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Abstract

In this paper, motivated and inspired by Ceng and Yao (J. Comput. Appl. Math.
214(1):186-201, 2008), liduka and Takahashi (Nonlinear Anal. 61(3):341-350, 2005),
Jaiboon and Kumam (Nonlinear Anal. 73(5):1180-1202, 2010), Kim (Nonlinear Anal.
73:3413-3419, 2010), Marino and Xu (J. Math. Anal. Appl. 318:43-52, 2006) and Saeidi
(Nonlinear Anal. 70:4195-4208, 2009), we introduce a new iterative scheme for finding
a common element of the set of solutions of a mixed equilibrium problem for an
equilibrium bifunction, the set of fixed points of an infinite family of nonexpansive
mappings, the set of solutions of some variational inequality problem, and the set of
fixed points of a left amenable semigroup {T; : t € S} of nonexpansive mappings with
respect to W-mappings and a left reqular sequence {u,} of means defined on an
appropriate space of bounded real-valued functions of the semigroup S. Furthermore,
we prove that the iterative scheme converges strongly to a common element of the
above four sets. Our results extend and improve the corresponding results of many
others.
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1 Introduction

Let H be a real Hilbert space, let C be a nonempty closed convex subset of H, and let
Pc be the metric projection of H onto C. Let ¢ : C — R be a real-valued function and
0 : C x C — R be an equilibrium bifunction with 6(u, ) = 0 for each u € C. We consider
the mixed equilibrium problem (for short, MEP) is to find x” € C such that

MEP: Q(x*,y) +o() - (p(x) >0, VyeC.

In particular, if ¢ = 0, this problem reduces to the equilibrium problem (for short, EP),
which is to find x” € C such that

EP:6(x,y) >0, VyeC.

Denote the set of solutions of MEP by Q2. The mixed equilibrium problems include fixed
point problems, optimization problems, variational inequality problems, Nash equilib-
rium problems and the equilibrium problems as special cases.
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A mapping T of C into itself is called nonexpansive if
1 Tx = Tyl < llx = yll,

for all x,y € C. We denote by F(T) the set of fixed points of 7. It is well known that F(T)
is closed convex. Recall that a mapping f : C — C is called contractive if there exists a
constant « € (0,1) such that

[f ) -fO)] < el =yl
forallx,y € C.
In 2000, Moudafi [1] introduced the viscosity approximation method for nonexpansive

mappings (see [2] for further developments in both Hilbert and Banach spaces).

Starting with an arbitrary initial xy € H, define a sequence {x,} recursively by
X1 = 1 —a,)Tx, + o f(x,), n>0, (1.1)
where «, is a sequence in (0,1). It is proved that under certain appropriate conditions

imposed on {o,}, the sequence {x,} generated by (1.1) strongly converges to the unique

solution x” in F(T) of the variational inequality
((f -Dx’,x- x) <0, VxeF(T)
(see [1, 2]).
Let A be a strongly positive bounded linear operator on H, that is, there exists a constant
y > 0 such that

(Ax,x) > pllx|1%,

forallx € H.
In 2006, Marino and Xu [3] considered the following iterative method:

xni1 = ([ — 0nA) Ty + anyf(%a), 120, 1.2)
where 0 < y < g, « is a contraction coefficient of f. They proved that if the sequence
{a,} satisfies appropriate conditions, then the sequence {x,} generated by (1.2) converges
strongly to the unique solution of the variational inequality

((A_Vf)x*’x_szoy XGF(T),

which is the optimality condition for the minimization problem

1
in —(Ax,x) — h(x),
xgy(r%ﬂ( x, %) — h(x)

where / is a potential function for yf (i.e., /' (x) = yf(x), for x € H).
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A set-valued mapping T : H — 2/ is called monotone if forallx,y € H,f € Txand g € Ty
imply (x — y,f —g) > 0. A monotone mapping T : H — 2! is maximal if its graph G(T)
is not properly contained in the graph of any other monotone mapping. It is known that
a monotone mapping 7 is maximal if and only if for (x,f) € H x H, (x —y,f —g) > 0 for
every (y,¢) € G(T) implies f € Tx. Let A be a monotone mapping of C into H, and let N¢v

be the normal coneto C atve C, i.e.,
Ncv = {WEH: (v—u,w)>0,Vu € C}
and define

Av+ Ncv, ifveC,
7 ifvéecC.

V=

Then T is maximal monotone, and 0 € 7v if and only if v € VI(C, A); see [4].
In 2005, for finding an element of F(T) N VI(C,A), liduka and Takahashi [5] proposed

a new iterative sequence: x; =x € C and
Xpa1 = X + (1 — ;) TPc(x, — AyAx,), n>1 (1.3)

and obtained a strong convergence theorem in a Hilbert space.

Let {T,} be a sequence of nonexpansive mappings of C into itself, and let {1,} be a se-
quence of nonnegative numbers in [0,1]. For each # > 1, define a mapping W, of C into
itself as follows:

un,n+1 = 1,
Un,n = )\n Tnun,n+1 + (1 - )\n)lx

Un,n—l = )\n—l Tn—l Un,n + (1 - )\n—l)l:

Upi = M Tl + (1= 21, (14)

Up-1 = M T Uy + (1= A1),

Uy = o Toll,z + (1= )1,
Wn = Un,l = )»1 TlL[,,,z + (1 - )\1)1
Such a mapping W, is called the W-mapping generated by T3, T5,..., T, and A1, Ay, ..., Ay

The concept of W-mapping was introduced in [6, 7] and [8].
In 2008, Ceng and Yao [9] introduced the hybrid iterative scheme

x0 € C arbitrary,
OWmx) +@(x) — o) + %(I(/(,)’n) = K'(xn),n(x,9)) 20, VxeC, (1.5)
Xn+l = anf( ann) + ,ann +Vn Wn_ym
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where K’(x) is the Fréchet derivative of K at x. They proved the sequences {x,} and {y,}
generated by the hybrid iterative scheme (1.5) converge strongly to a common element of
the set of solutions of MEP and the set of common fixed points of finitely many nonex-
pansive mappings.

Recall the mapping B is said to be relaxed (&, v)-cocoercive, if there exist two constants
&,v > 0 such that

(Bx—By,x—y) > —&|Bx—By|* + v|x - ylI>, Vx,yeC.

This class of mappings has been considered by many authors; for example, [10, 11].
In this paper, motivated and inspired by Ceng and Yao [9], liduka and Takahashi [5],
Jaiboon and Kumam [12], Kim [13], Marino and Xu [3] and Saeidi [14], we introduce a

new iterative scheme:

x0 € C arbitrary,

0(2n, %) + 9(6) = 9(2n) + 1 (K" (2) = K (%), 11(%,2,)) = 0,
Vn= Q=) + Vu Ty, WuPcl — 8,B)zn

%p1 = 0V (Wikn) + Buxn + (1= Bu)l — 0nA) Ty, Wyyn,

(1.6)

forallx € C, n > 0, for finding a common element of the set of solutions of a mixed equi-
librium problem for an equilibrium bifunction, the set of fixed points of an infinite family
of nonexpansive mappings, the set of solutions of some variational inequality problem and
the set of fixed points of a left amenable semigroup {77 : ¢ € S} of nonexpansive mappings
with respect to W-mappings and a left regular sequence {i,} of means defined on an ap-
propriate space of bounded real-valued functions of the semigroup S. Furthermore, we
prove that the proposed iterative scheme (1.6) converges strongly to a common element
of the above four sets. Our result extends and improves the corresponding results of many

others.

2 Preliminaries

Let S be a semigroup. We denote by B(S) the space of all bounded real-valued functions
defined on S with supremum norm. For each s € S, we define the left and right translation
operators /s and r; on B(S) by

(Uf) (&) =f(st) and (rf)() =f(Ls)
for each ¢ € S and f € B(S), respectively. Let X be a subspace of B(S) containing 1. An
element  in the dual space X of X is said to be a mean on X if ||| = (1) =1. For s € S,

we can define a point evaluation & by 5s(f) = f(s) for each f € X. It is well known that u is
a mean on X if and only if

inff(s) < u(f) < S“Ef (s)

for each f € X.
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Let X be a translation invariant subspace of B(S) (i.e., [l X C X and r,X C X for eachs € S)

containing 1. Then a mean p on X is said to be left invariant (resp. right invariant) if

wllf) = u(f)  (resp. u(r) = u(f))

for each s € S and f € X. A mean u on X is said to be invariant if ;1 is both left and right
invariant [15-17]. X is said to be left (resp. right) amenable if X has a left (resp. right) invari-
ant mean. X is amenable if X is left and right amenable. Moreover, B(S) is amenable when
S is a commutative semigroup or a solvable group. However, the free group or semigroup
of two generators is not left or right amenable. In this case, we say that the semigroup S
is an amenable semigroup (see [18, 19]). A semigroup S is left reversible if S has the finite
intersection property for right ideals. Every left reversible semigroup S, WAP(S) the space
of weakly almost period functions on S has a left invariant mean. If S is both left and right
reversible, then WAP(S) has an invariant mean. Each group or amenable semigroup is left
and right reversible (see [20, 21]).
A net {11y} of means on X is said to be asymptotically left (resp. right) invariant if

lim(pa ()~ a()) =0 (resp. lim(ua(rf) = 1a(f) =0)

for each f € X and s € S, and it is said to be left (resp. right) strongly asymptotically invari-
ant (or strong regular) if

tim £t~ | =0 (resp tim] rae s =0)

for each s € S, where [ and r, are the adjoint operators of ; and r;, respectively. Such
nets were first studied by Day in [18] where they were called weak™ invariant and norm
invariant, respectively.

It is easy to see that if a semigroup S is left (resp. right) amenable, then the semigroup
S =SU{e}, wherees' =s'e =s' foralls’ € S, isalso left (resp. right) amenable and conversely.

Let S be a semigroup, and let C be a closed and convex subset of H. Let F(T) denote
the fixed point set of 7. Then J = {7 : s € S} is called a representation of S as nonexpan-
sive mappings on C if Ts is nonexpansive with T, = I and T = T,T; for each s,t € S (cf.
[22-30]). We denote by F(3) the set of common fixed points of {7 : s € S}, i.e.,

FQ)=()E(T)=(|weC: T =x}.

seS seS

Lemma 2.1 ([19, 31]) Let S be a semigroup and C be a closed convex subset of a Hilbert
space H. Let I = {T : s € S} be a nonexpansive semigroup on C such that {Tu :t € S} is
bounded for some u € C, let X be a subspace of B(S) such that 1 € X and the mapping
t— (Twx,y) is an element of X for each x € C andy € H, and |1 be a mean on X. If we write
T, instead of [ Tyx du(t), then the following hold:
(i) Ty is a nonexpansive mapping from C into itself,
(ii) T,x =x foreach x € F(J),
(iii) Tux eco{Twx:t e S} foreach x € C, where TOA is the closed convex hull of A.
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Let C be a nonempty subset of a Hilbert space H and T : C — H be a mapping. Then T
is said to be demiclosed at v € H if, for any sequence {x,} in C, the following implication
holds:

xy—~ueC and Tx,—v imply Tu=v,
where — (resp. —) denotes strong (resp. weak) convergence.

Lemma 2.2 ([32]) Let C be a nonempty closed convex subset of a Hilbert space H and

suppose that T : C — H is nonexpansive. Then, the mapping I — T is demiclosed at zero.

Let C be a nonempty subset of a normed space E, and let x € E. An element y, € C is

said to be the best approximation to x if

”x = Yo ” = d(xr C)’
where d(x, C) = inf)ec |lx — y||. The number d(x, C) is called the distance from x to C. Let
H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be a nonempty
closed convex subset of H. Then, for any x € H, there exists a unique nearest point in C,
denoted by Pcx, such that

lx = Pex|l < [lx—yll, VyeC.

The mapping Pc is called the metric projection of H onto C. It is well known that Pc is a

nonexpansive mapping of H onto C and satisfies
(¥~ ,Pcx ~ Pcy) = ||Pcx ~ Peyl?

for every x,y € H. Moreover, Pcx is characterized by the following properties: Pcx € C
and forallxe H,y € C,

(x — Pcx,y — Pcx) <0 (2.1)
and

lle = 11 = [l ~ Pal|* + |y — Pex|.
It is easy to see that the following is true:

ueVI(C,B) <+= u=Pc(u—-ABu), Ar>0. (2.2)

In this paper, for solving the mixed equilibrium problems for an equilibrium bifunction
0:C x C — R, we assume that 0 satisfies the following conditions:
(E1) O(x,x) =0 forallx € C;
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(E2) 6 is monotone, i.e., 0(x,y) + 0(y,x) <0 for all x,y € C;
(E3) foreachx,y,ze C,

ltlg)le(tz +(1- t)x,y) <6(x,9);

(E4) for each x € C, the function y — 6(x, y) is convex and lower semicontinuous.

Definition 2.1 (1) Let F: C — H and 1 : C x C — H be two mappings. Then F is called:

(i) n-monotone if
(F(x) - F(y), r)(x,y)) >0, VxyeC,
(ii) n-strongly monotone with constant o if there exists a constant « > 0 such that
(F(x) - FO),n(x9) = allx-yI?* VxyeC,
(iil) Lipschitz continuous with constant B if there exists a constant 8 > 0 such that
|F@) - FO)| < Bllx—=yll. VayeC.
If n(x,y) =x —y, for all x,y € C, then the definitions (i) and (ii) reduce to the
definition of monotonicity and strong monotonicity, respectively.
(2) A mapping n: C x C — H is called Lipschitz continuous with constant A if there
exists a constant A > 0 such that

@] <rlx-yl, vxyeC.

(3) A differentiable function K : C — R on a convex set C is called:

(i) n-conmvex [33]if
K(y) - K(x) = (K'(x),n(3,%)), VxyeC,

where K’(x) is the Fréchet derivative of K at «,

(i) n-strongly convex with constant o [34] if there exists a constant o > 0 such that

K(y) - K(x) - (K'(x), n(y,0)) = ~lx=y|*>, Vx,yeC.

N Q

(4) A mapping F : C — R is called sequentially continuous at x, [35], if F(x,) — F(xo)
for each sequence {x,} satisfying x,, — x¢. F is called sequentially continuous on C if it is

sequentially continuous at each point of C.

Lemma 2.3 ([9]) Let K : C — R be differentiable n-strongly convex with a constant o > 0,
and let n: C x C — H be a mapping such that n(x,y) + n(y,x) = 0 for all x,y € C. Then
K':C — H is n-strongly monotone with constant o > 0.

Page 7 of 31
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Lemma 2.4 ([36]) A Hilbert space H is said to satisfy Opial’s condition if for each sequence
{x,} in H, the condition x, — x implies that

liminf ||x, — x| < liminf|x, — y||
n— 00 n— 00
forally e Hwithy #x.

Lemma 2.5 Let H be a real Hilbert space. Then
ll+ 11> < llcl® + 2¢p,2 + ),
forallx,y e H.

Let C be a nonempty closed convex subset of a real Hilbert space H, ¢ : C — R be a
real-valued function and 8 : C x C — R be an equilibrium bifunction. Let r be a positive
parameter. For a given point x € C, consider the auxiliary problem for the mixed equilib-
rium problem (for short, MEP(x, r)) which consists of finding y € C such that

00:2) + 9()—p0) + - (K'0) - K'Whn(a)) 20, VzeC,

where 1 : C x C — H and K’(x) is the Fréchet derivative of a functional K : C — R at x. Let
S, : C — C be the mapping such that for each x € C, S,(x) is the solution set of MEP(x,r),
iLe.,

Se(x) = {y €C:0(3,2) +9(2) - 9(y)
+ %(K/(y) -K'(x),n(z,y)) > 0,Vz € C} (2.3)

forallx € C.

We first need the following important and interesting result.

Lemma 2.6 ([9]) Let C be a nonempty closed convex subset of a real Hilbert space H, and
let ¢ : C — R be a lower semicontinuous and convex functional. Let 6 : C x C — R be an
equilibrium bifunction satisfying conditions (E1)-(E4). Assume that
(i) n:C x C— H is Lipschitz continuous with constant A > 0 such that
@ n(xy) +n(,x)=0,Vx,yeC,
(b) for each fixed y € C, x +— n(y,x) is sequentially continuous from the weak
topology to the weak topology,
(i) K:C — R is n-strongly convex with constant ¢ > 0 and its derivative K’ is
sequentially continuous from the weak topology to the strong topology,
(iii) for each x € C, there exist a bounded subset Dy € C and z, € C such that for any
ye C\D,,

00,20 + (20 ~90) + 1 (K'0) =K (0, n(z0.9)) <.

Then the following hold:
(1) S, is single-valued,;
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(2) S, is a firmly nonexpansive-type mapping, i.e., for all x,y € H,
I1S,% = Syll* < (S = Sy, = 9);

(3) () S, is nonexpansive if K' is Lipschitz continuous with constant v > 0 such that
o > Av;
(i) (K'(x1) = K'(%2), n (w1, 2)) = (K" (1) = K'(u2), n(wa1, u2)), ¥(x1,%2) € C x C, where
u;=8,(x;),i=12;
(4) F(S,) =<
(5) Q isa closed and convex subset of C.

_ l=?

Remark 2.1 In particular, from Lemma 2.6, whenever K(x) 5

and n(x,y) =x —y for
each (x,y) € C x C, then S, is firmly nonexpansive, i.e.,

(o1 — 22, S(x1) = Sp(w2)) = || S (1) —Sr(xz)Hz; V(x1,x2) € C x C.
We need the following results concerning the W-mapping W,,.

Lemma 2.7 ([37]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
Ty, T, ... be nonexpansive mappings of C into H such that (5, F(T}) is nonempty, and let
A, Ag,... be real numbers such that 0 < A; < b <1 for any i € N. Then, for every x € C and
k €N, the limit lim,,_, o U, xx exists.

Using Lemma 2.7, one can define a mapping W of C into H as
Wx = lim W,x = lim U,;x,
n—0o0 n— 00

for every x € C.

Remark 2.2 ([37]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
Ti, Ts, ... be nonexpansive mappings of C into H such that ()5, F(T}) is nonempty, and let
A1,A2,... be real numbers such that 0 < 4; < b <1 for any i € N. Then F(W) = ("5, F(T).

Remark 2.3 ([38]) Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T, Ts, ... be nonexpansive mappings of C into H such that (5, F(T;) is nonempty. If
{x,} is an arbitrary bounded sequence in C, then we have

lim | Wx, — W,x,|| =0.
n—00

Lemma 2.8 ([39]) Let {x,} and {z,} be bounded sequences in a Hilbert space H and let
{B.} be a sequence in [0,1] with 0 < liminf,_, o, B, and limsup,,_, ., B, < 1. Suppose

Xni1 = Bun + (1= )z,
for all integers n > 0 and

limsup(llznﬂ = zyll = 11 _xn”) <O0.

n—0o0

Then lim,,_, o ||z, — %, = 0.
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Lemma 2.9 ([3]) Assume A is a strongly positive linear bounded operator on a Hilbert
space H with a coefficient y >0 and 0 < p < ||A||™L. Then ||I - pA| <1-py.

Lemma 2.10 ([2]) Assume {a,} is a sequence of nonnegative real numbers such that
Apsl = (1 - bn)an + bncm

where {b,} is a sequence in (0,1) and {c,} is a sequence in R such that
@) X5 bn =00,
(2) limsup,_, ¢y <0 o0r > oo |bycy| < 00.

Then

lim a, =0.

n—0o0
3 Main result: strong convergence theorems
In this section, we deal with the strong convergence of hybrid viscosity approximation
scheme (1.6) for finding a common element of the set of solutions of a mixed equilibrium
problem, the set of fixed points of an infinite family of nonexpansive mappings, the set
of fixed points of a left amenable semigroup of nonexpansive mappings and the set of
solutions of variational inequality in a Hilbert space.

Theorem 3.1 Let S be a semigroup, I = {1, : t € S} be a nonexpansive semigroup on H
such that F(JI) # 0, X be a left invariant subspace of B(S) such that 1 € X, and the function
t— (Twx,y) is an element of X for each x,y € H. Let {{1,,} be a left strong regular sequence of
means on X such that lim,_, || ty+1 — 1ull = 0. Let C be a nonempty closed convex subset
of a real Hilbert space H and {T;} be an infinite family of nonexpansive mappings from C
into itself such that T;(F(I) N Q) C F(3) for each i € N. Let ¢ : C — R be a lower semicon-
tinuous and convex functional. Let 6 : C x C — R be an equilibrium bifunction satisfying
conditions (E1)-(E4), and let Ty, T5, ... be an infinite family of nonexpansive mappings of
Cinto H. Let r > 0, y > 0 be two constants. Let f be a contraction of C into itself with a
coefficient a € (0,1), and let A be a strongly positive bounded linear operator with a coeffi-
cient y >0 such that 0 <ay <y <ay +1. Let B: C — H be an L-Lipschitzian and relaxed
(&, v)-cocoercive mapping. Suppose that F = (-, F(T,)NF(I)NQNVI(C,B) #¥. Let {a,},
{Bn} and {y,} be sequences in [0,1] such that a, + B, <1, and let the sequence {8,,} C (0, 00).
Assume that:

(C1) n:C x C— H is Lipschitz continuous with constant A > 0 such that
(@) nlx,y) +n(y,x)=0,Yx,y€C,

(b) foreach fixed y € C, x — n(y,x) is sequentially continuous from the weak
topology to the weak topology,

(C2) K:C — R is n-strongly convex with constant o > 0 and its derivative K' is not only
sequentially continuous from the weak topology to the strong topology, but also
Lipschitz continuous with constant v > 0 such that o > Av,

(C3) for each x € C, there exist a bounded subset D, C C and z, € C such that for any
y€ C\ Dy,

1
0(y, ) + 9(zx) — p(y) + ;(K/(y) - K'(x),1(2:,9)) < 0,
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(C4) (1) limye, =0, Zf,io Oy =00,
(ii) 0 <liminf,_, B, <limsup,_, . B. <1,
0 <liminf, oy, < limsup,,, . ¥» <1,
(iil) limy_ o0 |8441 — 84| =0, @ <68, < b forsomea, bwith0 <a <b <
(iv) 1imy,— o0 [Vue1 — ¥ul = 0,

(C5) liminf,_, o 1y, > 0 and lim,_, o |Fy41 — ¥u| = 0.

200-£L2)
2

Given xo € C is arbitrary, then the sequences {x,}, {y,} and {z,} generated iteratively by
(1.6) converge strongly to x € F, where 8" = Pr(yf + (I — A))x", which solves the following

variational inequality:
((yf—A)x*,x—x*> <0, VxelF.
Lemma 3.1 [|(1- B - a,All <1— By —any.

Proof Since lim,_,» @, = 0, we may assume, without loss of generality, that o, < (1 —
B.)IIA|. Since A is a linear bounded self-adjoint operator on H, we have

IA|l = sup{|(Ax,x)| :x € H, |lx]| = 1}.
Observe that

(A= B - pA)x,x) = 1 - By — (A%, x)
>1-B—a,lAll

Z 07
which shows that (1 - 8,)I — «,A is positive. By Lemma 2.9, we have
”(l_ﬁn)l_anA” <1-B,-any. O

Lemma 3.2 Let B be an L-Lipschitzian and relaxed (£, v)-cocoercive mapping and 8, <

2
%, then

|~ 8,B)x ~ (I~ 8,B)y| < llx 1,
forallx,y e C.

Proof Since B is an L-Lipschitzian and relaxed (§,v)-cocoercive mapping and §, <

2(v-£L%
“L—i% we have

|t = 8,B)x ~ (1 - 8,B)y |
= [l —ylI> - 28,(Bx — By,x - y) + 5,.||Bx - By|>
< |l = ylI* = 28, (- [1Bx = Byl|* + vljx — y|I*) + 5,L%[|x — y||?
< llx = yI* +28,EL% o — y11* = 28, | — y1|* + 87L7 12 — y|>

= (1+28,EL% = 28,v + 82L%) |lx — yII* < llx - ylI%

Page 11 of 31
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for all x,y € C. Thus,
|7 = 8,B)x~ (I - 8,B)y| < llx~ 1

forallx,y € C.

Lemma3.3 |z, —pll < llx, —pl, Vp € F.

Proof From (2.3), we note that z,, = S, %,. From Lemma 2.6, we get
Iz — pll < 1S5, %0 = Srpll < %0 — plI

forallp e F.

Lemma 3.4 {x,}, {(y.}, {zn}, (Wuyn}, {(Wux,} and {f(W,x,)} are all bounded.

Page 12 of 31

Proof Letp € F. Since p € VI(C, B), from (2.2), we get p = Pc(I — §,B)p. From Lemma 2.1,

Lemma 3.3 and W,, P¢ being nonexpansive, we have

Iy =Pl = | Q= y)%u + ¥u T, WaPc — 8,B)zs — p||
< (A= y)l%n = pll + V|| Ty, WP - 8,B)z, - p|
< (L= y)lxn = pll + v | = 8,B)z, — (I - ,B)p||
< A= y)llxu =2l + vullz, - pll

< lxn —pll.
From (1.6) and Lemma 3.1, we obtain

%1 = pll
= | etny f (W) + Bun + (A = Bl = uA) Ty, Wy — |
= ||an(vf (W) — Ap) + Bu(%n — p)
+ (@ = B = AN (T, Woyn = )|
< o] Y (Wo) = Ap || + Bulln — pll + | = B - cuA| Iy - pl
< (1= Bu= ) n =Pl + Bullxu — pll
+ any [f(Won) =f ()| + | v/ () - Ap|
< (L= 0n ) %n = pll + ety allxs —pll + o] vf(p) - Ap|

)llyf(p)—Apll
Y —va

’

= (L-au(7 —y)) % = pll + aun(y - yer

for all » > 0. It follows by mathematical induction that

lvf(p) - Apl
%001 = pIl < maX{ %0 = plI, /@) - 4pl ],
V-va

n>0.

(3.1)

Therefore, {x,} is bounded. We also deduce that {y,}, {z,}, {(Wuy,}, {(Wux,} and {f (W,x,,)}

are all bounded.

O
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Lemma 3.5 Let the mapping W, be generated iteratively by (1.5). If {w,} is a bounded
sequence in H, then

@) limy— o0 Wy = Wyl = 0.

(2) im0 | Ty, 00 — Tpyy0ull = 0.

Proof (1) We shall use M to denote the possible different constants appearing in the fol-
lowing argument. From (1.5), since T; and U,,; are nonexpansive, we have

[ Wi1@n = Wowull = | M Tilpipon + (1 = M)wy — 2 Tillyawn — (L= Aoy
< M U200 = Unpoy|
= M| A2 Tolpirz0n + (1= 2a)w, — A Tolyzwn — (1= Ao)wy |
< M| U300 — Upzwnll

< )\1)‘-2 e }\n||un+1,n+1wn - Un,n+1wn”
n
<M[ ]
i=1
which implies that
lim ” Winwy — ann” =0.
n— 00
(2) Let g € F(). Then || Tyw, — ql| < ||, —¢||. Also, we have
I Tswnll < llwn —qll + liq]l

for all s € S and n > 0. Since {w,} is bounded and lim,,—, o || £n+1 — tu|l = 0, we get

sup{ (T, 0n = Tpyon 2| : |12l =1}

” TMn+1w" - Tl‘«n Wn ”

sup{ | a1 (8){ Tswn, 2) — n(8){ Ty, 2) | : NIzl = 1}

< tnsr = pnll - sup [ Tsw, |l
seS
< ltnss = iall(lwn =gl + ligll)
— 0. O

Lemma 3.6 lim,,, o [|%541 — %u | = im0 12441 — 2l = 0.

Proof Define a sequence {u,} by

Xyl = Bukn + (1 - ,Bn)un
for all n > 0. Observe that from the definition of u,, we get

u —u = Xn+2 — ,Bn+1xr1+1 _ KXn+l — ,ann
e " 1- ﬁml 1- ,Bn
_ anHVf(WnJrlan) + (1= B - amlA)Tp.ml Woi1Yna

1- :3n+1
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_ anyf(ann) + ((1 - ,Bn)l - anA)T;L,, Wdn
1- :Bn

o o
= s Vf( Wos1%n41) — —nl/f( Woaxn) + Tﬂn+1 Wos1Yne
1- ,Bn+1 1- ﬂn

T Wy + —2 AT, Wiy — —L AT, Wiy

- n 1 2 n -1 a0 n+ 1 1
wn Wnln 1-8, wn nYn 1-8, Hnsl WnlYn+
(07788 |

= (Vf( Wn+1xn+1) - AT/J.,H.l Wn+1yn+1)
1- :3n+1

Ay

(AT;LW Wnyn - Vf( ann)) + T;Ln+1 Wn+1yn+l

n

- Tﬂn+1 Wn+1y" + TMVH] WVH'lyn - Tﬂn W”yn (32)

From (2.3), we note that z,, = S,,,%, and 2,1 = S;,,, %111, we have

Tn+l

0(2n,%) + 9(x) — 0(2,) + ri(K/(zn) = K'(4),1(%,24)) = 0, (3.3)
0(zn+1,%) + 9(x) — @(2441) + rl ) <]<,(Zn+1) - K'(%41), n(x, Zn+1)) >0 (3.4)

for all x € C. Putting x = z,,,1 in (3.3) and x = z,, in (3.4), we have

e un) + 9len + 1) = plen) + (K (23) =K (i) 1zt ) 2 0, (3.5)
0 (2t 2n) + 9(2n) = () + — (K 00) = K () e 20) 2 0 (3.6)

After multiplying (3.5) and (3.6) by r, and adding them together, we obtain

'n

<77(Zn+1r 24), K'(2,) = K' (%) — (I(/(Znﬂ) - K/(xn+l))> > 0.

n+l

Hence,

<77(Zn+lr Zy), I</(Zn) - I(/(Z;ﬁl) + I</(xn+1) - I</(xn)

. (1 I )(K/(zM) —1<’<xn+1>)> z0.

Tn+l

Then, by Lemma 2.3, we have

Tn+l

<n(zn+1,zn),1<’(xn+1) —K'(x) + (1 S )(I</(Zn+1) —I</(xn+1))>
> (1(2n 2n1), K (2n) = K'(2011)) = 0 |20 =zt II°,
and hence
>

o ||Zn+1 —Zp

< 1m0 (uz«(xml) K + (1 - —) 1K er) = K (o) u)

T'n
< Mz = zall <V”xn+1 —Xull + <1 - )v”ZnJrl — Xn+l ”)

Tnyl
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Without loss of generality, we assume that there exists a real number k such thatr, > k>0

for all n > 0, we have

Av v1
”Zn+1 - Zn” = — ||xn+l _xn” +—— |rn+1 - rn| ||Zn+1 _xn+1||
o ok

V
= ||xn+1 _xn” + |rn+1 —Ty |M/r (37)
ok

where M’ = sup{||z,, — x,| : n > 0}.
Setting v,, = Pc(I — 8,B)z, for all n > 0, from Lemma 3.2, we have

”Vn+1 - Vn” = ”PC(I - 8n+lB)Zn+1 _PC(I - 8nB)Zn ||
= || (1 - 6;4+IB)Zn+1 - (1 - ‘SnB)Zn ||

= || (1 - 8n+lB)Zn+1 - (1 - 5n+lB)Zn || + H (6n+1 - 8n)an ||

=< ||Zn+1 - Zn” + |8n+1 - 8n|”an”
From (3.7), we get

” Tﬂml Wn+1vn+1 - Tlln ann ”
= ” T, Wn+1Vn+1 - Tltml Wn+1vn” + ” T#ml Wn+lvn - T;l.,,Hl ann”

Mn+l

+ T/l. Wav, — T;L,, Woavall

n+l

< et =Vl + 1 W1V = Wobill + 1 Ty Wiats = Ty Wit
< Nzme1 = Zull + 1801 = 841 1Bz

WitV = Wit + 1 Ty Wi = T Wil
< oer — 2l + Uikm — I M+ 8,1 — 8,11 Bz

+ | WiV — Wyvall + |l T#ml W, — T;Ln Wauvall- (3.8)
Also, we have

1Yns1 = Yull
= | = Vs )1 + Vis1 Tyaos Worst Vit = (1= YD % = Y Ty WiV |
= @ = Y1) @t = %) + (Vi = Vi1
+ Vet = V) Ty WV + V(T Wori1 Vst = Ty, Wovi) |
< A = Vs 11 = %l + [V = Vusa | 1%

+ | Vie1 — Valll T,uy, Wavill + Vsl Tﬂn+1 WiV — T;Ln Wavnll. (3.9)
From (3.2), we obtain

122141 = 2]l = %41 — Xl

< (| Wit | + VAT Wiy
1- /3n+1

Page 15 of 31
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[o7%
+
1- IBn
+ Tun+1 Wis1Yni1 — Tun+1 W1l

(IAT ., Woyall + | vf (W) |)

+ Tun+1 Woyn — T//.n Wnyn” — %1 — Xl

= ﬂ(” Vf(Wm-lerl)H + ”AT”"”I Wn+1yn+1”)
1- ﬁn+1

oy

1= g, (AT, Wzl + |vf (Wxa)])

+

+ [Yne1 _yn” + T#ml W1y — Tun WnynH — %1 — %l

Combining (3.8), (3.9) and (3.10), we obtain

”un+1 - un” - ||xn+l _xn”
<2 (|l f (W) | + AT Woeayma )
1- ﬁn+l
+ =2 (IAT,, Woyall + | vf (Wha) )
1 - :Bn

= (1 - yn+l)”xn+l _xn” + |yn - yn+1| ”xn”

+ V1 = Valll Tun Wavall + yn+1(”xn+1 — Xl
v /
+ O'_/( |rn+1 - rn|M + |8n+1 - 3n| ”Bzrz” + ” WVHan - ann”

+ T,

n+l

+ || Tun Wn+1yn - T;L,, Wn_yn” - ||xn+1 - xn”

Thus, it follows from (3.11), Lemma 3.4, Lemma 3.5 and condition (C4) that

lim Sup(”unﬂ = |l = %n41 _xn”) <0.
n—0oQ

By Lemma 2.8, we get
lim ||u, —x,| = 0.
n— 00
Consequently, we have
lim |21 — %, = lim (1 = B,) |ty — %4l = 0.
n—00 n—00
From (3.7), we get
lim ||z, -z, = 0.
Hn—>0Q
Lemma 3.7 lim,_, ||, — Ttx,|| =0 forallt € S.
Proof Let p € F and put

—A
Mo =ma><{||xo—p||,”w;(1’i)7p”}'

yo

W, — Tun WnVn”) + Tuml Wn+1yn - T/L,, Wn+1yn”

Page 16 of 31
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Set D={ye H:|y-pl <Mp}. We remark that D is a bounded closed convex set,
{xn}, {yn}, {zn} C D and it is invariant under J and W, for all n € N. We will show that

limsupsup || T,y — Tt Ty, ¥l = 0

n—>oo  yeD

forall £ € S. Let € > 0, by [40] (Theorem 1.2), there exists § > 0 such that

CoFs(Ty; D) + Bs C Fo(T4; D)

for all £ € S. By [40] (Corollary 1.1), there exists a natural number N such that

- R
T.y—T;,| —— T,

(3.13)

(3.14)

(3.15)

for all t,s € S and y € D. Since {,,} is left strong regular, there exists #y € N such that

lltn = Ll < m forn>ngand i=1,2,...,N. Then we have

sup
yeD

N
1
T,y - / Nil ; Tyisydinn(s)

= sup sup (T}, y,2) < / N IZTt:sydpcn(S) Z>

yeD |lz]=1

1 N
= sup sup | ($)(Te9,2) = (s 375 D_ T2
i=0

yeD Jizl=1
1 N N
= Sup sup }’l( )( sy! - ’sy7
yeD zl=1| N +1 ; ZO t
= ($)(Tst,z) - ltz/’LVI(S)< )2 >|
o 7<D lzlI-1
< max ZHun — Lo |1 Ty

i=0,1,2,..N N + 1

=, max = Lo | (Mo + 1p1) <6,

for all n > ny. By Lemma 2.1, we have

1 Y 1
— S Tuydu,(s) € o
/N+1§ sy (s)ecoiN+1

It follows from (3.14)-(3.17) that

N
ZTt;(Tsy):seS}.
i=0

N N
1 1
Tﬂny = / N—+ 1 ; Ttisydun(s) + <Tﬂny — / m ; Ttisyd/.l/n(s))

ZTtisy:seS} + Bs

€ co Ly
co
N+1
i=0

(3.16)

(3.17)
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C COFs(Ty; D) + B

C TE(Tt;D)’
for all y € D and n > ny. Therefore,

limsupsup || T; T,y — T,y <e.

n—oo yeD

Since ¢ > 0 is arbitrary, we obtain (3.13). Now, let £ € S and ¢ > 0. Then there exists § >
0, which satisfies (3.14). Take Ly = (yo + ||A|)Mo + |lyf(p) — Ap|. From lim,_, - &, = 0,

(3.12) and (3.13), there exists k € N such that o, < 8(122{:”), T,,y € Fs(T;; D) forally € D and

[l = %pir || < % for all n > k. We note that

len (v (W) = AT, Wy |
<au(y [f(Wux) - f ()| + | vf ) - Ap| + |AT .., Wiy, — Apll)
< a,(yal|Wox, - pll + [ vf ) - Ap| + IAINIT,0, Woyn - plI)
an(yala, —pl + |vf(0) - Ap| + ANy, - pl)
<au((ve+ A1), - pll + [ v/ () - Ap])
<au((ve+ [A1)Mo + | v/ (p) - Ap|)
5(1-By)

< - 77
- 2

IA

’

for all n > k. Since

Xne1 = BuXnsl

= (1 - IBH)T;Ln Wnyn + Iann + oy (yf(ann) _AT;L,,, Wnyn) - ﬂnxnﬂy

we get

B
Xn+l = Tun Wiyn + l—n(xn — Xpe1)

_ﬂn

o (yf(ann) _AT/J.,, Wnyn)

1_:371
€ F5(Ty; D) +B% +B%

+

C F5(Ty; D) + Bs

C FE ( TL’; D)y
for all n > k. This shows that

limsup ||x, — Trx,| <e.

n—00

Since ¢ > 0 is arbitrary, we get lim,,_,  ||x,, — Ty, = 0. O

Lemma 3.8 lim,_, ||, — T}, Wyiyn|l = 0.

Page 18 of 31
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Proof Since %11 = o, Vf(Wix,) + Buxn + (1 — B — 2, A) T, Wy, 9, we have

”xn - T;Ln Wnyn” =< ”xn _xn+1|| + ||xn+1 - T;Ln Wnyn”

= [[%n = X1 |l + 0 “Vf(ann) _AT;Ln WouIn “ + Bullxn = T;Ly, Wounlls

that is,

a}’l
[l — T/Ly[ Wayull < lloen — X1 ll +

1
“1-B, 1-B,

|7 (Woa) = AT, Wi
It follows from condition (C4) and Lemma 3.6 that

lim o, = Ty, Wyl = 0. O
Lemma 3.9 lim,_, o ||x, —z,]| = 0.

Proof For p € F, since S, is firmly nonexpansive, we have

1z —19||2 = ”Srnxn - Sr,,PHZ
< A(Sr%n = Sp %0 — P) = {20 — P, Xn — P)

1
= E(llzn = pI* + 1%, = pI* = 12 — x4ll?)

and hence

s = pII* < 1%, = pII* = ll20 — 2> (3.18)
Note that the following equality holds:

[+ L=y = tlll> + (L= DIy - 1 = D)l - 112

forall ¢ € [0,1] and x,y € H. So, from (1.6) and (3.18), we get

13 = pI? = |1 = v)@n = D) + Vu( Ty WoPc = 8,B)z, — p) |

< V| Tpon WP = 8,B)z5 = p|* + (1 = y,) %, = pII?
— L= )| Ty WP = 8,B)z, — %

= Yullzw = pI” + (L= ) llxn = pII* = (L= y) lyn — 21>

< Vu(len = PI? = Iz = 24 11?) + @ = y) 10 — P11

= ”xn —19||2 - Vn”zn _xn”z- (3-19)
Therefore, from Lemma 2.5, Lemma 3.1 and (3.19), we have

2
l%441 = Pl

= “an (Vf(ann) —AP) + Bu(n = Ty, Wyn) + ([ =y A) T, Wy — p) ||2
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< [ Bun = Ty Woy) + (U = AT, Wy = )|
+ 20 (v f (W) = Ap, %1 — D)
< (I = auAlllyn = pIl + Bl = Ty Wayall)®
+ 20 | Vf (Wotn) — Ap| I1Xne1 — Pl
< (= )y = Pl + Bulltn = Ty, Wogall)?
+ 200 | v f (W) — Ap | 1%0s1 — Pl
< (L= u?)1yn =PI + By 1w = Ty Wonyall®
+2(1 = 0, 7) Bullyn = PN 1% = Ty, Wl
+ 20 | Vf (Wotn) — Ap| 101 — Pl
< (=07 (118 =PI = ¥ 120 = %) + B2 %0 — Ty, Wosal®
+2(1 = 0, 7) Bullyn = PN 190 = Ty, Wl
+ 20 | f (W) = Ap | 11 - pII.

Then we derive

(1= an?)*Vullzn — %ull®
< lltn = pII* = nar = pII* + 07?120 = pII* + Billow = Ty, Woyull®
+ 21 = ) Bullyn — pll%n = Ty, Wil
+ 200 | v f (W) — Ap | 1%0s1 — Pl
< (Itn = 2l + It = 1) 1961 — %l + @72 12 — pII?
+ Billn = Ty Woayull® + 2(1 = u?) Bullyn = PN 1%n = Ty Winyl

+ 20, || vf (W) — Ap || %001 = Pl (3.20)
So, from (C4), Lemma 3.6, Lemma 3.8 and (3.20), we obtain
lim ||x, —z,|| = 0. O

Lemma 3.10 lim,_ ||y, — V| = lim,— ||z, — V4|l = 0, where v, = Pc(I - §,,B)z,, for all
n>0.

Proof Let p € F. Setting v, = Pc(I — 8,,B)z, for all n > 0, since p € VI(C, B), we have p =
Pc(I - 8,B)p. From the L-Lipschitzian and relaxed (&, v)-cocoercive mapping on B and
Lemma 3.3, we have

v, - pII?
= |Pc(l - 8,B)z, - Pl - 8,B)p|
< |20 = p = 8.(Bz, - Bp)|

= |z, = pII* = 28,,(Bz, — Bp,z, — p) + 821|Bz, — Bp||*
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< Ilxx = pII* = 28,(~£11Bz, — Bp|I* + vz, - pII*) + 8, |1Bz, - Bp|I*

5 28,V 9
< llxn —pll + | 2848 + 6, — Tz 1Bz, — Bp||”.
From (1.6) and (3.21), we get

”.yn —17”2 = || (1 - yn)xn + ynT//.n ann _p”z
= @ = 7@ = D) + Yl Ty, W = )|

=< (]- - Vn)”xn —P||2 + Vn”Vn —19||2
268,V
L2

<%0 = pI* + Vu (25,@ +82 - )nan ]

From (1.6), Lemma 3.1 and (3.22), we have

1 — pII?
= ||t (vf (Woxn) — Ap) + Bul®n — p)
+ (U= B = 0 A) (T Wy — )|
< (@] ¥ (Wotn) = Ap|| + Balln = pIl + (1= B — ctu )y — pIl)°
= 02|y (Wixa) = Ap|* + B21xn = P12 + (L= B — a7 Iy - pII?
+ 20, (Bn | Vf (W) = Ap| 1% - P
+ (1= By — 0 | v/ (Wax) = Ap| Iy - pI?)
+2B,4(1 = By — 0t — pll 1y — I
< a,M+ B % —plI” + (1= B = @u?)yn = pll

+ Bu(l = Bu _arﬂ;)(”xn —P||2 + [lyn —17||2)

= o, M + Bu(l = ) 1% — pII* + (1= 7)) (L = By — 0tu?) ¥ — PII?

< a,M+ Bu(1 = a7 % — plI* + A = 0t 7)1 = By — ct7?)
268,
x (nxn—pn2 +yn<2ans +87 - Lz”)nan —Bp||2)

<o,M+(1- 0ln77)2||xn —P||2

_ 26,V
+ (1=, 7) v <26ns +8 -3 )nan - Bp|?
= a,M + %, - plI*
_ 26,V
+(1—any)2yn<26né+35— 12 )IIan—Bpllz.

It follows that

_ 28,v
< —(1—any)2yn(28ns+aﬁ— - )nan—Ban

=)
A

A

2 2
oM+ [l%, = plI* = 16041 — Pl

(3.21)

(3.22)

(3.23)

Page 21 of 31
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< oM+ (”xn =l + 1% _p”)”xrul — %Xl

— 0,
which implies that
lim ||Bz, - Bpl| = 0. (3.24)
n—00
On the other hand, since P¢ is firmly nonexpansive, by Lemma 3.2, we have

v = plI* = | Pl - 8,B)z, — Pc(l - 8,B)p|*

= <(1 - 8nB)Zn - (1 - anB)pr Vn _p>

—_

- E{H (1_8713)2}1 - (I_(SVIB)pHZ + ”Vn —P||2 - ”Zn —Vn— yn(an _Bp) ”2}

1
= E{Hzn = pI? + v = pI* = ll2s = val?

+2¥ullzn = vl B2y = Bpll -,/ 1|1 Bz — BplI*},

which yields that

Vi =pI? < 12w = PI? = 12w = vall* + 2yl = a1 Bz, - Bpl|

< %0 = PI* = 120 = vull* + 2¥ullzn — v || |Bz,, - Bpll. (3.25)
Combining (3.22) and (3.25), we obtain

”yn —19||2 =< (1 - Vn)”xn —P||2 + Vn”Vn —19||2
< @ = y)llxn = pI* + Vu (160 = pI* = 120 = vall?
+ 2¥ullzn = vulll| Bz, —BPH)

= 1% =PI = Vullzw = vall> + 272124 = v2ll | B2, - Bpll. (3.26)

Therefore, from (3.23) and (3.26), we get

%1 = pII* < @M + Bu(1 =t P) %0 = pII* + A = 2u¥) (1 = By — ¥y — P
< ayM + Byl — u7) % — plI* + (L= 7)1 = By — n¥)
X (%5 = pII* = ¥ 20 = vull* + 27,7 120 — vull | Bz — Bp|)

< ayM + (1=, 7)? 1% = plI* = (L= 7)1 = B = 2 ¥) Vullzn — vill®

+2(1 = 0, 7)1 = By — @u?) ¥, 120 — Valll| Bz, — Bpl|.

Hence, we have

(1- 0(,,}7)(1 - Bn— an);)ynllzn - Vn||2

<a,M+ (”xn =Pl + 1% _p”)”xnﬂ =2l

+2(1 = ;7)1 = By = @)y, 120 = valll| Bz, - Bpl,
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which implies that
lim ||z, —v,|| = 0. (3.27)
n— 00

Observe that

17n = Vil < 19n = %nll + %0 = 2ull + 1120 = Vil
= Vull Ty Wi — x|l + 160 — 2ull + 120 = val
=< Vn(” T/l.n Wav, — T/Ln Wouynll + 1T, Wy — xn”)
+ 1% = 2ull + 12 = Vall

= Vn(”vn = Inll + 1Ty, Wi _xn”) + 120 = Zull + 12w = vall,

and hence
(1- Vn)”yn —Vull < vull Tp,,, Wnyn =Xl + 1% — Zull + |2 — Vil

Thus, from Lemma 3.8, Lemma 3.9, (3.27) and (C4), we derive
lim 1y = vull = 0. 0
n— 00

Lemma 3.11 Px(yf + (I — A)) is a contraction of H into itself.

Proof From Lemma 3.1, we have

|PF(vf + (U= A)x—Pr(yf+ T -A)y|
< | vf@) + U -Ax—yfy) - U -A)y|
<y[fe@-fo)| + |- A=)
<yalx-yl+1-7)lx-yl
=(1-7 —ya)lx-yl,

for all x,y € H. From the condition y, 0 <ay <y <ay +1,weobtain1 - (y — y«a) € (0,1).
Therefore, Px(yf + (I — A)) is a contraction. a

Now, we prove Theorem 3.1.
Proof of Theorem 3.1 From Lemma 3.11 and the Banach contraction principle, Px(yf +

(I — A)) has a unique fixed point, say x € H. Thatis, x = Px(yf + (I — A))x". Then, using
(2.1), " is the unique solution of the variational inequality

((nf A x-x)<0 (3.28)
for all x € F. Now, we show that

lim sup((yf —A)x %, —x*> <0. (3.29)

n—0o0
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To show this, we can choose a subsequence {x,,} of {x,} such that

lim sup((yf —A)x %, —x*) = llirgQ((yf —A)x*,xni —x*>. (3.30)

n—0oQ

Since {x,,} is bounded, there exists a subsequence {xnl.]_} of {x,,} which converges weakly
to z. Without loss of generality, we can assume that x,,, — z. We need to show thatz € F =
F(I) NN (N2, F(T,) N VI(C,B).

(I) Since x,,, — z, by Lemma 2.2 and Lemma 3.7, we get
th =Z

for all ¢ € S. Therefore, z € F().
(IT) Now, we show that z € Q. Since z,, = S, x,, we derive

0z +3) ~ plen) + (K (z1) = K1), )] 2.,

n

for all x € C. From the monotonicity of 6, we have

0(x,2,) < —0(zn, %) < @(x) — @(24) + %(K/(zn) =K' (), (%, 24)),

n
and hence

K'(z2,) = K' (1)

nj

0%, z,,) < 0(x) — 0(z,,) + < 1, Zn,~)>'

K,(Zni)—K,(xni)
N

Since — 0 and z,, — z, from the lower semicontinuity of ¢ and (E4), we have

i

0(x,2) + ¢(z) —p(x) <0,

forallxe C.FortwithO<t<landx e C,letx; =tx+ (1—-1¢)z. Sincex € Cand z € C, we
have x; € C and

0 (xt,2) + ¢(2) — p(x,) < 0.
From (E1), (E4) and the convexity of ¢, we get

0 = 0(xp, ) + @(xy) — ()
< t0(x, %) + (1 - )0 (s, 2) + to(x) + (1 - He(z) — (%)

< t(60(x,%) + 0(x) — @(x1)).
Hence,

0(xs, %) + o(x) — @(x) > 0,
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for all x € C. From (E3) and the lower semicontinuity of ¢, we have
0(z, %) + p(x) — p(z) > 0,

for all x € C. Therefore, z € Q.
(III) We show that z € F(W) = (5, F(T;). Assume that z ¢ F(W), then z # Wz. Since
z € F(J) N Q, by our assumption, we have T;z € F(3), Vi € N and then W),z € F(3). From

Lemma 2.1, we get
T, Wiz =Wz, (3.31)
for all » € N. Since
1y = Zull < Nyn = Vull + 1V = 2ull + 120 = xull,
from Lemma 3.9 and Lemma 3.10, we get
lim ||y, — x| = 0. (3.32)
H— 00
By Lemma 2.4, Lemma 3.8, (3.31) and (3.32), we obtain

liminf ||x,, — z||
11— 00
< liminf ||x,, - Wz||
11— 00
= hirgglf(”xni - Tuni Wniynl‘ I+ ”Tuni Wniyni - Tlin,» Wnixni”

+IT,

U

Wnixni - T/Lni Wn,'Z” + ” Tuy,i Wniz - WZ”)
< liminf(Jlyy, — %1l + s, - 21)

i—00
< liminf ||x,, — z||.

i—>00

This is a contraction. Therefore, z € F(W) = (o, F(T}).
(IV) We show that z € VI(C, B). Let U : H — 2! be a set-valued mapping defined by

Bx+ Ncx, ifxeC,
@, ifx ¢ C,

X =

where N¢x is the normal cone to C at x € C. By assumption of B, we have

(Bx - By,x—y) = —£||Bx = By||> + v[x — y|*
-EL%)|x-yI?

> (
>0, (3.33)
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which implies that B is monotone. Thus, U is a maximal monotone. Let (u,v) € G(U).
Since v —Bu € Ncu and v,, = Pc(I - 6,,B)z,, € C, we have

(u — vy, v—Bu) > 0. (3.34)
On the other hand, from (2.1), we have
(Lt V= - 8n3)2n> >0

and hence

-z
<u—v,,, Vn(s " +Bz,,> >0.

n

It follows by (3.33) and (3.34) that

(h =V, v) = (U — vy, Bu)

Vi, — Zn;
i 4 Bz,
8y

i

> (u— vy, Bu) - <u — Vs

Vn; —Zn

o

= (U =V, Bu—Bvy,) + (u—v,, Bv,, — Bz,,)

Vni - Zn,'
—\u- Vni’
B

.= Zy.
= (u_VnivBan-_ani)_<u_vni’ 16 l>-
nj

i

= <u — Vp;, Bu — Bz, —

From Lemma 3.9 and Lemma 3.10, we obtain (z — z,v) > 0 as i — 00. Since U is maximal
monotone, we have z € U%(0). Therefore, z € VI(C,B). By (I)-(IV), ze F = F(3)N QN
(M2, E(T,)) N VI(C,B). Since x” = Pr(yf + (I - A))x’, from (3.28), we have

lim sup((yf—A)x*,xn —x*> = lim sup((yf—A)x*,xni —x*)

n—00 i—00

= limsup((yf — A)x 2y, — % )

= ((yf -A)x’,z-x)

<a0.
(V) Finally, we prove that {x,}, {y,,} and {z,} converge strongly to x". From (1.6), we obtain

|1 = | = [otn(f (Wh) = Ax) + (300 — %)
+ (@ = B = yA) (T Wy — )
< [[Bu(n = 2") + (A= B = u) (T, Wy =) |

+ 200y f (W) = A% %001 — )

< (Bulln = |+ 1(O = B = ) (T, Wy =) [)°

I
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+ 20y (f (Woattn) = (%) i1 — %)

+20,(yf(x) — Ax 201 — %)
< (Bulln 2| + A= Bu—ea?) |yn - +])*

+ Yyt — & | [t =5 | + 20y f () = AX 0t — )
< (1= au7)?|xn = | + v (| —a | + |20 — 27|

+ 2a,,<yf(x*) —Ax %1 — x),

which implies that

e =]
1-20,7 + (00,7)? + oy o2
s Aal -
ny o
2 . .
+ - _:‘:ya<yf(x ) —Ax Xy — X )
(1 2 e (O,
- 1-a,ya " l-a,ya "
2a
1 _a:ya<yf(x ) = Ax X1 — &)
_ (1 _ 2(1]7 - )/Ol)Oln) ”xn _ x== “2
—oyya

27 - ya)an [ oni? b1 o *
+ 1-a,ya (2();_ya)||xn—x” +)/ <yf(x)—Ax,xn+1_x)).

It follows that

s = | < = 5) |0 x| + B (3.35)
where
A 2
n=— "
1-oa,ya
(04 ]7 1 . . .
n_2()7n—)/06) ||xn X ” +J7_ya<)/f(x)—Ax,xn+l—x>'

From (C4)-(i), we have > 70 b, = o0, and by (3.29), we get limsup,_, ., ¢, < 0. Conse-
quently, applying Lemma 2.10 to (3.35), we get ||x, —x || — 0. Therefore,

. .
lim x, =x .
n—0o0

From Lemma 3.9 and (3.32), we obtain

limy,=« and limz,=x.
n— 00 Hn— 00

This completes the proof of Theorem 3.1. O
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Corollary3.1 LetH,C,S, 3, X, {n}, 0,0, Ti, f, A, {on}, {Bu) and {y,} be as in Theorem 3.1.
Suppose that F = (2, F(T,) NF(I) N Q # (. Assume that

(C1) n:C x C— H is Lipschitz continuous with constant A > 0 such that
(@) nlx,y) +nly,x)=0,Yx,y€C,

(b) for each fixed y € C, x — n(y,x) is sequentially continuous from the weak
topology to the weak topology;

(C2) K:C — Risn-strongly convex with constant o > 0 and its derivative K' is not only
sequentially continuous from the weak topology to the strong topology, but also
Lipschitz continuous with constant v > 0 such that o > \v;

(C3) foreach x € C, there exist a bounded subset D, C C and z, € C such that for any
y€C\Dy,

00,20) + 9(2) = 00) + - (K'0) =K' n(z)) <O

(C4) (i) limyooo 0ty =0, Y520y = 00,
(ii) 0<liminf,_, B, <limsup,_, . B.<1,
0 <liminfy, oy, <limsup,_, . ¥» <1,
(iii) 1imy— oo [Vns1 = Yul = 0;
(C5) liminf,_, o 1y, > 0 and lim,_ |11 — 14| = 0.
Given x € C is arbitrary, let the sequences {x,}, {y,} and {z,} be generated by

0 (20, %) + 9(x) = () + 1 (K" (2) = K (%), 11(%,2,)) = 0,
Yn =1 = V)% + Vn Ty, WiPczZps
X1 = AV (Wixn) + By + (L= B — 0y A) T}, Wy, n>0.

Then {x,}, {y,} and {z,} converge strongly to x° € F, where x" = Pr(yf + (I — A))x', which

solves the following variational inequality:
((yf—A)x*,x—x*> <0, VxelF.
Proof Setting B = 0 in Theorem 3.1, we obtain the required result. 0

Corollary 3.2 Let H, C, S, 3, X, {un}, Ti, f> A, {au}, { By} and {y,} be as in Theorem 3.1.
Suppose that F = (oo, F(T,) N F(I) # 0. Assume that
(C1) (i) limyooy =0, oty =00,
(i) 0<liminf,_, o B, <limsup,_, . Bu<1,
0 <liminf,_,  y, <limsup,_, ., v» <1,
(iif) 1imy— oo [Vis1 — ¥ul = 0;
(C2) liminf,_, o1, >0 and lim,_, o |Fps1 — Fy| = 0.
Given xo € C is arbitrary, let the sequences {x,}, {y,} and {z,} be generated by

Yn = (1 - Vn)xn +Vn T;Ln WnPan:
Xn+l = anyf(ann) + Buxn + (a- ﬂn)l —a,A) Tu.ﬂ Wn}’m n>0.
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Then {x,}, {y,} and {z,} converge strongly to x° € F, where x" = Pr(yf + (I — A))x', which

solves the following variational inequality:

((vf -A)x",x-2) <0, VxeF.

B

Proof Set B=0,0(x,y) =0 forallx,y € C, 9 =0 and r,, = 1 for all n > 1. Take K(x) = 5
and n(x,y) =x —y for all x,y € C. From (1.6), we have

Yn = (1 - Vn)xn +Vn Tp,n WnPan:
Xn+l = anyf(ann) + Bukn + (a- ﬂn)l — o, A) T//,n Wnym n=>0.

Then the conclusion immediately follows from Theorem 3.1. O

Corollary 3.3 Let H,C, S, 3, X, {un}, 0,0, f, A, {on}, {Bn} and {y.} be as in Theorem 3.1.
Suppose that Q # (. Assume that

(C1) n:C x C— H is Lipschitz continuous with constant A > 0 such that
(@) nxy) +n(y,x)=0,Vx,y€C,

(b) for each fixed y € C, x — n(y,x) is sequentially continuous from the weak
topology to the weak topology;

(C2) K:C — R is n-strongly convex with constant o > 0, and its derivative K’ is not
only sequentially continuous from the weak topology to the strong topology, but also
Lipschitz continuous with constant v > 0 such that o > \v;

(C3) for each x € C, there exist a bounded subset D, C C and z, € C such that for any
ye C\ Dy,

1
0(3,2:) + () — () + ;(K/(y) - K'(x),n(2,9)) < 0
(C4) (i) limy—oo0t, =0, Y o0ty =00,
(ii) 0<liminf, o B, <limsup,_, . Bu<1,
0 <liminf,_, o ¥, <limsup,_, v, <1,
(iif) 1imy— oo [Vns1 — ¥ul = 0

(C5) liminf,_, o 1y > 0 and lim,_, o |Fs1 — 74| = 0.

Given xy € C is arbitrary, let the sequences {x,}, {y,} and {z,} be generated by

0(2n, %) + @) = 9(2n) + - (K" (2) = K' (%), 11(%,20)) = 0,
Yn = (L= Yu)%n + YuPczp,
Xn+l = anyf(xn) + Buxy + (- ,Bn)] - anA)ym n>0.

Then {x,}, {y,} and {z,} converge strongly to x° € Q, where x = Po(yf + (I — A))x", which
solves the following variational inequality:

((vf —A)x",x-x) <0, VxeQ.

Proof Set B=0 and Tix =« for all i =1,2,... in (1.6). Then W,x = x for all x € C. The

conclusion immediately follows from Theorem 3.1. O
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