y and z such that limn→∞ xn = x, limn→∞ yn = y and limn→∞ zn = z.

http://www.fixedpointtheoryandapplications.com/content/2012/1/187
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If the assumption (a) does hold, then we have

x = lim
n→∞xn+ = lim

n→∞F(xn, yn, zn)

= F
(
lim
n→∞xn, limn→∞ yn, limn→∞ zn

)
= F(x, y, z),

y = lim
n→∞ yn+ = lim

n→∞F(yn,xn, yn)

= F
(
lim
n→∞ yn, limn→∞xn, limn→∞ yn

)
= F(y,x, y),

and

z = lim
n→∞ zn+ = lim

n→∞F(zn, yn,xn)

= F
(
lim
n→∞ zn, limn→∞ yn, limn→∞xn

)
= F(z, y,x).

Suppose that the assumption (b) holds then

μ
(
xn+ – F(x, y, z),kt

)
= μ

(
F(xn, yn, zn) – F(x, y, z),kt

) ≥ μ(xn – x, yn – y, zn – z, t),

which, on taking limit as n→ ∞, gives μ(x – F(x, y, z),kt) = , x = F(x, y, z). Also,

μ
(
yn+ – F(y,x, y),kt

)
= μ

(
F(yn,xn, yn) – F(y,x, y),kt

) ≥ μ(yn – y,xn – x, yn – y, t),

which, on taking limit as n → ∞, implies μ(y – F(y,x, y),kt) = , y = F(y,x, y). Finally, we
have

μ
(
zn+ – F(z, y,x),kt

)
= μ

(
F(zn, yn,xn) – F(z, y,x),kt

) ≥ μ(zn – z, yn – y,xn – x, t),

which, on taking limit as n→ ∞, gives μ(z – F(z, y,x),kt) = , z = F(z, y,x). �

Theorem . Let (X,μ,υ,∗,�) be an IFNS, � be a partial order on X, and suppose that

a ∗ b ≥ ab and a � a = a (.)

for all a,b ∈ [, ]. Let F : X × X × X –→ X and g : X –→ X be mappings such that F has
the mixed g-monotone property and

μ
(
F(x, y, z) – F(u, v,w),kt

) ≥ μ(gx – gu, t) ∗ μ(gy – gv, t)

∗ μ(gz – gw, t) and

υ
(
F(x, y, z) – F(u, v,w),kt

) ≤ υ(gx – gu, t) � υ(gy – gv, t)

� υ(gz – gw, t)

(.)
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for all those x, y, z, and u, v, w for which gx� gu, gy � gv, gz � gw, where  < k < . Assume
that g(X) is complete, F(X ×X ×X) ⊆ g(X) and g is continuous. If either
(a) F is continuous or
(b) X has the following property:

(bi) if {xn} is a non-decreasing sequence and (μ,υ) – limn–→∞ xn = x, then xn � x
for all n ∈N,

(bii) if {yn} is a non-decreasing sequence and (μ,υ) – limn–→∞ yn = y, then yn � y for
all n ∈N, and

(biii) if {zn} is a non-decreasing sequence and (μ,υ) – limn–→∞ zn = y, then zn � z for
all n ∈N.

Then F has a tripled coincidence point provided that there exist x, y, z ∈ X such that

g(x)� F(x, y, z), g(y)� F(y,x, y), g(z)� F(z, y,x).

Proof By Lemma ., there exists E ⊆ X such that g : E –→ X is one-to-one and g(E) =
g(X). Now, define a mapping A : g(E)× g(E)× g(E) –→ X by

A(gx, gy, gz) = F(x, y, z) ∀x, y, z ∈ X. (.)

Since g is one-to-one, soA is well defined. Now, (.) and (.) imply that

μ
(
A(gx, gy, gz) –A(gu, gv, gw),kt

) ≥ μ(gx – gu, t) ∗ μ(gy – gv, t)

∗ μ(gz – gw, t),

υ
(
A(gx, gy, gz) –A(gu, gv, gw),kt

) ≤ υ(gx – gu, t) � υ(gy – gv, t)

� υ(gz – gw, t)

(.)

for all x, y, z,u, v,w ∈ E for which gx � gu, gy � gv, gz � gw. Since F has the mixed g-
monotone property for all x, y, z ∈ X, so we have

x,x ∈ X, g(x) � g(x) =⇒ F(x, y, z) � F(x, y, z),

y, y ∈ X, g(y) � g(y) =⇒ F(x, y, z) � F(x, y, z), and (.)

z, z ∈ X, g(z) � g(z) =⇒ F(x, y, z) � F(x, y, z).

Now, from (.) and (.), we have

x,x ∈ X, g(x) � g(x) =⇒ A(gx, gy, gz) �A(gx, gy, gz),

y, y ∈ X, g(y) � g(y) =⇒ A(gx, gy, gz) �A(gx, gy, gz), (.)

z, z ∈ X, g(z) � g(z) =⇒ A(gx, gy, gz) �A(gx, gy, gz).

Hence,A has themixedmonotone property. Suppose that the assumption (a) holds. Since
F is continuous, A is also continuous. By using Theorem ., A has a tripled fixed point
(u, v,w) ∈ g(E) × g(E) × g(E). If the assumption (b) holds, then using the definition of A,
following similar arguments to those given in Theorem ., A has a tripled fixed point

http://www.fixedpointtheoryandapplications.com/content/2012/1/187
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(u, v,w) ∈ g(E) × g(E) × g(E). Finally, we show that F and g have a tripled coincidence
point. Since A has a tripled fixed point (u, v,w) ∈ g(E)× g(E)× g(E), we get

u =A(u, v,w), v =A(v,u, v), w =A(w,u, v). (.)

Hence, there exist u, v,w ∈ X × X × X such that gu = u, gv = v, and gw = w. Now, it
follows from (.) that

gu =A(gu, gv,w) = F(u, v,w),

gv =A(gv, gu, gv) = F(v,u, v), and

gw =A(gw, gu, gv) = F(w, v,u).

Thus, (u, v,w) ∈ X ×X ×X is a tripled coincidence point of F and g . �

Example . LetX =R be a usual normed, ∗ : [, ]×[, ]→ [, ] and � : [, ]×[, ]→
[, ] be defined by

a ∗ b = ab and a � b =max{a,b}.

It is easy to see that ∗ is a continuous t-norm and � is a continuous t-conorm satisfy

a ∗ b ≤ ab≤ a � b for all a,b ∈ [, ].

Let φ :R+ → (, ) be defined by φ(t) = e– 
t for all t ∈ R

+. Now we have (X,μ,υ,∗,�) is an
IFNS, where

μ(x, t) =
[
φ(t)

]|x|, υ(x, t) =  –
[
φ(t)

]|x|, ∀x ∈ X,

such that (μ,ν) satisfies the n-property on X × (,∞).
IfX is endowedwith usual order as x � y⇐⇒ x–y ≤ , then (X,�) is a partially ordered

set. Define mappings F : X ×X ×X –→ X and g : X –→ X by

F(x, y, z) = x – y + z +  and g(x) = x – .

Obviously, F and g both are onto maps so F(X ×X ×X)⊆ g(X). Also, F and g are contin-
uous and F has the mixed g-monotone property. Indeed,

x,x ∈ X, gx � gx =⇒ x – y + z +  ≤ x – y + z + 

=⇒ F(x, y, z) � F(x, y, z).

Similarly, we can prove that

y, y ∈ X, g(y) � g(y) =⇒ F(x, y, z) � F(x, y, z)

and

z, z ∈ X, g(z) � g(z) =⇒ F(x, y, z) � F(x, y, z).
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If x = , y = 
 , z = , then

– = g(x) � F(x, y, z) = –


,




= g(y) � F(y,x, y) =


,

– = g(z) � F(z, y,x) = –


.

So, there exist x, y, z ∈ X such that

g(x)� F(x, y, z), g(y)� F(y,x, y), g(z)� F(z, y,x).

Now, for all x, y, z,u, v,w ∈ X, for which gx� gu, gy� gv, gz � gw, we have

μ(gx – gu, t) ∗ μ(gy – gv, t) ∗ μ(gz – gw, t)

= μ
(
(x – u), t

) ∗ μ
(
(y – v), t

) ∗ μ
(
(z –w), t

)

= μ

(
(x – u),

t


)
∗ μ

(
(y – v),

t


)
∗ μ

(
(z –w),

t


)

= μ

(
(x – u),

t


)
∗ μ

(
(v – y),

t


)
∗ μ

(
(z –w),

t


)

≤ μ

(
x – u + v – y + z –w,

t


)

=
(
e–


t

)|(x–u+v–y+z–w)|

=
(
e–

.
t

)|(x–u+v–y+z–w)|

=
(
e–

.
t

)|(x–u)+(v–y)+(z–w)|

=
(
e–

.
t

)|F(x,y,z)–F(u,v,w)|

= μ
(
F(x, y, z) – F(u, v,w),kt

)

for k = 
. < . Hence, there exists k = 

. <  such that

μ
(
F(x, y, z) – F(u, v,w),kt

)
≥ μ(gx – gu, t) ∗ μ(gy – gv, t) ∗ μ(gz – gw, t)

for all x, y, z,u, v,w ∈ X, for which gx � gu, gy� gv, gz � gw.
Now, for all x, y, z,u, v,w ∈ X, for which gx� gu, gy� gv, gz � gw, we have

υ(gx – gu, t) � υ(gy – gv, t) � υ(gz – gw, t)

= υ(gx – gu, t) � υ(gv – gy, t) � υ(gz – gw, t)

≥ υ(gx – gu + gv – gy + gz – gw, t)

= υ
(

[
(x – u) + (v – y) + (z –w)

]
, t

)

= υ

([
(x – u) + (v – y) + (z –w)

]
,


t
)
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=  –
[
e–


t

]|x–u+v–y+z–w|

=  –
[
e–

.
t

]|(x–u+v–y+z–w)|

=  –
[
e–

.
t

]|(x–u)+(v–y)+(z–w)|

=  –
[
e–

.
t

]|F(x,y,z)–F(u,v,w)|

= υ
(
F(x, y, z) – F(u, v,w),kt

)

for k = 
. < . Hence, there exists k = 

. <  such that

υ
(
F(x, y, z) – F(u, v,w),kt

)
≤ υ(gx – gu, t) � υ(gy – gv, t) � υ(gz – gw, t)

for all x, y, z,u, v,w ∈ X, for which gx � gu, gy� gv, gz � gw.
Therefore, all the conditions of Theorem . are satisfied. So, F and g have a tripled

coincidence point and here (  ,

 ,


 ) is a tripled coincidence point of F and g .
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