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1 Introduction
Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||. Let C be a
nonempty closed convex subset of H and S : C — C be a self-mapping on C. We denote
by F(S) the set of fixed points of S, that is, F(S) := {x € C: Sx = x}.

Let ® be a bifunction of C x C into R and ¢ : C — R be a function, where R is the set
of real numbers. Then we consider the following mixed equilibrium problem (for short,
MEP): finding x € C such that

O,y +o()—pkx) >0, VyeC, (1.1)

which was studied by Ceng and Yao [1] (see also [2]). The set of solutions of the MEP (1.1)
is denoted by MEP(®, ¢). We see that x being a solution of the problem (1.1) implies that
x € domg = {p(x) < 00}.

If ¢ = 0, then the MEP (1.1) becomes the following equilibrium problem (for short, EP):
finding x € C such that

O,y) >0, VyeC. (1.2)

The set of solutions of the EP (1.2) is denoted by EP(®).
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The MEP (1.1) is very general in the sense that it includes, as special cases, fixed point
problems, optimization problems, variational inequality problems, minmax problems,
Nash equilibrium problems in noncooperative games and others; see, e.g, [1, 3-5].

The class of pseudocontractive mappings is one of the most important classes of map-
pings among nonlinear mappings. Recently, many authors have devoted their studies to
the problems of finding fixed points for pseudocontractive mappings; see, for example, [6—
9] and the references therein. We recall that a mapping S : C — H is said to be k-strictly
pseudocontractive if there exists a constant k € [0,1) such that

2

1S~ Syll* < llx = ylI*> + k| (I = Sk — (I - S)y||", VxyeC.

Note that the class of k-strictly pseudocontractive mappings includes the class of non-
expansive mappings as a subclass. That is, S is nonexpansive (i.e., [|Sx — Sy|| < |lx -y,
Vx,y € C) if and only if S is 0-strictly pseudocontractive. The mapping S is also said to be
pseudocontractive if k = 1, and S is said to be strongly pseudocontractive if there exists
a constant A € (0,1) such that S — A/ is pseudocontractive. Clearly, the class of k-strictly
pseudocontractive mappings falls into the one between classes of nonexpansive mappings
and pseudocontractive mappings. Also, we remark that the class of strongly pseudocon-
tractive mappings is independent of the class of k-strictly pseudocontractive mappings
(see [10, 11]).

Recently, in order to study the EP (1.2) coupled with the fixed point problem, many
authors have introduced some iterative schemes for finding a common element of the set
of solutions of the EP (1.2) and the set of fixed points of a countable family of nonexpansive
mappings or strictly pseudocontractive mappings; see [12—14] and the references therein.

On the other hand, in 2001 Yamada [15] introduced the hybrid iterative method for
the nonexpansive mapping to solve a variational inequality related to a Lipschitzian and
strongly monotone operator. Since then, by using the ideas of Marino and Xu [16], Tien [17,
18] and Ceng et al. [19] provided the general iterative schemes for finding a fixed point of
the nonexpansive mapping, which is a solution of a certain variational inequality related
to a Lipschitzian and strongly monotone operator. Cho et al. [7] and Jung [8, 20] gave
the general iterative schemes for finding a fixed point of the k-strictly pseudocontractive
mapping, which is a solution of a certain variational inequality.

Inspired and motivated by the above mentioned recent works, in this paper, we intro-
duce new implicit and explicit iterative schemes for finding a common element of the set of
the solutions of the MEP (1.1) and the set of fixed points of a k-strictly pseudocontractive
mapping. Then we establish results of the strong convergence of the sequences generated
by the proposed schemes to a common point of two sets, which is a solution of a certain
variational inequality. Our results extend and improve the recent well-known results in

this area.

2 Preliminaries and lemmas
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. In
the following, we write x, — x to indicate that the sequence {x,} converges weakly to x.
x, — x implies that {x,} converges strongly to x.

Recall that the mapping V : H — H is said to be [-Lipschitzian if

Ve— Wyl <llx-yl, Vx,yeH,
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and that the nonlinear operator F : H — H is said to be p-Lipschitzian and »n-strongly
monotone, where p > 0 and 1 > 0 are constants, if

| Ex — Fyll < pllxe—yll
and
(Fx—Fy,x—9) > nllx—yll>, VxyeH.
In a real Hilbert space H, we have
ll = 1% = llxlI* + lIyl1* = 24x,), 2.1)

for all v,y € H and A € R. For every point x € H, there exists a unique nearest point in C,
denoted by Pcx, such that

llx = Pex|l < llx =yl

for all y € C. P¢ is called the metric projection of H onto C. It is well known that P¢ is
nonexpansive and Pc is characterized by the property

u=Pex <& (x—uu-y)>0, VxeH,yeC. (2.2)

It is also well known that H satisfies the Opial condition; that is, for any sequence {x,}
with x,, — x, the inequality

liminf ||x, — x| < liminf|x, — y||
n—00 n—00

holds for every y € H with y # x.

For solving the equilibrium problem for a bifunction ® : C x C — R, let us assume that
® and ¢ satisfy the following conditions:

(Al) O(x,x)=0forallx € C;

(A2) © is monotone, that is, @(x,y) + O(y,x) <0 for all x,y € C;

(A3) foreachx,y,z€C,

ltlg)1®(tz +(1- L‘)x,y) < 0O(x,y);

(A4) foreach x € C, y — O(x,y) is convex and lower semicontinuous;

(A5) for eachy € C, x > O(x,y) is weakly upper semicontinuous;

(B1) for each x € H and r > 0, there exist a bounded subset D, C C and y, € C such
that for any z € C\ D,,

1
O(z,9x) + 9(9x) — 0(2) + —(x-22-2) <0;

(B2) Cisabounded set.
The following lemmas were given in [3, 21].
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Lemma 2.1 [3] Let C be a nonempty closed convex subset of H and © be a bifunction of
C x C into R satisfying (A1)-(A4). Let r > 0 and x € H. Then there exists z € C such that

1
OEy)+-y-zz-x)>0, VyeC.
r

Lemma 2.2 [21] Let C be a nonempty closed convex subset of H. Let © be a bifunction
from C x C to R satisfying (A1)-(A5) and ¢ : C — R be a proper lower semicontinuous and
convex function. For r > 0 and x € H, define a mapping T, : H — C as follows:

T.x = {zeC:@(z,y)+<p(y)—<p(z)+ %(y—z,z—x) zO,VyeC}

for all x € H. Assume that either (B1) or (B2) holds. Then the following hold:
(1) foreachx e H, T,x #;
(2) T, is single-valued,
(3) T, is firmly nonexpansive; that is, for any x,y € H,

I Trx = Toyll* < (Tyx — Ty, = 9);

(4) F(T,) = MEP(0, ¢);
(5) MEP(©, ¢) is closed and convex.

We need the following lemmas for the proof of our main results.

Lemma 2.3 [22] Let H be a Hilbert space, C be a closed convex subset of H. If S is a k-
strictly pseudocontractive mapping on C, then the fixed point set F(S) is closed convex, so
that the projection Prs) is well defined.

Lemma 2.4 [22] Let H be a real Hilbert space and C be a closed convex subset of H. Let
S: C — H be a k-strictly pseudocontractive mapping with F(S) # ). Then F(PcS) = F(S).

Lemma 2.5 [22] Let H be a real Hilbert space, C be a closed convex subset of H, and
S: C — H be a k-strictly pseudocontractive mapping. Define a mapping T : C — H by
Tx=2x+(1—A)Sx forallx € C. Then as A € [k,1), T is a nonexpansive mapping such that
F(T) = F(S).

Lemma 2.6 [23] Let {s,} be a sequence of non-negative real numbers satisfying
Susl < (L =&2)sn + 848, Yn 21,

where {&,} and {5,} satisfy the following conditions:
(i) {‘i:n} - [O; 1] and Znoil &n =00,
(ii) limsup,_, 8, <0or Y o &,8, < 0.

Then lim,,_, o s, = 0.

Lemma 2.7 [24] Let {x,} and {z,} be bounded sequences in a real Banach space E and
{yn} be a sequence in [0,1] which satisfies the following condition:

0 <liminfy, <limsupy, <1.

n—00 Hn—00
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Suppose that x,,1 = Yuxy + 1 — Yz, for alln > 1 and

lim Sup(”ZVl+1 _Zn” - ”xn+1 _xn”) <0.
n—00

Then lim,,_, « ||z, — %] = 0.

Lemma 2.8 In a real Hilbert space H, the following inequality holds:
I +y1% < lxll* + 2(p,2 +y), Va,yeH.
The following lemma can be easily proven, and therefore, we omit the proof.

Lemma 2.9 Let V: H — H be an I-Lipschitzian mapping with a constant | > 0, and F :
H — H be a p-Lipschitzian and n-strongly monotone operator with constants p,n > 0.
Then for 0 <yl < un,

((WF =y V)x = (WE =y V)y,x—y) = (un—yDlx -y VxyeC.
That is, uF — y 'V is strongly monotone with a constant pun — yl.

Finally, the following lemma is an improvement of Lemma 2.9 in [20] (see also [15]).

Lemma 2.10 Let H be a real Hilbert space H. Let F : H — H be a p-Lipschizian and

n-strongly monotone operator with 0 <n < p. Let 0 < p < Z—Z and 0 <t < ¢ <1. Then

S:=c¢l —tuF : H— H is a contraction with a contractive constant ¢ — tt, where T =

1—/1-pu2n—up?).

Proof First, we show that I — i F is strictly contractive. In fact, by applying the p-Lipschitz
continuity and n-strongly monotonicity of F, we obtain for x,y € H,
|t = Py - (1 = uF)y|)®
= [=9) - n(Ex - B[’
= = yI* = 2p(Fx = Fy,x - y) + u*|| Fx - Fy||?
< Ilx =y = 2unllx = y1? + u?p*lx - y*

= (1-p(2n-no?))lx -1
and so
| = wF)x = (I = wF)y| < /1= (20 = wo?)llx - yll. (2.3)
Now, noting that S:= ¢I — tuF = (¢ — t)] — t(uF — I), by (2.3) we have for x,y € H,

[1Sx = Syll = ||(s = &)(x = y) — t((WF = Dx — (uF - D)y) ||

< (s -O)lx -yl +t|(WF = Dx - (uF - D)y|
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<(c=Dllx=yll +t,/1— (20— up?)llx -yl

= (¢ —t(1-/1= (20— ppe?)))lx -yl

= (c—t)lx -yl
Hence, S is a contraction with a contractive constant ¢ — ¢t. O

3 Main results

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Let

V : H — H be an [-Lipschitzian mapping with a constant / > 0, and F: H — H be a p-
2n

Lipschitzian and n-strongly monotone operator with 0 < < p. Let 0 < p < = and 0 <

yl<t,wheret =1-/1-p(2n - up?). Let {T,,} be a sequence of mappings defined as in
Lemma 2.2 and S : C — H be a k-strictly pseudocontractive mapping. Define a mapping

Sy C— Hby S,x=Bux+ (1 - B,)Sx,Vx € C, where B, € [k,1). Then, by Lemma 2.5, S, is
nonexpansive.
Consider the following mapping Q, on H defined by

Qux=0a,yVa+ (I -a,uF)S,T,x, VxeH,n=>1,
where a,, € (0,1). By Lemmas 2.2 and 2.10, we have

1Qux = Quyll < @y | Ve = Vyll + || (I = autF)Sy Ty = (I = 0t F)S, T, 9|
<ayllx-yll + (1 —o,7)llx -y

= (L-au(r —yD)lx-yl.

Since 0 < 1-w,(t —yI) <1, Q, isa contraction. Therefore, by the Banach contraction prin-

ciple, Q, has a unique fixed point x,, € H, which uniquely solves the fixed point equation
Xp =0y Vi, + (L — ayuF)S, T, %

Now, we prove the convergence of the sequence {x,} and show the existence of the g €
MEP(G, ¢) N F(S), which solves the variational inequality

(uF-yV)q,p-q)=0, VpeMEP(®,p)NFE(©). (3.1)

Equivalently, g = Pyepo,p)nes) (I — WF + y V)q.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H and
©® be a bifunction from C x C — R satisfying (A1)-(A5). Let S: C — H be a k-strictly
pseudocontractive non-self mapping such that F(S) N MEP(®, ¢) # (. Let F : H — H be

a p-Lipschitzian and n-strongly monotone operator with 0 <n < p. Let V : H — H be

an I-Lipschitzian mapping with a constant | > 0. Let 0 < ju < 22 and 0 < yl < T, where

02

T =1-+/1-u2n—wp?). Assume that either (B1) or (B2) holds. Let {x,} be a sequence
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generated by

O, ) + 9() = (n) + 1y =ttty —2,) =20, VyeC,
In = :Bnun + (1 - ﬂn)Sunt (32)
Xn =0yYy Vxn + (I - anlLF)yn: Vn>1,

where u, = Ty, %y, Y = Sultn, and {r,} C (0, 00) satisfying liminf,_, » r, > 0. If {o,} and {B,.}
satisfy the following conditions:

(i) {on} C(0,1), limy 00 @y = 0;

(i) 0<k<B,<Ai<landlim, . B, =2,
then {x,} converges strongly to a point q € F(S) N MEP(O, ¢), which solves the variational
inequality (3.1).

Proof Note that from the condition (i), without loss of generality, we assume that o, 7 < 1
forn>1.

First, we can show easily the uniqueness of a solution of the variational inequality (3.1).
In fact, noting that 0 < y/< v and un > v < p > 7, it follows from Lemma 2.9 that

((WEF =y V)x = (WF =y V)y,x—y) = (un - yDllx -yl

That is, uF — y V is strongly monotone for 0 < y/ <t < un. So, the variational inequality
(3.1) has only one solution. In what follows, we use g € F(S) N MEP(®, ¢) to denote the
unique solution of the variational inequality (3.1).

Now, take p € F(S) N MEP(®, ¢). Since u, = Ty, x, and p = T, p, from Lemma 2.2, we
know that

lwn —pll < %0 —pll, Vn=1
Moreover, from S,p = p, it follows that
lyn =Pl = 1Suttn = Supll < lluy = pll < llx. = pll. (3.3)

Thus, we have

s = pll = |etu(y Vit — Ep) + (I = auitF)y, — I — atutF)p||
< @ =au?)llyn = pll + au(ylllxn - pll + |y Vo — wEpll)

< (1 =an(t =y D)% — pll + aully Vo — uFpl.

L Vp—uF,
This implies that |x, — p|| < W

{us}, {yn} and {Vx,} are bounded. We note that

. Hence, {x,} is bounded, and we also obtain that

lotn = yull < Nty = 2ull + 1%0 = yul

= llttn = xull + tully Viey — 1Eyn|. (3.4)
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Using Lemma 2.2, we obtain
”Mn —P||2 = ”Trnxn - TrnP”z
1
< (n=pyttn = p) = 5 (16 = pI* + N1ty = pI* = bt = wl1”),
and so
2t = pI* < 160 = PII® = 1% — 141 (3.5)
Then, from Lemma 2.8, (3.3) and (3.5), we have
2
% — pII* = [ oty Vit — uEp) + (I — ctyiuF)y, — (I — ayuF)p |
< A= aut)?llyn — pI* + 200 (y Vit — WFp, 5 — p)

= (1_anf)2”un _P”2 + 20,y (Va, — Vp,x, — p)

+ 20,y Vo — ukpllllx. - pli

<qQ _anf)z(”xn —P||2 = ll%n — un”Z) + 20,y 1%, _P”z

+ 20,y Vo — ukpllllx. - pl

= (1 —2a,(t = yl) + (anf)Z)Hxn _P||2 - _anf)2“xn - un||2

+ 20,y Vo — ukplllix. - pl
< llan = pI* + 02t llxn = pI* = A = u )l — 1)

+2a,ly Vp — nkplllix, —pll,
and hence
(1= 0T [l%n = tall® < > 0 — pII* + 2ally Vio — Epll | — pl.
Since «,, — 0, it follows that
lim ||x, — u,| = 0.
n—0o0
From (3.4), we know that
lim ||, —y,|| = 0. (3.6)
n—oQ

Define T: C — H by Tx = Ax + (1 — A)Sx. Then by Lemma 2.5, T is nonexpansive with
F(T) = F(S). Notice that

” Tun - un” S ”Tun _yn” + ”yrl - Lt,,ll

<A = Bullltn = Sl + 1y — .
By (3.6) and B, — A, we obtain

lim ||Tu, — u,| = 0.
n—0oQ
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Consider a subsequence {u,,} of {u,}. Since {u,} is bounded, there exists a subsequence
{u,,ij} of {u,,} which converges weakly to g.

Next, we show that g € F(S) N MEP(®, ¢). Without loss of generality, we can assume
that u,, — ¢. Since C is closed and convex, C is weakly closed. So, we have g € C. Let us
show g € F(T). Assume that g ¢ F(T). Since u,, — g and q # 1g, it follows from the Opial
condition that

liminf ||u,, — q|| < liminf ||z«,, — Tg||
1—> 00 1—> 00
< lim inf ([, — Toty, || + 1| T, — T])
11— 00

< liminf [|u,, —q],
11— 00

which is a contradiction. So, we get g € F(T), and hence g € F(S).
We shall show that ¢ € MEP(O, ¢). Since u,, = T}, x,, for any y € C, we have

1
@)(un,y) + (/’()’) - (P(Mn) + V_ O’ — Uy, Uy _xn> > 0.
It follows from (A2) that
1
900’) - (/)(Mn) + r—()’ —Up, Uy — xn) = @(% un)

Replacing n by n;, we have

1
<P0/) - (P(un,') + r_<y_ Up;s Uy, _xni> =z ®()’; un,')'

ni

Since % — 0 and u,, — g, it follows from (A4) that

0=>—-p®) +¢(q) +O,q9), VyeC.
Putz; =ty + (1 —t)gforallt € (0,1] and y € C. Then we have z; € C and
~¢(z:) + ¢(q) + O(z1,q) < 0. (3.7)

By (A1), (A4) and (3.7), we have

0 = O(z,z¢) + 9(z0) — ()
< 10(z;,9) + (1 - )O(z,q) + to(y) + (1 - )p(q) — ¢(2:)
< H(O(z,9) + 9() — () + 1 = 1)(O(z1,q) + 9(q) — ¢(z:))
< H(O(z,9) + 9() — 0(21)),

and hence

0 < 0(z,9) + 0(y) — 0(z). (3.8)
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Letting ¢t — 0, by (A3) we have for each y € C,
0=0(g,y) +90) - ¢(q).

This implies that g € MEP(®, ¢). Therefore, g € F(S) N MEP(®, ¢).
On the other hand, we note that

X0 —q = oty (y Vo, — uFq) + (I — ayuF)y, — (I — oy uF)q.

It follows that

% — qlI*
= oy (y Vitw = Fg, % = @) + (I = €t F)yy — (I = i F)q, %, = q)
< oy Van — g, 60— q) + | — it F)yn — (I — aupiF)ql| %2 — gl
<oy Vaoy — g, %, — q) + (1= T) 1y — gl I1%2 — gl

< au(y Vaty — nFq, % — q) + (1 — 7)1, — glI>.

Hence, we obtain

1
%, —qll* < —y Vien = g %0 — )
1
= ;(V(Vxn = Vg, % — q) + (y Vq — uFq, %, — q))
1 2
< ;(ylllxn—qll +(y Vg — nFq, %, — q)).
This implies that
(yVq — nkq,x, —q)
oy — g < LAHDI "D

T -yl
In particular, we have

(yVq — ukq,xn; — q)

1%, — qll* <
T -yl

(3.9)

Since x,,, — g, it follows that x,,, — g as i — oo.
Now, we show that g solves the variational inequality (3.1). Since x, = a0,y V&, + (I -
auF)S, Ty, x,, we have
1
(WF =y V)x, = —Ot—((l —auuF)xy — (I — ayuF)S, Tr,,xn)~
n

It follows that for p € F(S) " MEP(®, ¢),

((/LF 4 V)xmxn _p>

1
_Ol_((l - an/'LF)xn - (1 - anMF)SnTrnxn’xn —P>

n
1

Ay

((1 = 8u T, )0 — (I =S, T;,)ps % —P>

Page 10 of 19
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+ (,qu,, — MFSnTrnxn’xn —17)

< (Fx, — WFS, Ty, = p) (3.10)

since I — S, T}, is monotone (i.e., (x—y, ([ - S,T,,)x— U -S,T,,)y) > 0 forallx,y € H. This
is due to the nonexpansivity of S, T}, ). Since ||x, — yu || = &, ||y Vo, — wFy,|| — 0 as n — o0,

by replacing # in (3.10) with #; and letting i — 0o, we obtain

(WF =y V)g,q-p) = im ((WF =y V), %, - P)

< lim (uFx,, — WFYy;, %y, — p) = 0. (3.11)
1— 00

That is, g € F(S) N MEP(O, ¢) is a solution of the variational inequality (3.1).

Finally, we show that the sequence {x,,} converges strongly to g. To this end, let {x,, } be
another subsequence of {x,} and assume x,, — 7. By the same proof as the one above, we
have g € F(S) N MEP(®, ). Moreover, it follows from (3.10) that

((WF-yV)g,q-q) <o0. (3.12)
Interchanging g and g, we obtain
(uF -y V)3, q-q) <0. (3.13)

Lemma 2.9 and adding these two inequalities (3.12) and (3.13) yield

(un-yDllg-q1> <((WF -y V)g— (uF -y V)g,q-q) < 0.

Hence, g =¢q. Therefore, we conclude that x,, — g as n — oo.

The variational inequality (3.1) can be rewritten as
(U-uF+yV)g-g,q-p) =0, VpeF(S)NMEP(®,¢).
By (2.2), this is equivalent to the fixed point equation

Prs)nmep@,0) I — uF +yV)g=gq. 0

Now, we establish the strong convergence of an explicit iterative scheme for finding a
common element of the set of solutions of a mixed equilibrium problem and the set of

fixed points of a k-strictly pseudocontractive non-self mapping.

Theorem 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H and
©® be a bifunction from C x C — R satisfying (A1)-(A5). Let S: C — H be a k-strictly
pseudocontractive non-self mapping such that F(S) N MEP(©, ) #0. Let F: H — H be a
p-Lipschitzian and n-strongly monotone operator with 0 <n < p. Let V : H — H be an
I-Lipschitzian mapping with a constant | > 0. Let 0 < p < i—g and 0 < yl < t, where T =

1-/1—u(2n — up?). Assume that either (B1) or (B2) holds. Let {x,,} and {u,} be sequences
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generated by

On,y) + 9() = @(tn) + 5 (Y =ty = 24) 20, VyeC,
Yn = Buttn + (1 = B)Stty, (3.14)
K41 = Oy Vg + Apy + (VI OIn,lLF)yn, Vn>1,

where u,, = T, x, and y, = Syuy,. If {,}, {Bu), {1} and {1} satisfy the following conditions:
(i) {an} C(0,1), limysoo 0y =0, Y o0ty = 00;
(i) 0<k<B,<r<landlim, o B, =X lim,_ o |Bu1 —Bul = 0;
(iii) {r,} C (0,00), liminf,_, o r,, > 0, lim,,_, oo |Fys1 — 7| = 0;
(iv) {1} C(0,1) and 0 < liminf,, o A, <limsup,_, A, <1,
then {x,} and {u,} converge strongly to a point q € F(S) N MEP(®, ¢), which solves the
variational inequality (3.1).

Proof First, from the condition (i), without loss of generality, we assume that o, 7 < 1,

%};’lh<landan(l—kn)<lfornzl.

We divide the proof into several steps as follows.
Step 1. We show that ||x,, — p|| < max{||xo — pl|, %‘}f‘ﬁ’”} forallm>0andallp € F(S)N
MEP(0O, ¢). Indeed, let p € F(S) " MEP(®, ¢). Then from Lemma 2.10, we have
”xn+1 —P”
= ety View = 1eEp) + A = p) + (1 = 1) = @iy, = (L= 1)1 =y F)p||
< A=Ay =) yn =Pl + 2ullxn = pll + aully Vi, — wEpl|
< (1= A — oD% = pll + Anlln = pll + au(Ily Van — ¥ VoIl + Iy Vo — uEpll)

< (I =a,0)llw, = pll + any iz, — pll + aully Vp — wkpl|

ly Vp — ukpll
= (1 -(r - Vl)an)”xn -pll+( -yDa,
T -yl
ly Vp — ubpl|
smax{nxn—pn,# .
—yl
From induction, we have
ly Vp — nEpl|
||xn—p||5max{||xl—p||,% . Vnzl

Hence, {x,} is bounded. From (3.3), {u,}, {y,}, {Vx,}, {Su,} and {Fy,} are also bounded.
Step 2. We show that lim,,_, o, [|%,41 — %] = 0 and lim,,_, o || 24,141 — || = 0. To show this,
define

X1 = Ay + 1=Ap)ze, Y > 1

Observe that from the definition of z,,,

z —z = KXn+2 — )‘-n+1xn+1 _ Kn+l — )‘-nxn
n+l n 1— )\n+1 1 )\n
_ Up1y me—l + ((1 - )"n+1)1 - an+1MF)yn+1
1- )Ln+1

Page 12 of 19
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_ a,y Vx, + (@ =2 - an/'LF)yn

1-A,
(o 7788 | oy
= ——yVau - Vx
1—)»,“1)/ n+l 1—)\.;1)/ n
Ay Oyl
+ —Yn + Fy, — F
yn+1 yn 1_ )\‘n,u yn 1_ )\n+1'u yn+1
Ayl

= —()/ me—l - MFyn+l) +

T 1-

Thus, it follows that

(07
121 = Zull < o (y [ Vtwr | + Iy )
1_)\;1+1
o
+ 7 (Bl + 7 1Vl + s =yl
—n

On the one hand, we note that

Iyne1 = Yull = ISns1ttnir — Sntanll
S NSnaattnsr = Susrttull + Sn1ttn — Spt |

< letns1 — vl + | Spsrttn — Sntan |-
Noticing that

$n126n — Snttnll = H,Bnﬂun + (1 = Bui1)Sun — (ﬂnun +(1- lgn)Sun) H

< 1Bus1 = Bullltty — Suyll,

from (3.16) we have

”yn+1 __yn” = ”un+1 - un” + |/3n+1 - ,Bn| ”Mn - Sun”

On the other hand, from u,,; = T,

Tn+l

*ns1 and u, = T, x,, we have

O(Uns1,9) + 0 () — o(tn1) + (Y — Uy, Ups1 —%p1) =0, VyeC

Tnsl
and

1
®(unry) + §0()’) - Qo(un) + r_ (J’ — Uy, Uy —Xy) =0, Vy eC.

Putting y = u,, in (3.18) and y = u,,,1 in (3.19), we obtain

1

O (U1, Un) + QO(M,,) - (P(un+l) + (Up = Ups1y Ups1 —Xpi1) =0

Tn+l

and

1
®(um un+1) + (p(un+1) - (p(un) + r_<un+l — Up, Uy _xn) = 0.
n

o
V;\ (MFyn - van) +_yn+1 _yn'
n

Page 13 0of 19
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By (A2), we have

Up —Xn Upsl — Xn+l
<un+1 — Up, - >0,
'n Tnil

and hence

'n
<Mn+l —Upy Uy — Upy1 + Uyl — Xy — r (un+l _xn+1)> > 0.
n+l

Since liminf,_, », 7, > 0, we assume that there exists a real number ¢ such that r, >¢>0
for all # > 1. Thus, we have

2 n
e£e1 — U™ < Uns1 — Uy X1 =% + (1 - . (W1 — Xns1)
n+l

Tn

1-

=< Nttps1 — || { 1241 = X |l + l2t5e1 = Xnaa ll };

n+l

and hence

1
”Mn+1 - un” = ||xn+1 _xn” + —|rn+1 - rn|||un+1 _xn+l||
Tn+l

1
< %1 = xull + = |Fns1 = FulL, (3.20)
c
where L = sup{||u,, — x,|| : n > 1}. Therefore, from (3.15), (3.17) and (3.20), we obtain

1Zns1 = Zull = s — 2l

(eS|

1 _)\n+1

(Y 1V ll + el Eynll) + (IEyull + v Vaxall)

n
1-2,
1
+ | Bus1 — Bullluty — Suy | + Z|Vn+1 —rulL

Oy

1-h,

Ayt

< —— (Y IVawall + 1l Eypaa ) +
1- )\n+1

+ (|ﬁn+1 = Bul + 1w — rn|)M1,

(IEyull + v I Vaxall)

where M is an appropriate constant such that M; = % + sup{|lu, — Su,|| : n > 1}. Thus,
from conditions (i)-(iv), it follows that

lim SUP(||Zn+1 = Zull = %041 _xn”) <0.
n—0o0
Hence, by Lemma 2.7, we have
lim ||z, — x| =0.
n—0oQ

Consequently,

lim |61 — %4l = lim (1—A)llzw — x4 =0,
n—00 n—00
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and by (3.17) and (3.20),
lim |[sy41 —4y]| =0, and lim lyis1 = yull = 0.
n—00 n—00
Step 3. We show that lim,,, ||, — ¥, || = 0. Indeed, since
KXnsl = OyY Vxn + ApXy + ((1 - )\'H)I - an:uF)ym
we have

”xn _yn” =< ”xn _x}’l+1|| + ||xn+1 _yn”
< %y = Xpaa |l + tully Vx, — l'LFyn” + Anllen _yn”’
that is,

oy
1-h, 11—,

[l =yl < (¥ 1Vaeull + sll Eyull)-

So, from the conditions «, — 0 and (iv) and Step 2, it follows that
lim ||x, —y,|l = 0.
n—0oQ

Step 4. We show that lim,,_,  ||%, — 4, || = 0 and lim,,_, o ||, — ¥, || = 0. Indeed, since T},
is firmly nonexpansive, for p € F(S) N MEP(®, ¢), we have
lttw = pII*> = | T2 — Tr,p )1
S (xn _p:un —P>

= (=PI + = I = e~ %),
and hence
ltn = pI* < 1120 =PI = lln — sl (3.21)
Then, by using the convexity of || - |2, we have from (3.14) and (3.21),

11— 11
= Jlotn(y Vit + (I = F)y = p) + (1= 0t) (s = 1) + honltn = )|
< (el Vit + (= F)yn = p) + (1 = ) 0 = )| + 2nllen = )
< ety Vo + U = uE)yu = p) + (1= ) 0 - p)|°
+ 2|t (¥ Vatu + (= wE)yn — p) + A= o) 3 — P) | 1% = ¥l
+ 32010 — yull?

< ||y Vatn + (U= uE)y, - p||* + L = )y - pII?

+ Ml = yull [20n (|| ¥ Vitw + I = wE)y = p|| + L = ) 1y — pll)
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+ A% _yn”]
<a, |y Viey + (L= uF)y, —p| + (1= @) |, - pl* + M,

<yl Viou + (L= pB)yy = p|” + W= ) (I = pI? = Il = wa1?) + M,y (3.22)
where
My = Dol = Yl 20 (7 | Vitull + I Fyull + (2 = @)1y = 1) + Anllxn = yll]-
By Step 3, we know that lim,,_, oo M,, = 0. Then from (3.22), we have

2
(1= ) 1% — 41> < ]|y Vit + (I = wF)yn — p |
+ %0 = I = %1 — pII* + M,
2
< an(y IVaull + I Eyull + lyn — pll)

+ 1% = %1 [| (1% =PIl + 101 = 1) + M.
Since «,, — 0 and ||x;, — x,,41]| — 0, we obtain
lim ||x, — u,|| = 0. (3.23)
n—00
From Step 3, we also have
”Mn _yn” = ”un _xn” + ”xn _yn” - 0: as n— oQ. (3~24)

Step 5. We show that lim,,_, || 7%, — u,|| = 0, where T : C — H is defined by Tx = Ax +
(1 —2)Sx. We know that T is nonexpansive with F(T) = F(S) by Lemma 2.5. Notice that

I Tty — tnll < | Ttk = Yl + [l yn =t

< A= Bulllttn = Sutnll + 1yn — tnl-
By (3.24) and B8, — A, we obtain
Mim [Ty — uy = 0.
Step 6. We show that

limsup((LF - y V)q,q - x,) < 0,

n—0oQ
where g = Prs)nmep©,0)(I — WF + vy V)q is a unique solution of the variational inequality

(3.1). To show this inequality, we choose a subsequence {x,,} of {x,} such that

Jim ((uF = ¥ V), q - %y,) = limsup{(uF — y V)q, q - ).

n— 00

Since {u,,} is bounded, there exists a subsequence {u,,l.j} which converges weakly to w.
Without loss of generality, we can assume that ,,, — w. From Step 4 and Step 5, we obtain
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%y, — w and Tu,, — w. By the same argument as in the proof of Theorem 3.1, we have
w € F(S) "MEP(®, ). Since q = Prs)nmep(0,0) ([ — LE + v V)q, it follows that

lim sup((1F =y V)q,q = %) = lim ((uF =y V)q,q - %)

n—0o0

= ((WF -y V)q,q - w) < 0.

Step 7. We show that lim,,_, « ||, — g|| = 0, where g = Prs)nmep@©,0){ — WE + ¥ V)q is a
unique solution of the variational inequality (3.1). From (3.14), we know that

Xna1 — q = (Y Vaou — WEG) + 2y — q) + (1 = 2] = it F)y, — (1 = X)) — otuF)gq.
Applying Lemma 2.8 and Lemma 2.10, we have

2
Xn+l =4Il = n\X¥n —¢q —Ap)l — Oy ULL )Yy — —Ap)l =0yl )q
I 12 < || An( )+ (A=) F) (@ =1 F)q|
+ 20, (y Vx, — nFq, X1 — q)
2
< (@ =2p = anD)llyn — gll + Aullxn — qll)
+ 20,y (Vx, — Vg, %1 — q) + 20, (y Vg — nFgq, X1 — q)
< (- 1) %0 — gqlI* + 20 Ll — | 1601 — gl
+ 20, (y Vg — uFq, %n41 — q)
< (=100 1% = qll* + «ny L0 = qll* + %001 — q11%)

+ 20, (y Vg — WFq, Xus1 — q)-
This implies that

2.2
1-2to, +T70, +a,yl

%1 = gll* < %, - g7
1-a,yl
20,
+ (yVq - nFg, xpi1 — q)
1-a,yl
2(t - yDa 202
= (1- —7 ) —al? + ——llxu - q?
1-a,yl 1-ayya
20,
+ (yVq — nFg, xp1 — q)
1-a,yl

2(t —yi)
< (1- =2, ) lxs - ql®
1-a,yl
2 - n 2 n
(t-yDa T°a M, + 1
1-a,yl \2(r -yl T -yl
= (1 - Sn)”xn - q||2 + snén:

(uFq—yVq,q - xm))

where M, = sup{||x, —g|*>:n>1},&, = f(_ra;’;ll) o, and
2w,
8n = 2+ (WFg -y Vg, q — Xns1).

T2t —vyl) -yl
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From the condition (i) and Step 6, it is easy to see that & — 0, > (&, = co and
limsup,_, . 8, < 0. Hence, by Lemma 2.6, we conclude x,, — g as n — o0o. This completes
the proof. O

Remark 3.1

(1) Theorem 3.1 and Theorem 3.2 extend and develop Theorem 3.1 and Theorem 3.2 of
Liu [12], respectively, in the following ways:

(a) The EP (1.2) in Theorem 3.1 and Theorem 3.2 of [12] is extended to the case of
the MEP (1.1).

(b) The strongly positive bounded linear operator A in Theorem 3.1 and
Theorem 3.2 of [12] is extended to the case of the p-Lipschitzian and n-strongly
monotone operator F. In fact, from the definitions, a strongly positive bounded
linear operator A with a constant y > 0 is a ||A||-Lipschitzian and ¥ -strongly
monotone operator.

(c) The contractive mapping f : H — H with contractive coefficient & € (0,1) in
Theorem 3.1 and Theorem 3.2 of [12] is extended to the case of a Lipschitzian
mapping V : H — H with a constant / € [0, 00).

(d) The condition Y o7, |41 — aty| < 00 in Theorem 3.2 of [12] is removed.

(e) The conditions Y -1 |Bus1 — Bul <00 and >_2; |71 — | < 00 in Theorem 3.2
of [12] are also relaxed by the conditions lim,,_, s | 84+1 — Bx| = 0 and
lim,,—, o0 [741 — 7u| = 0, respectively.

(2) Evenif C = H, S is nonexpansive, {8,} = {0}, r, =1, u, = x,, O(x,y) =0 and ¢(x) = 0,
Vx,y € C, Theorem 3.1 and Theorem 3.2 improve Theorem 3.1 and Theorem 3.2 of
Tian [18] and Theorem 3.1 and Theorem 3.2 of Ceng et al. [19] from the class of
nonexpansive mappings to the class of k-strictly pseudocontractive mappings. In
particular, Theorem 3.2 develops Theorem 3.2 of Tian [18] and Theorem 3.2 of
Ceng et al. [19] by removing the condition either > -, |ot41 — ot | < 00 or
limy,— 00 @y /tyy1 = 1.

(3) Theorem 3.1 also contains Theorem 3.1 of Plubtieng and Pungaeng [13] as a special
case with the nonexpansive mapping S, and {8,} = {0}, and ¢ = 0.

(4) Theorem 3.2 also includes and improves Theorem 3.3 of Plubtieng and Punpaeng
[13], Theorem 3.2 of Takahashi and Takahashi [14] as well as Theorem 3.2 of Tian
[17], Theorem 2.1 of Jung [8], Theorem 3.1 of Jung [20] Theorem 2.1 of Cho et al. [7]
and Theorem 3.4 of Marino and Xu [16] as some special cases.
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