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Abstract
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Let
α > 0, and let A be an α-inverse strongly-monotone mapping of C into H. Let T be a
generalized hybrid mapping of C into H. Let B andW be maximal monotone
operators on H such that the domains of B andW are included in C. Let 0 < k < 1, and
let g be a k-contraction of H into itself. Let V be a γ -strongly monotone and
L-Lipschitzian continuous operator with γ > 0 and L > 0. Take μ,γ ∈R as follows:

0 <μ <
2γ
L2

, 0 < γ <
γ – L2μ

2

k
.

Suppose that F(T )∩ (A + B)–10∩W–10 �= ∅, where F(T ) and (A + B)–10,W–10 are the set
of fixed points of T and the sets of zero points of A + B andW , respectively. In this
paper, we prove a strong convergence theorem for finding a point z0 of
F(T )∩ (A + B)–10∩W–10, where z0 is a unique fixed point of
PF(T )∩(A+B)–10∩W–10(I – V + γ g). This point z0 ∈ F(T )∩ (A + B)–10∩W–10 is also a unique
solution of the variational inequality

〈
(V – γ g)z0,q – z0

〉 ≥ 0, ∀q ∈ F(T )∩ (A + B)–10∩W–10.

Using this result, we obtain new and well-known strong convergence theorems in a
Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi
(Nonlinear Anal. 73:1562-1568, 2010).
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1 Introduction
LetH be a realHilbert space, and letC be a nonempty closed convex subset ofH . LetN and
R be the sets of positive integers and real numbers, respectively. A mapping T : C →H is
called generalized hybrid [] if there exist α,β ∈ R such that

α‖Tx – Ty‖ + ( – α)‖x – Ty‖ ≤ β‖Tx – y‖ + ( – β)‖x – y‖
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for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping. Kocourek,
Takahashi and Yao [] proved a fixed point theorem for such mappings in a Hilbert space.
Furthermore, they proved a nonlinear mean convergence theorem of Baillon’s type [] in
a Hilbert space. Notice that the mapping above covers several well-known mappings. For
example, an (α, β)-generalized hybrid mapping T is nonexpansive for α =  and β = , i.e.,

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

It is also nonspreading [, ] for α =  and β = , i.e.,

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖Ty – x‖, ∀x, y ∈ C.

Furthermore, it is hybrid [] for α = 
 and β = 

 , i.e.,

‖Tx – Ty‖ ≤ ‖x – y‖ + ‖Tx – y‖ + ‖Ty – x‖, ∀x, y ∈ C.

We can also show that if x = Tx, then for any y ∈ C,

α‖x – Ty‖ + ( – α)‖x – Ty‖ ≤ β‖x – y‖ + ( – β)‖x – y‖,

and hence ‖x–Ty‖ ≤ ‖x–y‖. Thismeans that an (α, β)-generalized hybridmappingwith a
fixed point is quasi-nonexpansive. The following strong convergence theoremofHalpern’s
type [] was proved by Wittmann []; see also [].

Theorem  Let C be a nonempty closed convex subset of H , and let T be a nonexpansive
mapping of C into itself with F(T) �= ∅. For any x = x ∈ C, define a sequence {xn} in C by

xn+ = αnx + ( – αn)Txn, ∀n ∈N,

where {αn} ⊂ (, ) satisfies

lim
n→∞αn = ,

∞∑
n=

αn = ∞ and
∞∑
n=

|αn – αn+| < ∞.

Then {xn} converges strongly to a fixed point of T .

Kurokawa and Takahashi [] also proved the following strong convergence theorem for
nonspreading mappings in a Hilbert space; see also Hojo and Takahashi [] for general-
ized hybrid mappings.

Theorem  Let C be a nonempty closed convex subset of a real Hilbert space H . Let T be
a nonspreading mapping of C into itself. Let u ∈ C and define two sequences {xn} and {zn}
in C as follows: x = x ∈ C and

⎧⎨
⎩
xn+ = αnu + ( – αn)zn,

zn = 
n
∑n–

k=Tkxn
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for all n = , , . . . , where {αn} ⊂ (, ), limn→∞ αn =  and
∑∞

n= αn = ∞. If F(T) is
nonempty, then {xn} and {zn} converge strongly to Pu, where P is the metric projection of H
onto F(T).

Remark We do not know whether Theorem  for nonspreading mappings holds or not;
see [] and [].

In this paper, we provide a strong convergence theorem for finding a point z of F(T)∩
(A + B)–∩W– such that it is a unique fixed point of

PF(T)∩(A+B)–∩W–(I –V + γ g)

and a unique solution of the variational inequality

〈
(V – γ g)z,q – z

〉 ≥ , ∀q ∈ F(T)∩ (A + B)–∩W–,

where T , A, B,W , g and V denote a generalized hybrid mapping of C intoH , an α-inverse
strongly-monotone mapping of C into H with α > , maximal monotone operators on H
such that the domains of B andW are included in C, a k-contraction of H into itself with
 < k <  and a γ -strongly monotone and L-Lipschitzian continuous operator with γ > 
and L > , respectively. Using this result, we obtain new and well-known strong conver-
gence theorems in a Hilbert space. In particular, we solve a problem posed by Kurokawa
and Takahashi [].

2 Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively. When
{xn} is a sequence in H , we denote the strong convergence of {xn} to x ∈H by xn → x and
the weak convergence by xn ⇀ x. We have from [] that for any x, y ∈H and λ ∈R,

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉 (.)

and

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖. (.)

Furthermore, we have that for x, y,u, v ∈H ,

〈x – y,u – v〉 = ‖x – v‖ + ‖y – u‖ – ‖x – u‖ – ‖y – v‖. (.)

All Hilbert spaces satisfy Opial’s condition, that is,

lim inf
n→∞ ‖xn – u‖ < lim inf

n→∞ ‖xn – v‖ (.)

if xn ⇀ u and u �= v; see []. Let C be a nonempty closed convex subset of a Hilbert space
H , and let T : C → H be a mapping. We denote by F(T) the set of fixed points for T .
A mapping T : C → H is called quasi-nonexpansive if F(T) �= ∅ and ‖Tx – y‖ ≤ ‖x – y‖

http://www.fixedpointtheoryandapplications.com/content/2012/1/181
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for all x ∈ C and y ∈ F(T). If T : C → H is quasi-nonexpansive, then F(T) is closed and
convex; see []. For a nonempty closed convex subsetC ofH , the nearest point projection
of H onto C is denoted by PC , that is, ‖x – PCx‖ ≤ ‖x – y‖ for all x ∈ H and y ∈ C. Such
PC is called the metric projection of H onto C. We know that the metric projection PC

is firmly nonexpansive; ‖PCx – PCy‖ ≤ 〈PCx – PCy,x – y〉 for all x, y ∈ H . Furthermore,
〈x–PCx, y–PCx〉 ≤  holds for all x ∈H and y ∈ C; see []. The following result is in [].

Lemma  Let H be a Hilbert space, and let C be a nonempty closed convex subset of H . Let
T : C → H be a generalized hybrid mapping. Suppose that there exists {xn} ⊂ C such that
xn ⇀ z and xn – Txn → . Then z ∈ F(T).

Let B be a mapping of H into H . The effective domain of B is denoted by D(B), that is,
D(B) = {x ∈ H : Bx �= ∅}. A multi-valued mapping B is said to be a monotone operator on
H if 〈x – y,u – v〉 ≥  for all x, y ∈ D(B), u ∈ Bx, and v ∈ By. A monotone operator B on
H is said to be maximal if its graph is not properly contained in the graph of any other
monotone operator on H . For a maximal monotone operator B on H and r > , we may
define a single-valued operator Jr = (I + rB)– : H → D(B), which is called the resolvent of
B for r. We denote by Ar = 

r (I – Jr) the Yosida approximation of B for r > .We know from
[] that

Arx ∈ BJrx, ∀x ∈ H , r > . (.)

Let B be a maximal monotone operator on H , and let B– = {x ∈ H :  ∈ Bx}. It is known
that B– = F(Jr) for all r >  and the resolvent Jr is firmly nonexpansive, i.e.,

‖Jrx – Jry‖ ≤ 〈x – y, Jrx – Jry〉, ∀x, y ∈H . (.)

We also know the following lemma from [].

Lemma  Let H be a real Hilbert space, and let B be a maximal monotone operator on H .
For r >  and x ∈ H , define the resolvent Jrx. Then the following holds:

s – t
s

〈Jsx – Jtx, Jsx – x〉 ≥ ‖Jsx – Jtx‖

for all s, t >  and x ∈H .

From Lemma , we have that

‖Jλx – Jμx‖ ≤ (|λ –μ|/λ)‖x – Jλx‖

for all λ,μ >  and x ∈H ; see also [, ]. To prove our main result, we need the following
lemmas.

Lemma ([]; see also []) Let {sn} be a sequence of nonnegative real numbers, let {αn} be
a sequence of [, ] with

∑∞
n= αn = ∞, let {βn} be a sequence of nonnegative real numbers

http://www.fixedpointtheoryandapplications.com/content/2012/1/181
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with
∑∞

n= βn < ∞, and let {γn} be a sequence of real numbers with lim supn→∞ γn ≤ .
Suppose that

sn+ ≤ ( – αn)sn + αnγn + βn

for all n = , , . . . . Then limn→∞ sn = .

Lemma  ([]) Let {�n} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {�ni} of {�n} which satisfies �ni < �ni+ for all
i ∈ N. Define the sequence {τ (n)}n≥n of integers as follows:

τ (n) =max{k ≤ n : �k < �k+},

where n ∈N such that {k ≤ n : �k < �k+} �= ∅. Then the following hold:
(i) τ (n) ≤ τ (n + ) ≤ · · · and τ (n)→ ∞;
(ii) �τ (n) ≤ �τ (n)+ and �n ≤ �τ (n)+, ∀n ∈N.

3 Strong convergence theorems
LetH be a real Hilbert space. Amapping g :H →H is a contraction if there exists k ∈ (, )
such that ‖g(x)–g(y)‖ ≤ k‖x–y‖ for all x, y ∈H .We call such amapping g a k-contraction.
A nonlinear operatorV :H →H is called stronglymonotone if there exists γ >  such that
〈x – y,Vx – Vy〉 ≥ γ ‖x – y‖ for all x, y ∈ H . Such V is also called γ -strongly monotone.
Anonlinear operatorV :H →H is called Lipschitzian continuous if there exists L >  such
that ‖Vx–Vy‖ ≤ L‖x– y‖ for all x, y ∈ H . Such V is also called L-Lipschitzian continuous.
We know the following three lemmas in a Hilbert space; see Lin and Takahashi [].

Lemma  ([]) Let H be a Hilbert space, and let V be a γ -strongly monotone and L-
Lipschitzian continuous operator on H with γ >  and L > . Let t >  satisfy γ > tL and
 > tγ . Then  <  – t(γ – tL) <  and I – tV : H → H is a contraction, where I is the
identity operator on H .

Lemma  ([]) Let H be a Hilbert space, and let C be a nonempty closed convex subset
of H . Let PC be the metric projection of H onto C, and let V be a γ -strongly monotone and
L-Lipschitzian continuous operator on H with γ >  and L > . Let t >  satisfy γ > tL

and  > tγ , and let z ∈ C. Then the following are equivalent:
() z = PC(I – tV )z;
() 〈Vz, y – z〉 ≥ ,∀y ∈ C;
() z = PC(I –V )z.

Such z ∈ C always exists and is unique.

Lemma  ([]) Let H be a Hilbert space, and let g : H → H be a k-contraction with  <
k < . Let V be a γ -strongly monotone and L-Lipschitzian continuous operator on H with
γ >  and L > . Let a real number γ satisfy  < γ < γ

k . Then V – γ g :H →H is a (γ – γ k)-
strongly monotone and (L+ γ k)-Lipschitzian continuous mapping. Furthermore, let C be a
nonempty closed convex subset of H . Then PC(I –V + γ g) has a unique fixed point z in C.
This point z ∈ C is also a unique solution of the variational inequality

〈
(V – γ g)z,q – z

〉 ≥ , ∀q ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2012/1/181
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Now, we prove the following strong convergence theorem of Halpern’s type [] for find-
ing a common solution of a monotone inclusion problem for the sum of two monotone
mappings, of a fixed point problem for generalized hybridmappings and of an equilibrium
problem for bifunctions in a Hilbert space.

Theorem  Let H be a real Hilbert space, and let C be a nonempty closed convex sub-
set of H . Let α > , and let A be an α-inverse strongly-monotone mapping of C into H .
Let B and W be maximal monotone operators on H such that the domains of B and
W are included in C. Let Jλ = (I + λB)– and Tr = (I + rW )– be resolvents of B and W
for λ >  and r > , respectively. Let S be a generalized hybrid mapping of C into H .
Let  < k < , and let g be a k-contraction of H into itself. Let V be a γ -strongly mono-
tone and L-Lipschitzian continuous operator with γ >  and L > . Take μ,γ ∈ R as fol-
lows:

 < μ <
γ
L

,  < γ <
γ – Lμ


k

.

Suppose F(S) ∩ (A + B)– ∩ W– �= ∅. Let x = x ∈ H , and let {xn} ⊂ H be a sequence
generated by

xn+ = βnxn + ( – βn)
{
αnγ g(xn) + (I – αnV )SJλn (I – λnA)Trnxn

}

for all n ∈ N, where {αn} ⊂ (, ), {βn} ⊂ (, ), {λn} ⊂ (,∞) and {rn} ⊂ (,∞) sat-
isfy

lim
n→∞αn = ,

∞∑
n=

αn = ∞,  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < ,

lim inf
n→∞ rn >  and  < a ≤ λn ≤ b < α.

Then {xn} converges strongly to z ∈ F(S) ∩ (A + B)– ∩ W–, where z is a unique fixed
point in F(S)∩ (A + B)–∩W– of PF(S)∩(A+B)–∩W–(I –V + γ g).

Proof Let z ∈ F(S)∩ (A+B)–∩W–.We have that z = Sz, z = Jλn (I –λnA)z and z = Trnz.
Putting wn = Jλn (I – λnA)Trnxn and un = Trnxn, we obtain that

‖Swn – z‖ ≤ ‖wn – z‖

= ‖Jλn (un – λnAun) – Jλn (z – λnAz)‖

≤ ‖un – λnAun – (z – λnAz)‖

= ‖un – z – λn(Aun –Az)‖

= ‖un – z‖ – λn〈un – z,Aun –Az〉 + λ
n‖Aun –Az‖

≤ ‖un – z‖ – λnα‖Aun –Az‖ + λ
n‖Aun –Az‖

≤ ‖xn – z‖ + λn(λn – α)‖Aun –Az‖

≤ ‖xn – z‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/181
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Put τ = γ – Lμ
 . Using limn→∞ αn = , we have that for any x, y ∈H ,

∥∥(I – αnV )x – (I – αnV )y
∥∥

=
∥∥x – y – αn(Vx –Vy)

∥∥

= ‖x – y‖ – αn〈x – y,Vx –Vy〉 + α
n‖Vx –Vy‖

≤ ‖x – y‖ – αnγ ‖x – y‖ + α
nL

‖x – y‖

=
(
 – αnγ + α

nL
)‖x – y‖

=
(
 – αnτ – αnLμ + α

nL
)‖x – y‖

≤ (
 – αnτ – αn

(
Lμ – αnL

)
+ α

nτ
)‖x – y‖

≤ (
 – αnτ + α

nτ
)‖x – y‖

= ( – αnτ )‖x – y‖. (.)

Since  – αnτ > , we obtain that for any x, y ∈H ,

∥∥(I – αnV )x – (I – αnV )y
∥∥ ≤ ( – αnτ )‖x – y‖. (.)

Putting yn = αnγ g(xn) + (I – αnV )SJλn (I – λnA)Trnxn, from z = αnVz + z – αnVz, (.) and
(.) we have that

‖yn – z‖ =
∥∥αn

(
γ g(xn) –Vz

)
+ (I – αnV )Swn – (I – αnV )z

∥∥
≤ αnγ k‖xn – z‖ + αn

∥∥γ g(z) –Vz
∥∥ + ( – αnτ )‖Swn – z‖

≤ {
 – αn(τ – γ k)

}‖xn – z‖ + αn
∥∥γ g(z) –Vz

∥∥.
Using this, we get

‖xn+ – z‖ =
∥∥βn(xn – z) + ( – βn)(yn – z)

∥∥
≤ βn‖xn – z‖ + ( – βn)‖yn – z‖
≤ βn‖xn – z‖

+ ( – βn)
({
 – αn(τ – γ k)

}‖xn – z‖ + αn
∥∥γ g(z) –Vz

∥∥)
=

{
 – ( – βn)αn(τ – γ k)

}‖xn – z‖

+ ( – βn)αn(τ – γ k)
‖γ g(z) –Vz‖

τ – γ k
.

Putting K =max{‖x – z‖, ‖γ g(z)–Vz‖
τ–γ k }, we have that ‖xn – z‖ ≤ K for all n ∈ N. Then {xn} is

bounded. Furthermore, {un}, {wn} and {yn} are bounded. Using Lemma , we can take a
unique z ∈ F(S)∩ (A + B)–∩W– such that

z = PF(S)∩(A+B)–∩W–(I –V + γ g)z.

From the definition of {xn}, we have that

xn+ – xn = βnxn + ( – βn)
{
αnγ g(xn) + (I – αnV )Swn

}
– xn

http://www.fixedpointtheoryandapplications.com/content/2012/1/181
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and hence

xn+ – xn – ( – βn)αnγ g(xn) = βnxn + ( – βn)(I – αnV )Swn – xn

= ( – βn)
{
(I – αnV )Swn – xn

}
= ( – βn)(Swn – xn – αnVSwn).

Thus, we have that

〈
xn+ – xn – ( – βn)αnγ g(xn),xn – z

〉
=

〈
( – βn)(Swn – xn – αnVSwn),xn – z

〉
= –( – βn)〈xn – Swn,xn – z〉 – ( – βn)αn〈VSwn,xn – z〉. (.)

From (.) and (.), we have that

〈xn – Swn,xn – z〉 = ‖xn – z‖ + ‖Swn – xn‖ – ‖Swn – z‖

≥ ‖xn – z‖ + ‖Swn – xn‖ – ‖xn – z‖

= ‖Swn – xn‖. (.)

From (.) and (.), we also have that

–〈xn – xn+,xn – z〉 = ( – βn)αn
〈
γ g(xn),xn – z

〉
– ( – βn)〈xn – Swn,xn – z〉 – ( – βn)αn〈VSwn,xn – z〉

≤ ( – βn)αn
〈
γ g(xn),xn – z

〉
– ( – βn)‖Swn – xn‖ – ( – βn)αn〈VSwn,xn – z〉. (.)

Furthermore, using (.) and (.), we have that

‖xn+ – z‖ – ‖xn – xn+‖ – ‖xn – z‖

≤ ( – βn)αn
〈
γ g(xn),xn – z

〉
– ( – βn)‖Swn – xn‖ – ( – βn)αn〈VSwn,xn – z〉.

Setting �n = ‖xn – z‖, we have that

�n+ – �n – ‖xn – xn+‖

≤ ( – βn)αn
〈
γ g(xn),xn – z

〉
– ( – βn)‖Swn – xn‖ – ( – βn)αn〈VSwn,xn – z〉. (.)

Noting that

‖xn+ – xn‖ =
∥∥( – βn)αn

(
γ g(xn) –VSwn

)
+ ( – βn)(Swn – xn)

∥∥
≤ ( – βn)

(‖Swn – xn‖ + αn‖γ g(xn) –VSwn‖
)
, (.)
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we have that

‖xn+ – xn‖ ≤ ( – βn)
(‖Swn – xn‖ + αn‖γ g(xn) –VSwn‖

)
= ( – βn)‖Swn – xn‖ + ( – βn)αn‖Swn – xn‖

∥∥γ g(xn) –VSwn
∥∥

+ ( – βn)α
n
∥∥γ g(xn) –VSwn

∥∥. (.)

Thus, we have from (.) and (.) that

�n+ – �n ≤ ‖xn – xn+‖ + ( – βn)αn
〈
γ g(xn),xn – z

〉
– ( – βn)‖Swn – xn‖ – ( – βn)αn〈VSwn,xn – z〉

≤ ( – βn)‖Swn – xn‖ + ( – βn)αn‖Swn – xn‖
∥∥γ g(xn) –VSwn

∥∥
+ ( – βn)α

n
∥∥γ g(xn) –VSwn

∥∥ + ( – βn)αn
〈
γ g(xn),xn – z

〉
– ( – βn)‖Swn – xn‖ – ( – βn)αn〈VSwn,xn – z〉

and hence

�n+ – �n + βn( – βn)‖Swn – xn‖

≤ ( – βn)αn‖Swn – xn‖
∥∥γ g(xn) –VSwn

∥∥
+ ( – βn)α

n
∥∥γ g(xn) –VSwn

∥∥ + ( – βn)αn
〈
γ g(xn),xn – z

〉
– ( – βn)αn〈VSwn,xn – z〉. (.)

We divide the proof into two cases.
Case : Suppose that �n+ ≤ �n for all n ∈ N. In this case, limn→∞ �n exists and then

limn→∞(�n+ – �n) = . Using  < lim infn→∞ βn ≤ lim supn→∞ βn <  and limn→∞ αn = ,
we have from (.) that

lim
n→∞‖Swn – xn‖ = . (.)

Using (.), we also have that

lim
n→∞‖xn+ – xn‖ = . (.)

Since xn+ – xn = ( – βn)(yn – xn), we have from (.) that

lim
n→∞‖yn – xn‖ = . (.)

We also have from (.) that

‖un – z‖ = ‖Trnxn – Trnz‖

≤ 〈xn – z,un – z〉
= ‖xn – z‖ + ‖un – z‖ – ‖un – xn‖
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and hence

‖un – z‖ ≤ ‖xn – z‖ – ‖un – xn‖. (.)

From (.) we have that

‖Swn – z‖ ≤ ‖un – z‖ ≤ ‖xn – z‖ – ‖un – xn‖

and hence

‖un – xn‖ ≤ ‖xn – z‖ – ‖Swn – z‖ ≤ M‖Swn – xn‖,

whereM = sup{‖xn – z‖ + ‖Swn – z‖ : n ∈ N}. Thus, from (.) we have that

lim
n→∞‖un – xn‖ = . (.)

We show limn→∞ ‖Swn –wn‖ = . Since ‖ · ‖ is a convex function, we have that

‖xn+ – z‖ ≤ βn‖xn – z‖ + ( – βn)‖yn – z‖. (.)

From z = αnVz + z – αnVz and (.), we also have that

‖yn – z‖ =
∥∥αn

(
γ g(xn) –Vz

)
+ (I – αnV )Swn – (I – αnV )z

∥∥

≤ ( – αnτ )‖Swn – z‖ + αn
〈
γ g(xn) –Vz, yn – z

〉
≤ ( – αnτ )‖wn – z‖ + αn

〈
γ g(xn) –Vz, yn – z

〉
≤ ‖wn – z‖ + αn

〈
γ g(xn) –Vz, yn – z

〉
≤ ‖xn – z‖ + λn(λn – α)‖Aun –Az‖

+ αn
〈
γ g(xn) –Vz, yn – z

〉
. (.)

Using (.) and (.), we have that

‖xn+ – z‖ ≤ βn‖xn – z‖ + ( – βn)‖xn – z‖

+ ( – βn)
(
λn(λn – α)‖Aun –Az‖ + αn

〈
γ g(xn) –Vz, yn – z

〉)
= ‖xn – z‖ + ( – βn)

(
λn(λn – α)‖Aun –Az‖

+ αn
〈
γ g(xn) –Vz, yn – z

〉)
. (.)

Thus, we have that

( – βn)λn(α – λn)‖Aun –Az‖

≤ ‖xn – z‖ – ‖xn+ – z‖ + ( – βn)αn
〈
γ g(xn) –Vz, yn – z

〉
. (.)

Then we have that

lim
n→∞‖Aun –Az‖ = . (.)
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Since Jλn is firmly nonexpansive, we have that

‖wn – z‖ = 
∥∥Jλn (un – λnAun) – Jλn (z – λnAz)

∥∥

≤ 
〈
un – λnAun – (z – λnAz),wn – z

〉
=

∥∥un – λnAun – (z – λnAz)
∥∥ + ‖wn – z‖

–
∥∥un – λnAun – (z – λnAz) – (wn – z)

∥∥

≤ ‖un – z‖ + ‖wn – z‖

–
∥∥un –wn – λn(Aun –Az)

∥∥

≤ ‖xn – z‖ + ‖wn – z‖ – ‖un –wn‖

+ λn〈un –wn,Aun –Az〉 – λ
n‖Aun –Az‖.

Thus, we get

‖wn – z‖ ≤ ‖xn – z‖ – ‖un –wn‖

+ λn〈un –wn,Aun –Az〉 – λ
n‖Aun –Az‖. (.)

Using (.), we obtain

‖xn+ – z‖ ≤ βn‖xn – z‖ + ( – βn)‖yn – z‖

≤ βn‖xn – z‖ + ( – βn)
(‖wn – z‖ + αn

〈
γ g(xn) –Vz, yn – z

〉)
≤ βn‖xn – z‖ + ( – βn)‖xn – z‖

– ( – βn)‖un –wn‖ + ( – βn)λn〈un –wn,Aun –Az〉
– ( – βn)λ

n‖Aun –Az‖ + ( – βn)αn
〈
γ g(xn) –Vz, yn – z

〉
= ‖xn – z‖ – ( – βn)‖un –wn‖

+ ( – βn)λn〈un –wn,Aun –Az〉 – ( – βn)λ
n‖Aun –Az‖

+ ( – βn)αn
〈
γ g(xn) –Vz, yn – z

〉
,

from which it follows that

( – βn)‖xn –wn‖ ≤ ‖xn – z‖

– ‖xn+ – z‖ + λn〈un –wn,Aun –Az〉
– λ

n‖Aun –Az‖ + αn
〈
γ g(xn) –Vz, yn – z

〉
.

Then we have

lim
n→∞‖un –wn‖ = . (.)

From (.) and (.), we have that

lim
n→∞‖xn –wn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/181


Takahashi et al. Fixed Point Theory and Applications 2012, 2012:181 Page 12 of 19
http://www.fixedpointtheoryandapplications.com/content/2012/1/181

Since ‖Swn –wn‖ ≤ ‖Swn – xn‖ + ‖xn –wn‖, we have that

lim
n→∞‖Swn –wn‖ = . (.)

Take λ ∈ R with  < a ≤ λ ≤ b < α arbitrarily. Put sn = (I – λnA)un. Using un = Trnxn
and wn = Jλn (I – λnA)un, we have from Lemma  that

∥∥Jλ (I – λA)un –wn
∥∥ =

∥∥Jλ (I – λA)un – Jλn (I – λnA)un
∥∥

=
∥∥Jλ (I – λA)un – Jλ (I – λnA)un

+ Jλ (I – λnA)un – Jλn (I – λnA)un
∥∥

≤ ∥∥(I – λA)un – (I – λnA)un
∥∥ + ‖Jλsn – Jλnsn‖

≤ |λ – λn|‖Aun‖ + |λ – λn|
λ

‖Jλsn – sn‖. (.)

We also have from (.) that

∥∥un – Jλ (I – λA)un
∥∥ ≤ ‖un –wn‖ +

∥∥wn – Jλ (I – λA)un
∥∥. (.)

We will use (.) and (.) later.
Let us show that lim supn→∞〈(V – γ g)z,xn – z〉 ≥ . Put

A = lim sup
n→∞

〈
(V – γ g)z,xn – z

〉
.

Without loss of generality, we may assume that there exists a subsequence {xni} of {xn}
such thatA = limi→∞〈(V –γ g)z,xni –z〉 and {xni} converges weakly to some pointw ∈H .
From ‖xn –wn‖ →  and ‖xn –un‖ → , we also have that {wni} and {uni} converge weakly
to w ∈ C. On the other hand, from {λni} ⊂ [a,b] there exists a subsequence {λnij

} of {λni}
such that λnij

→ λ for some λ ∈ [a,b]. Without loss of generality, we assume that wni →
w, uni → w and λni → λ. From (.) we know limn→∞ ‖Swn – wn‖ = . Thus, we have
from Lemma  that w = Sw. SinceW is a monotone operator and xni–uni

rni
∈ Wuni , we have

that for any (u, v) ∈W ,

〈
u – uni , v –

xni – uni
rni

〉
≥ .

Since lim infn→∞ rn > , uni ⇀ w and xni – uni → , we have

〈u –w, v〉 ≥ .

Since W is a maximal monotone operator, we have  ∈ Ww and hence w ∈ W–. Since
λni → λ, we have from (.) that

∥∥Jλ (I – λA)uni –wni
∥∥ → .

Furthermore, we have from (.) that

∥∥uni – Jλ (I – λA)uni
∥∥ → .
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Since Jλ (I – λA) is nonexpansive, we have that w = Jλ (I – λA)w. This means that  ∈
Aw + Bw. Thus, we have

w ∈ F(T)∩ (A + B)–∩W–.

Then we have

A = lim
i→∞

〈
(V – γ g)z,xni – z

〉
=

〈
(V – γ g)z,w – z

〉 ≥ . (.)

Since yn – z = αn(γ g(xn) –Vz) + (I – αnV )Swn – (I – αnV )z, we have

‖yn – z‖ ≤ ( – αnτ )‖Swn – z‖ + αn
〈
γ g(xn) –Vz, yn – z

〉
.

Thus, we have

‖yn – z‖ ≤ ( – αnτ )‖xn – z‖ + αn
〈
γ g(xn) –Vz, yn – z

〉
.

Consequently, we have that

‖xn+ – z‖ ≤ βn‖xn – z‖ + ( – βn)‖yn – z‖

≤ βn‖xn – z‖

+ ( – βn)
(
( – αnτ )‖xn – z‖ + αn

〈
γ g(xn) –Vz, yn – z

〉)
=

(
βn + ( – βn)( – αnτ )

)‖xn – z‖

+ ( – βn)αn
〈
γ g(xn) –Vz, yn – z

〉
≤ (

 – ( – βn)
(
αnτ – (αnτ )

))‖xn – z‖

+ ( – βn)αnγ k‖xn – z‖ + ( – βn)αn
〈
γ g(z) –Vz, yn – z

〉
=

(
 – ( – βn)αn(τ – γ k)

)‖xn – z‖

+ ( – βn)(αnτ )‖xn – z‖ + ( – βn)αn
〈
γ g(z) –Vz, yn – z

〉
=

(
 – ( – βn)αn(τ – γ k)

)‖xn – z‖

+ ( – βn)αn(τ – γ k)
(

αnτ
‖xn – z‖
(τ – γ k)

+
〈γ g(z) –Vz, yn – z〉

τ – γ k

)
.

By (.) and Lemma , we obtain that xn → z, where

z = PF(S)∩(A+B)–∩W–(I –V + γ g)z.

Case : Suppose that there exists a subsequence {�ni} ⊂ {�n} such that �ni < �ni+ for all
i ∈ N. In this case, we define τ :N→N by

τ (n) =max{k ≤ n : �k < �k+}.
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Then we have from Lemma  that �τ (n) < �τ (n)+. Thus, we have from (.) that for all
n ∈N,

βτ (n)( – βτ (n))‖Swτ (n) – xτ (n)‖

≤ ( – βτ (n))ατ (n)‖Swτ (n) – xτ (n)‖
∥∥γ g(xτ (n)) –VSwτ (n)

∥∥
+ ( – βτ (n))α

τ (n)
∥∥γ g(xτ (n)) –VSwτ (n)

∥∥

+ ( – βτ (n))ατ (n)
〈
γ g(xτ (n)),xτ (n) – z

〉
– ( – βτ (n))ατ (n)〈VSwτ (n),xτ (n) – z〉. (.)

Using limn→∞ αn =  and  < lim infn→∞ βn ≤ lim supn→∞ βn < , we have from (.) and
Lemma  that

lim
n→∞

∥∥Swτ (n) – xτ (n)
∥∥ = . (.)

As in the proof of Case , we also have that

lim
n→∞‖xτ (n)+ – xτ (n)‖ =  (.)

and

lim
n→∞‖yτ (n) – xτ (n)‖ = . (.)

Furthermore, we have that limn→∞ ‖uτ (n) – xτ (n)‖ = , limn→∞ ‖Auτ (n) – Az‖ = ,
limn→∞‖uτ (n) – wτ (n)‖ =  and limn→∞‖xτ (n) – wτ (n)‖ = . From these we have that
limn→∞ ‖Swτ (n) –wτ (n)‖ = . As in the proof of Case , we can show that

lim sup
n→∞

〈
(V – γ g)z,xτ (n) – z

〉 ≥ .

We also have that

‖yτ (n) – z‖ ≤ ( – ατ (n)τ )‖xτ (n) – z‖ + ατ (n)
〈
γ g(xτ (n)) –Vz, yτ (n) – z

〉

and hence

‖xτ (n)+ – z‖ ≤ (
 – ( – βτ (n))ατ (n)(τ – γ k)

)‖xτ (n) – z‖

+ ( – βτ (n))(ατ (n)τ )‖xτ (n) – z‖

+ ( – βτ (n))ατ (n)
〈
γ g(z) –Vz, yτ (n) – z

〉
.

From �τ (n) < �τ (n)+, we have that

( – βτ (n))ατ (n)(τ – γ k)‖xτ (n) – z‖

≤ ( – βτ (n))(ατ (n)τ )‖xτ (n) – z‖

+ ( – βτ (n))ατ (n)
〈
γ g(z) –Vz, yτ (n) – z

〉
.
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Since ( – βτ (n))ατ (n) > , we have that

(τ – γ k)‖xτ (n) – z‖

≤ ατ (n)τ
‖xτ (n) – z‖ + 

〈
γ g(z) –Vz, yτ (n) – z

〉
.

Thus, we have that

lim sup
n→∞

(τ – γ k)‖xτ (n) – z‖ ≤ 

and hence ‖xτ (n) – z‖ →  as n→ ∞. Since xτ (n) – xτ (n)+ → , we have ‖xτ (n)+ – z‖ → 
as n→ ∞. Using Lemma  again, we obtain that

‖xn – z‖ ≤ ‖xτ (n)+ – z‖ → 

as n→ ∞. This completes the proof. �

4 Applications
In this section, using Theorem , we can obtain well-known and new strong convergence
theorems in a Hilbert space. Let H be a Hilbert space, and let f be a proper lower semi-
continuous convex function ofH into (–∞,∞]. Then the subdifferential ∂f of f is defined
as follows:

∂f (x) =
{
z ∈ H : f (x) + 〈z, y – x〉 ≤ f (y),∀y ∈H

}

for all x ∈H . From Rockafellar [], we know that ∂f is a maximal monotone operator. Let
C be a nonempty closed convex subset of H , and let iC be the indicator function of C, i.e.,

iC(x) =

⎧⎨
⎩
, x ∈ C,

∞, x /∈ C.

Then, iC is a proper lower semicontinuous convex function on H . So, we can define the
resolvent Jλ of ∂iC for λ > , i.e.,

Jλx = (I + λ∂iC)–x

for all x ∈H . We know that Jλx = PCx for all x ∈H and λ > ; see [].

Theorem  Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let S be a generalized hybrid mapping of C into C. Suppose F(S) �= ∅. Let u,x ∈ C,
and let {xn} ⊂ C be a sequence generated by

xn+ = βnxn + ( – βn)
{
αnu + ( – αn)Sxn

}

for all n ∈N, where {βn} ⊂ (, ) and {αn} ⊂ (, ) satisfy

lim
n→∞αn = ,

∞∑
n=

αn = ∞
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and

 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Then the sequence {xn} converges strongly to z ∈ F(S), where z = PF(S)u.

Proof Put A = , B =W = ∂iC and λn = rn =  for all n ∈ N in Theorem . Then we have
Jλn = Trn = PC for all n ∈ N. Furthermore, put g(x) = u and V (x) = x for all x ∈ H . Then we
can take γ = L = . Thus, we can take μ = . On the other hand, since ‖g(x) – g(y)‖ =  ≤

‖x – y‖ for all x, y ∈ H , we can take k = 

 . So, we can take γ = . Then for u,x ∈ C, we
get that

xn+ = βnxn + ( – βn)
{
αnu + (I – αn)Sxn

}

for all n ∈N. So, we have {xn} ⊂ C. We also have

z = PF(S)∩C(I –V + γ g)z = PF(S)(z – z +  · u) = PF(S)u.

Thus, we obtain the desired result by Theorem . �

Theorem  solves the problem posed by Kurokawa and Takahashi []. The following
result is a strong convergence theoremofHalpern’s type [] for finding a common solution
of a monotone inclusion problem for the sum of twomonotone mappings, of a fixed point
problem for nonexpansive mappings and of an equilibrium problem for bifunctions in a
Hilbert space.

Theorem  Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let α > , and let A be an α-inverse strongly-monotone mapping of C into H . Let
B and W be maximal monotone operators on H such that the domains of B and W are
included in C. Let Jλ = (I + λB)– and Tr = (I + rW )– be resolvents of B and W for λ > 
and r > , respectively. Let S be a nonexpansive mapping of C into H . Let  < k < , and let
g be a k-contraction of H into itself. Let V be a γ -strongly monotone and L-Lipschitzian
continuous operator with γ >  and L > . Take μ,γ ∈R as follows:

 < μ <
γ
L

,  < γ <
γ – Lμ


k

.

Suppose F(S) ∩ (A + B)– ∩ W– �= ∅. Let x = x ∈ H , and let {xn} ⊂ H be a sequence
generated by

xn+ = βnxn + ( – βn)
{
αnγ g(xn) + (I – αnV )SJλn (I – λnA)Trnxn

}

for all n ∈N, where {αn} ⊂ (, ), {βn} ⊂ (, ), {λn} ⊂ (,∞) and {rn} ⊂ (,∞) satisfy

lim
n→∞αn = ,

∞∑
n=

αn = ∞,  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < ,

lim inf
n→∞ rn >  and  < a ≤ λn ≤ b < α.
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Then the sequence {xn} converges strongly to z ∈ F(S) ∩ (A + B)– ∩ W–, where z =
PF(S)∩(A+B)–∩W–(I –V + γ g)z.

Proof We know that a nonexpansive mapping T of C into H is a (, )-generalized hybrid
mapping. So, we obtain the desired result by Theorem . �

Let f : C × C → R be a bifunction. The equilibrium problem (with respect to C) is to
find x̂ ∈ C such that

f (x̂, y) ≥ , ∀y ∈ C. (.)

The set of such solutions x̂ is denoted by EP(f ), i.e.,

EP(f ) =
{
x̂ ∈ C : f (x̂, y) ≥ ,∀y ∈ C

}
.

For solving the equilibrium problem, let us assume that the bifunction f : C × C → R

satisfies the following conditions:
(A) f (x,x) =  for all x ∈ C;
(A) f is monotone, i.e., f (x, y) + f (y,x) ≤  for all x, y ∈ C;
(A) for all x, y, z ∈ C,

lim sup
t↓

f
(
tz + ( – t)x, y

) ≤ f (x, y);

(A) for all x ∈ C, f (x, ·) is convex and lower semicontinuous.
The following lemmaswere given inCombettes andHirstoaga [] andTakahashi, Taka-

hashi and Toyoda []; see also [, ].

Lemma  ([]) Let H be a real Hilbert space, and let C be a nonempty closed convex
subset of H . Assume that f : C × C → R satisfies (A)-(A). For r >  and x ∈ H , define a
mapping Tr :H → C as follows:

Trx =
{
z ∈ C : f (z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Then the following hold:
() Tr is single-valued;
() Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

() F(Tr) = EP(f );
() EP(f ) is closed and convex.

We call such Tr the resolvent of f for r > .

Lemma  ([]) Let H be a Hilbert space, and let C be a nonempty closed convex subset
of H . Let f : C × C → R satisfy (A)-(A). Let Af be a set-valued mapping of H into itself
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defined by

Af x =

⎧⎨
⎩

{z ∈H : f (x, y) ≥ 〈y – x, z〉,∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C.

Then EP(f ) = A–
f  and Af is a maximal monotone operator with D(Af ) ⊂ C. Furthermore,

for any x ∈H and r > , the resolvent Tr of f coincides with the resolvent of Af , i.e.,

Trx = (I + rAf )–x.

Using Lemmas ,  andTheorem , we also obtain the following result for generalized
hybrid mappings of C into H with equilibrium problem in a Hilbert space; see also [–
].

Theorem  Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . Let S be a generalised hybrid mapping of C into H . Let f be a bifunction of C×C into
R satisfying (A)-(A). Let  < k < , and let g be a k-contraction of H into itself. Let V be
a γ -strongly monotone and L-Lipschitzian continuous operator of H into itself with γ > 
and L > . Take μ,γ ∈R as follows:

 < μ <
γ
L

,  < γ <
γ – Lμ


k

.

Suppose that F(S)∩ EP(f ) �= ∅. Let x = x ∈H , and let {xn} ⊂H be a sequence generated by

f (un, y) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)
{
αnγ g(xn) + (I – αnV )Sun

}

for all n ∈N, where {βn} ⊂ (, ), {αn} ⊂ (, ) and {rn} ⊂ (,∞) satisfy

lim
n→∞αn = ,

∞∑
n=

αn = ∞, lim inf
n→∞ rn > ,

and  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Then the sequence {xn} converges strongly to z ∈ F(S)∩EP(f ),where z = PF(S)∩EP(f )(I –V +
γ g)z.

Proof Put A =  and B = ∂iC in Theorem . Furthermore, for the bifunction f : C ×C →
R, define Af as in Lemma . Put W = Af in Theorem , and let Trn be the resolvent of
Af for rn > . Then we obtain that the domain of Af is included in C and Trnxn = un for all
n ∈N. Thus, we obtain the desired result by Theorem . �
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