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operators on H such that the domains of Band W are included in C. Let 0 < k< 1, and
let g be a k-contraction of H into itself. Let V be a y-strongly monotone and
L-Lipschitzian continuous operator with 7 > 0 and L > 0. Take w, ¥ € R as follows:
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Suppose that F(T) N (A +B)"'0N W0 #@, where F(T) and (A + B)~'0, W0 are the set
of fixed points of T and the sets of zero points of A+ Band W, respectively. In this
paper, we prove a strong convergence theorem for finding a point z, of

F(M N (A+B)'0N W0, where zg is a unique fixed point of

Pecnnass-Tonw-10 =V + ¥ g). This point zy € F(T) N (A+B)'0 N W0 is also a unique
solution of the variational inequality

(V-y9)20,a-20) =0, ¥YgeFMNA+Bonw 0.

Using this result, we obtain new and well-known strong convergence theorems in a
Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi
(Nonlinear Anal. 73:1562-1568, 2010).
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1 Introduction

Let H be areal Hilbert space, and let C be a nonempty closed convex subset of H. Let Nand
R be the sets of positive integers and real numbers, respectively. A mapping T': C — H is
called generalized hybrid [1] if there exist o, B € R such that

@l Te - Ty + A - a)llx = Tyl* < Bl Tx - yI1* + (1= B)llx - yII?
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for all x,y € C. We call such a mapping an («, 8)-generalized hybrid mapping. Kocourek,
Takahashi and Yao [1] proved a fixed point theorem for such mappings in a Hilbert space.
Furthermore, they proved a nonlinear mean convergence theorem of Baillon’s type [2] in
a Hilbert space. Notice that the mapping above covers several well-known mappings. For

example, an («, §)-generalized hybrid mapping 7 is nonexpansive fore« =1and 8 =0, i.e.,
ITx - Tyl < llx=yll, Vx,yeC.
It is also nonspreading [3, 4] for« =2 and B =1, i.e,,
20T - Tyl* < I Te—yI* + I Ty -], VxyeC.
Furthermore, it is hybrid [5] for « = % and 8 = %, ie.,
BITx— BI* < lx—yl” + | Tx—yI> + | Ty 5%, ¥x,y€C.
We can also show that if x = Tx, then for any y € C,
allx=Ty1* + A -)llx - Tyl* < Bllx—yII* + (1= B)llx - yII*,
and hence ||x— Ty|| < ||x—y||. This means that an («, 8)-generalized hybrid mapping with a
fixed point is quasi-nonexpansive. The following strong convergence theorem of Halpern’s

type [6] was proved by Wittmann [7]; see also [8].

Theorem 1 Let C be a nonempty closed convex subset of H, and let T be a nonexpansive
mapping of C into itself with F(T) # (. For any x, = x € C, define a sequence {x,} in C by

KXntl = OpX + (1 - an)Txm VneN,

where {a,} C (0,1) satisfies
oo o0
nlingoan =0, Zan =00 and Z loty, — etye1] < 00.
n=1 n=1

Then {x,} converges strongly to a fixed point of T.

Kurokawa and Takahashi [9] also proved the following strong convergence theorem for
nonspreading mappings in a Hilbert space; see also Hojo and Takahashi [10] for general-
ized hybrid mappings.

Theorem 2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be
a nonspreading mapping of C into itself. Let u € C and define two sequences {x,} and {z,}
in C as follows: x; =x € C and

X1 = ottt + (1 — 002,

_1 n=1 g
Zy = ZZk:OT Xn
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for all n = 1,2,..., where {a,} C (0,1), lim, oo, = 0 and Y oo a, = oco. If F(T) is

n=1
nonempty, then {x,} and {z,} converge strongly to Pu, where P is the metric projection of H
onto F(T).

Remark We do not know whether Theorem 1 for nonspreading mappings holds or not;
see [9] and [10].

In this paper, we provide a strong convergence theorem for finding a point zo of F(T) N
(A + B)™'0 N W10 such that it is a unique fixed point of

Prrynasprtonw-10ld =V +7g)
and a unique solution of the variational inequality

(V-v9z0,q-2)=0, VYgeF(T)NnA+Bronwo,
where T, A, B, W, g and V denote a generalized hybrid mapping of C into H, an «-inverse
strongly-monotone mapping of C into H with « > 0, maximal monotone operators on H
such that the domains of B and W are included in C, a k-contraction of H into itself with
0 < k <1 and a y-strongly monotone and L-Lipschitzian continuous operator with 7 > 0
and L > 0, respectively. Using this result, we obtain new and well-known strong conver-
gence theorems in a Hilbert space. In particular, we solve a problem posed by Kurokawa

and Takahashi [9].

2 Preliminaries
Let H be a real Hilbert space with inner product (:,-) and norm ||-||, respectively. When
{x,} is a sequence in H, we denote the strong convergence of {x,} to x € H by x, — x and
the weak convergence by x, — x. We have from [11] that for any x,y € H and 1 € R,

Il +y1% < %01 + 2(p,2 + 9) 1)
and

2 2 2 2

|22+ @ =2)y]” = Allell® + @ = DIyl = 20 = 1) llx = yII. (2.2)
Furthermore, we have that for x,y,u,v € H,

20x—y,u—v) = lx—vI* + lly - ul® - llx - ul® - ly-vI*. (2:3)
All Hilbert spaces satisfy Opial’s condition, that is,

liminfljx, — || < liminf|x, — v|| (2.4)

Hn— 00 n— 00
if x, — u and u # v; see [12]. Let C be a nonempty closed convex subset of a Hilbert space

H, and let T: C — H be a mapping. We denote by F(T) the set of fixed points for T.
A mapping T : C — H is called quasi-nonexpansive if F(T) # ¥ and ||Tx — y|| < [lx — y||
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forallx € Cand y € F(T). If T : C — H is quasi-nonexpansive, then F(T) is closed and
convex; see [13]. For a nonempty closed convex subset C of H, the nearest point projection
of H onto C is denoted by Pc, that is, ||x — Pcx|| < ||x — y| for all x € H and y € C. Such
D¢ is called the metric projection of H onto C. We know that the metric projection P¢
is firmly nonexpansive; |Pcx — Pcy||? < (Pcx — Pcy,x — y) for all x,y € H. Furthermore,
(x — Pcx,y— Pcx) < 0 holds for all x € H and y € C; see [14]. The following result is in [15].

Lemma 3 Let H be a Hilbert space, and let C be a nonempty closed convex subset of H. Let
T : C — H be a generalized hybrid mapping. Suppose that there exists {x,} C C such that
x, =~ zand x, — Tx, — 0. Then z € F(T).

Let B be a mapping of H into 2//. The effective domain of B is denoted by D(B), that is,
D(B) = {x € H : Bx ##}. A multi-valued mapping B is said to be a monotone operator on
H if (x—y,u—v) >0 for all v,y € D(B), u € Bx, and v € By. A monotone operator B on
H is said to be maximal if its graph is not properly contained in the graph of any other
monotone operator on H. For a maximal monotone operator B on H and r > 0, we may
define a single-valued operator J, = (I + ¥B)™': H — D(B), which is called the resolvent of

Bfor r. We denote by A, = %(1 —J,) the Yosida approximation of B for r > 0. We know from
[8] that

AxeBJ.x, VYxeH, r>0. (2.5)

Let B be a maximal monotone operator on H, and let B10 = {x € H : 0 € Bx}. It is known

that B~10 = F(J,) for all > 0 and the resolvent J, is firmly nonexpansive, i.e.,
W —=JyI? < (x =9 Jx=Jy), Vx,y€H. (2.6)

We also know the following lemma from [16].

Lemma 4 Let H be a real Hilbert space, and let B be a maximal monotone operator on H.
Forr >0 and x € H, define the resolvent J.x. Then the following holds:

s—t 9
T(]sx _]txr]sx - x) = ”]sx _]tx”
foralls,t>0andx € H.

From Lemma 4, we have that
a2 = Juxll < (1A = pl/A) Il = Jox]

forall A, u > 0 and x € H; see also [14, 17]. To prove our main result, we need the following
lemmas.

Lemma 5 ([18]; see also [19]) Let {s,} be a sequence of nonnegative real numbers, let {«,} be
a sequence of [0,1] with Y >, &, = 00, let {B,} be a sequence of nonnegative real numbers
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with Y o2 By < 00, and let {y,} be a sequence of real numbers with limsup,_, . y, < 0.

Suppose that
Suin < (1 —au)su + Y + B
foralln=1,2,.... Thenlim,_, o s, = 0.

Lemma 6 ([20]) Let {T",} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {I",;,} of {T',,} which satisfies T, < T'y,11 for all
i € N. Define the sequence {T(n)},>n, of integers as follows:

t(n) =max{k <n:T; <Tra},

where ng € N such that {k < ng : Ty < Ty} #9. Then the following hold:
(i) T(ng) <t(nog+1) <--- and t(n) — oc;
(11) 1—11(}1) = FT(V[)+1 and Fn =< Fr(n)+1: VneN.

3 Strong convergence theorems

Let H be areal Hilbert space. A mapping g : H — H isa contraction if there exists k € (0,1)
such that ||g(x) —g)|l < kllx—y| forall x,y € H. We call such a mapping g a k-contraction.
A nonlinear operator V : H — H is called strongly monotone if there exists 7 > 0 such that
(x =y, Vx — Vy) > ¥|lx — y||? for all x,y € H. Such V is also called y-strongly monotone.
A nonlinear operator V : H — H is called Lipschitzian continuous if there exists L > 0 such
that ||Vx— Vy|| < L||x—y| for all x,y € H. Such V is also called L-Lipschitzian continuous.
We know the following three lemmas in a Hilbert space; see Lin and Takahashi [21].

Lemma 7 ([21]) Let H be a Hilbert space, and let V be a y-strongly monotone and L-
Lipschitzian continuous operator on H withy >0 and L > 0. Let t > 0 satisfy 2y > tL* and
1>2ty. Then 0 <1 —t(2y —tL?) <1l and I —tV : H — H is a contraction, where I is the
identity operator on H.

Lemma 8 ([21]) Let H be a Hilbert space, and let C be a nonempty closed convex subset
of H. Let Pc be the metric projection of H onto C, and let V be a y -strongly monotone and
L-Lipschitzian continuous operator on H withy >0 and L > 0. Let t > 0 satisfy 2y > tL*
and 1> 2ty, and let z € C. Then the following are equivalent:

(1) z=Pc(I -tV)z;

(2) (Vz,y—2z)>0,Vy e C;

(3) z=Pc(I-V)z.
Such z € C always exists and is unique.

Lemma 9 ([21]) Let H be a Hilbert space, and let g : H — H be a k-contraction with 0 <
k <1. Let V be a y-strongly monotone and L-Lipschitzian continuous operator on H with
Y >0andL > 0. Let a real number y satisfy 0 <y < % ThenV —yg:H— Hisa(y —yk)-
strongly monotone and (L + y k)-Lipschitzian continuous mapping. Furthermore, let C be a
nonempty closed convex subset of H. Then Pc(I — V + yg) has a unique fixed point zq in C.
This point zy € C is also a unique solution of the variational inequality

(V-y9z0,9-20)>0, VgeC.
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Now, we prove the following strong convergence theorem of Halpern’s type [6] for find-
ing a common solution of a monotone inclusion problem for the sum of two monotone
mappings, of a fixed point problem for generalized hybrid mappings and of an equilibrium
problem for bifunctions in a Hilbert space.

Theorem 10 Let H be a real Hilbert space, and let C be a nonempty closed convex sub-
set of H. Let a > 0, and let A be an a-inverse strongly-monotone mapping of C into H.
Let B and W be maximal monotone operators on H such that the domains of B and
W are included in C. Let J;,, = (I + AB)™ and T, = (I + rW)™! be resolvents of B and W
for A > 0 and r > 0, respectively. Let S be a generalized hybrid mapping of C into H.
Let 0 < k <1, and let g be a k-contraction of H into itself. Let V be a y-strongly mono-
tone and L-Lipschitzian continuous operator withy >0 and L > 0. Take u,y € R as fol-
lows:

— 12 "

Y-

2y
0<M<ﬁ7 O<y<

Suppose F(S) N (A + B)'0 N W0 # 0. Let x1 = x € H, and let {x,} C H be a sequence
generated by

KXpsl = BuXn + 1- ,Bn){anyg(xn) +(—ay V)S]A,, (- )\nA)Trnxn}

for all n € N, where {o,} C (0,1), {8} C (0,1), {X,} C (0,00) and {r,} C (0,00) sat-
isfy

n—00 11— 00

o0
lim «, =0, Za,, =00, 0 <liminf B, <limsup g, <1,
= n—00

liminfr, >0 and O<a<M\,<b<20.

n—00

Then {x,} converges strongly to zo € F(S) N (A + B)™10 N W10, where z, is a unique fixed
point in F(S) N (A + B)™0 N W0 of Prisynasz-tonw-10d = V + 7g).

Proof Letz € F(S)N(A+B)'0NW10. We have that z = Sz,z = J;,(I - A,A)zand z = T}, z.
Putting w, = J»,(I - A,A) T}, x, and u, = T}, x,, we obtain that
ISwn — 211 < Wy - 2II>
= W, (o = hnAtt) = ], (2 = 1nA2) |
< Mty = hnAthy, = (2 = 1, AZ) |
= |lttw — 2 = An(Auy — A2)|)?
= Nty — 2||* = 20 (st — 2, Atty, — AZ) + A2 || Aut, — Az|)?
< Ny - 2lI* = 24l Auy — Azl|* + Al Au, — Az||?
< 119 = 201 + don (A = 200) | Auty — Az

< llxn -2l (3.1)
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Putt =y - LZT“ Using lim,,_, » ¢, = 0, we have that for any x,y € H,

||(I—oz,,V)x— (I—oth)y”Z
=[x -y - (V- vy)|°
= lx = y)I> — 2, (x — y, Va — Vy) +oti||Vx— vy)?
< I =y1” = 20,7l = yI* + oz L2 |~y
= (1-2a,7 +a2L?) | - yII?
= (1 — 200, T — a,,Lzu + aﬁLz) |l —y||2
< (1 - 20, T —oty,(Lzu - aan) + 053112)||x—y||2
<(1-2a,r +o¢ﬁrz)|lx—yll2

= (1=, 7)* - . (3.2)
Since 1 — «,, T > 0, we obtain that for any x,y € H,
1t =y V)= (I = 0u V)y| < (@ = eyt)llx = yll. (3.3)

Putting y, = o,y g(xn) + I — ¢, V)S)h, (I = 1,A) T, %, from z = 0, Vz + 2 — a, V2, (3.1) and
(3.3) we have that
Iy =2l = | (vgen) = V2) + I = 2, V)Swy, — (I -,V )z |
< auyklan -zl + o] vg(2) - V2| + (1 - 0, 7)[|Swy, — 2|

<{1-au(t =y }Hxu -2l + | yg(2) - V2.
Using this, we get

%1 =2l = [ Ba(n = 2) + (1= B) 9 = 2) |
< Bullxn =zl + (1 = Bu)llyn — 2l
< Bullx, — 2|l
+ (1= Ba) ({1 = anlt = k) }l12s — 2l + 2| vg(2) - V2] )
= {1-Q-Ban(t — y&)}x, -zl

0 lyg(z) - VZII.

+(1_/3n)an(7:_y ‘L'—J/k

Putting K = max{||x; — 2|, W}, we have that ||x, — z|| < K for all » € N. Then {x,} is
bounded. Furthermore, {u,}, {w,} and {y,} are bounded. Using Lemma 9, we can take a
unique zg € F(S) N (A + B)™10 N W10 such that

20 = PF(S)m(A+B)—lomw—1o(1 -V +ygz.
From the definition of {x,}, we have that

K1 = % = Bn + (1 - lsn){anyg(xn) + ([ —ay V)Swn} —Xn
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and hence

K1 — % — (1= Bty g(xn) = Buxtn + (1 — B — s V)SW,, — %,
=(1- ,Bn){(I_Oan)SWn _xn}

= (1= Bu)(Swy — %y — a,, VSwy).
Thus, we have that

(21 =20 — (1= Bu)tny gxn), % — 20)
= ((1 - ﬂn)(swn — Xy — 0y VSWn);xn - ZO>

= _(1 - ﬂn)(xn - SWp, %, — ZO> - (1 - lgn)an<vswmxn - ZO)’ (34)

From (2.3) and (3.1), we have that

2 2
17 = l1Swn — 2ol

2
2%y — W X — 20) = |ln — 2o ll” + [|SW),, — %,
2 2 2
= 1% = zoll” + I1SWy — xll” — 1% — 20

= [|Swy, _xn”2- (3.5)
From (3.4) and (3.5), we also have that

=2(% = Xna1s Xn — 20) = 2(1 = B)etn(y & (Xn), %0 — 20)
=2(1 = Bu) (% = Swy, % — 20) = 2(1 = B ot (VEWn, x5 — 20)
< 2(1 - Bu)atu(yg(xn), %4 — 20)
= (1= B)ISWn — x4l = 2(1 = B)ety (VSWy, % — 20). (3.6)

Furthermore, using (2.3) and (3.6), we have that

[E ZO”2 — ll%n — %41 “2 = ll%n — ZO”2
<2(1- ,Bn)an<yg(xn)vxn - ZO)
— (1= B)lISw, _xn”2 —2(1 - Bu)au (VSWy, %, — 20).

Setting T',, = ||x,, — 20||2, we have that

Coer = T = ll%n — %01 ”2
<2(1- ,Bn)an<yg(xn)vxn - ZO)
- (1 - ,Bn)”SWn _xn”2 - 2(1 - ﬁn)an<vswmxn - Z0>~ (37)

Noting that

%641 = 24l = ”(1 — Bu)atu (Vg(xn) - VSWn) + (1= B)(Swy _xn)”

< (1= B (ISWn = xall + el yg(xn) = VSw, ), (3.8)
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we have that

2
[l%641 _9‘:n”2 <(1- ,Bn)z(”SWn — x| + an”yg(xn) - VSWn”)
= (L= B 11Swn — a1 + (1= B) 20| SWy — 24l | ¥ g(n) — VS, |

+ (L= Ba) 02| yg(xa) = VSwa . (3.9)
Thus, we have from (3.7) and (3.9) that

Tt = T < 1% = % lI” + 21 = Bu)etn(y g(n), % — 20)
= (= BlISWn — % )* = 2(1 = B)ot (VSWy, 24 — 20)
< (L= B 1Swn = xall® + (1= B)* 20t [ SWy — x| | g (6) = VSwi|
+ (L= B2 | yg(en) = VSwa|* +2(1 = Bu)otu(y g (), 2% — 20)
= (L= B)lISwy = ull* = 2(1 = Bu)ot (VSWi, 24 — 20)

and hence

Tyt = Do + Bu(1 = B)IISWy — x4 12
< (L= Bu)* 2015wy — 2l | y () = VSwi |
+ (1= B2 ||y g@n) = VSw,||* + 21 = Bty g6u), % — 20)

=21 = Bu)au(VSwy, x4 = 20). (3.10)
We divide the proof into two cases.

Case 1: Suppose that I',;; < T, for all n € N. In this case, lim, . ', exists and then
limy,—, 06 (ys1 — ') = 0. Using 0 < liminf,_. o 8, < limsup,,_, ., B, <1 and lim,_, o o, = O,
we have from (3.10) that

lim ||Sw, —x,| = 0. (3.11)
n—0oQ
Using (3.8), we also have that
lim ||x,41 — %, = 0. (3.12)
Since x,,41 — %, = (1 = B4) (¥, — x,,), we have from (3.12) that
lim ||y, —x,|| =0. (3.13)
n—oQ

We also have from (2.6) that

2 2
2||uy — 2ol = 2|| Tr,,xn - Tr,,z() I
< 2(%y — 20, Un — 20)

2 2 2
= [l%n — 2olI” + [ltw — 201" — N2t — x|
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and hence
N = zo 11 < 1% = 2011” = 2t = 2. (3.14)
From (3.1) we have that
15w = 201> < llutw = 201> < 1% = 20117 = 12t = 5|
and hence
4 = %ull® < 120 = 201> = 11SWn — 201> < M| Sy, — 4%,
where M = sup{||x, — zo|| + |Sw,, — 20| : n € N}. Thus, from (3.11) we have that
lim ||u, —x,|| = 0. (3.15)
n=00
We show lim,,_,  ||SW, — w, || = 0. Since | - ||? is a convex function, we have that
%1 = 20l1% < Bulln = 20l1” + (1 = Bu)llyn — zol1*. (3.16)
From zy = o, Vzgy + zo — @, Vzo and (2.1), we also have that

lyn = 20l1% = etn(vgn) = Vo) + (I = s V)SW, = (I = s V)20 ||*
< (L-ayT)*1Swn — 201> + 20y g (%) = VZ0,u — Z0)
< (1= aut)lwn = 20> + 20(y g (%) = V20,90 — 20)
< lwy — 2olI* + 2a (v g(x4) — VZ0, ¥4 — 20)
< llxn = 2l + Au(hon — 20) | Aty — Az|?

+ 20, (Y g(%4) = VZ0, Y — 20)- (3.17)
Using (3.16) and (3.17), we have that

(141 — 20”2 < Bullxn — 20 ”2 + (1 - ,Bn)”xn - 20”2
+ (1= Bu) (An(h = 20) | Aty — Azo|I” + 20t,(y (%) = VZ0, ¥ — 20))
= [l = zol1* + (A = B) (An(hn — 200) | Aut,, — Azo |1

+ 200(Y (%) = VZ0, ¥ — 20))- (3.18)
Thus, we have that

(1= Bu)hn(2a — 1) | Auty, — Az||*

< loen = 2l1” = 1801 — 211% + (A = B)20tu(yg(%n) = VZ0, ¥ — 20). (3.19)
Then we have that

lim ||Au, — Azo| = 0. (3.20)

Page 10 of 19
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Since J,, is firmly nonexpansive, we have that

20wy = 2012 = 2|, (tn = AnAtt) = J3, (20 - AuAzo) ||*
< 2{un — MnAuy — (20 — AnAzo), Wy, — 20)
= |thn = Aty — (20 = 2nAzo) | + W — 201
— [t = 2onAtty = (20 = AA20) — (W — 20) ||
< Mt — 21> + Wy — 20>
- Hun - Wy — A (Au, — Azp) ”2
< lltn = 2ol + 1w — ZolI* = |24 — W)

+ 20 (U — Wy, Aty — Azg) — 12| A, — Azo ||
Thus, we get

2 2 2
Wy —zoll” < ll%n — 2oll” = |ty — Wyl

+ 20ty — Wiy Aty — Azo) — A2 Aus, — Az ||
Using (3.17), we obtain

%1 — 201> < Bull%n — 201> + (A = Bu) 17 — ZolI>
< Bull%n — 201> + (1= B) (1w — 20I* + 200u(y () — Vz0, Y — 20))
< Bullxn = zol1* + (1= B) ln — 201>
= (L= Bu)llttn = wall* + (1= B) 22 1t — Wy, Atty, — Az)
= (L= Bl Auy — Azo|* + (1= B) 20ty g(n) — Vzo, yu — 20)
= [0 — 201 = (1= Bt — wall?

+ (1= B2 (thy — Wy, Aty — Azo) — (1 = Bu)A2 | Ausy, — Azo ||

+(1- ,Bn)zan(yg(xn) = Vzo,yu - ZO):
from which it follows that

2 2
~ Pn n— Wn = n — 40
A = Bllxn = wull” < llxn = 2ol
2
— %1 — 2ol + 22, (1, — Wiy, Ay, — Azp)

- )Li”Aun —Azo|* + 2an(yg(xn) = Vzo,yn - ZO>'
Then we have
lim ||z, —w,]|| = 0.
n—00
From (3.22) and (3.15), we have that

lim ||x, —w,]| =0.
n— 00

(3.21)

(3.22)

(3.23)
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Since ||Sw,, — w,|| < ISw, — x| + ||x, — wu ||, we have that
lim ||Sw, —w,]| = 0. (3.24)
n—0o0

Take 1o € R with 0 < a < Ay < b < 2« arbitrarily. Put s, = (I — 1,A)u,. Using u,, = T, x,
and w, = J,,,(I = 1,A)u,, we have from Lemma 4 that
||]A0 (I = oAy — wy, ” = ||/'xo (I = xoA)uy =)o, (I = ApA)usy, ”
= ||]x0 (I - roA)u, _]Ao (- rA)u,
+ /o (I = 2uA)uy =)o, (I = ApA)uay, ”

= ” (I = roA)uy — (I = 1pA)uy ” + 1 JxoSn = TSl

[Ao — Anl
< ko = Al [l Astll + A—” g8 = Sull. (3.25)
0
We also have from (3.25) that
et = T U = Ao Atk | < Nt — Wall + | Wi = T (I = o A)tin . (3.26)

We will use (3.25) and (3.26) later.
Let us show that limsup,,_, . ((V — y2)zo,%, — z0) > 0. Put

A =1lim sup((V —Y8)Z0, %y — zo>.
n—00
Without loss of generality, we may assume that there exists a subsequence {x,,} of {x,}
such that A = lim,_, oo ((V — y2)20, %, —20) and {x,,, } converges weakly to some point w € H.
From ||x, — wy|| — 0 and ||x, —u,|| — 0, we also have that {w,, } and {u,,} converge weakly
to w € C. On the other hand, from {),,} C [, b] there exists a subsequence {)\,,L.j} of {A,;}
such that )»,,l.]_ — Ao for some A¢ € [a, b]. Without loss of generality, we assume that w,,, —
w, u,, = wand A,, = Ao. From (3.24) we know lim,,_, o [|Sw), — w,|| = 0. Thus, we have
Xy —Un;
p

from Lemma 3 that w = Sw. Since W is a monotone operator and —/—— € Wu,,, we have

i

that for any (u,v) e W,

Ky — Uy
<u—u,,l.,v— #> > 0.
T,

Since liminf,, o 1, > 0, u,, = w and x,,, — u,,, — 0, we have
(u—w,v)>0.

Since W is a maximal monotone operator, we have 0 € Ww and hence w € W10. Since
An; = Ao, we have from (3.25) that

||])\0 (I - )"OA)MH,' - Wy,

— 0.
Furthermore, we have from (3.26) that

4, = Joo (I = Ao A)tt, | — 0.
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Since /5, (I — AoA) is nonexpansive, we have that w = J;,,(I — A¢A)w. This means that 0 €

Aw + Bw. Thus, we have
weF(T)N(A+B1ronwlo.
Then we have
A= lim ((V - y)zo, %, — 20) = ((V = y8)z0,w = 20) 2 0. (3:27)
Since y, — zo = o, (Y g(x) — Vzo) + I — o0, V)Swy, — (I — @, V)20, we have
lyn = 2zolI* < (1= ) [1Sw = 20]1* + 2e0u(y g(%) — V20,3 — 20).
Thus, we have
lyn = zoll* < (A = aaT)?1|%n — 201> + 200u(y g(n) — V0, ¥ — 20)-
Consequently, we have that

%1 = 201> < Bulln = zolI* + (1= Bu)llyw — ZolI?
< Bullxn - 201
+ (1= ) (1= ) llxn — 2011 + 20, (v g (%) = V20,0 — 20))
= (Bn+ (A= B(1 = ,7)) %0 — 201
+2(1 = Bty gxn) — Vzo, yu — 20)
< (1= =B (2t = (@1)?))llxn — 2011
+2(1 = Bu)any kllx, — zoll” + 2(1 = Bn)en(vg(20) — V0, Yn — o)
= (1-20 - Ban(t - v k), — 201
+ (1= Bu)et)? I — zolI* + 2(1 = Bty g(20) = Vzo, yu — 20)

= (1 = 2(1 = Bu)aru(t - Vk)) ll%, — ZO||2

auT?lxn = 20ll>  (vg(z0) = Vz0, ¥ — ZO))

+2(1—,3n)01n(f—)’k)( 2t — yk) T—yk

By (3.27) and Lemma 5, we obtain that x, — zo, where

20 = Pris)n+sy-tonw-10 = V + yg)zo.

Case 2: Suppose that there exists a subsequence {I',;} C {I',} such that ', < ", for all
i € N. In this case, we define 7 : N — N by

t(n) =max{k <n:Tk <Tr}.
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Then we have from Lemma 6 that I';(,) < I';(;:1. Thus, we have from (3.10) that for all
nel,

ﬂr(n)(l - ,Bt(n))”SWr(n) —Xt(n) ”2

<@1- ,Bt(n))zzat(n) 1SWe () = %2yl ” Vg(xr(n)) - VSw () ”

2
+ (1 - ﬁr(n))zalz-(n) || yg(xr(n)) - VSWT(VI) ||
+ 2(1 - ﬂr(n))ar(n)<yg(xr(n))y Xt(n) — ZO)
-2(1- ﬂr(n))ar(n)<vswr(n): Xt(n) — Zo)- (3.28)

Using lim,,_, o @, = 0 and 0 < liminf,_, » 8, < limsup,_, ., Bx < 1, we have from (3.28) and
Lemma 6 that

nlLrIgo||Swr (n) —x.(n) || =0. (3.29)

As in the proof of Case 1, we also have that

lim ||xr(n)+l — Xz (n) ” =0 (330)
Hn—0Q
and
lim ||lyz(m) =%zl = 0. (3.31)
n— o0
Furthermore, we have that lim,o ltcpn — Xell = 0, limyco [Atien) — Azoll = 0,
limy, s o0 |t4(5) = Well = 0 and lim,— oo [[%7(s) — We@ll = 0. From these we have that

limy,—, o0 [|SWr () — W@ |l = 0. As in the proof of Case 1, we can show that

lim sup((V — Y820, Xv(n) — ZO) = 0.

n—0o0

We also have that

e — ZO||2 <(1- ar(n)f)znxt(n) — 20 ”2 + 2ar(n)(7/g(xr(n)) = Vz0, Ye(n) = ZO>

and hence

”xf("l)+1 —20 ”2 = (1 -2(1- ﬂl’(}’l))a‘[(}’l)(‘[ - Vk)) ”xr(n) - 20”2
+(1- /gr(n))(‘)lr(n)t)2 ”xr(n) — 20 ”2

+2(1- ﬂr(n))ar(n)<yg(zo) - VZO:yr(n) - ZO>'
From I'; () < I'z(n)+1, we have that
2(1- ﬂl’(ﬂ))a‘[(}’l)(t - Vk)”xr(n) - ZO||2

<@- ,Br(n))(‘)[r(n)'f)2 ”xr(n) — 20 ”2

+ 2(1 - ,Br(n))ar(n)<yg(zo) - VZO’y‘[(}’l) - ZO>~
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Since (1 = Bz(m))ctz(n) > 0, we have that
2t = y k)% — 201
= ar(n)fzuxr(n) - ZO”2 + 2(Vg(zo) = Vzo,yr(m) - ZO)~

Thus, we have that

limsup 2(t — y k)% - 20l <0

n—00
and hence ||x;(,) — 20|l = 0 as n — 00. Since X(y) — X7(s)+1 — 0, we have [|x¥(11 — 20l = 0
as n — 00. Using Lemma 6 again, we obtain that
I, — 2ol < ”xr(n)+1 -zl > 0

as n — 0o. This completes the proof. g

4 Applications

In this section, using Theorem 10, we can obtain well-known and new strong convergence
theorems in a Hilbert space. Let H be a Hilbert space, and let f be a proper lower semi-
continuous convex function of H into (—c0, co]. Then the subdifferential df of f is defined
as follows:

fx)={zeH:f(x)+ (z,y —x) <f(y),Vy € H}

for all x € H. From Rockafellar [22], we know that df is a maximal monotone operator. Let
C be a nonempty closed convex subset of H, and let ic be the indicator function of C, i.e.,

0, xe€C,
oo, x¢C.

ic(x) =

Then, ic is a proper lower semicontinuous convex function on H. So, we can define the
resolvent J; of dic for A >0, i.e.,

Jax = (I + Adic)x
for all x € H. We know that J,x = Pcx for all x € H and A > 0; see [11].

Theorem 11 Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H. Let S be a generalized hybrid mapping of C into C. Suppose F(S) # (. Let u,x; € C,
and let {x,} C C be a sequence generated by

Xns1 = Pn + (1= ,Bn){anu +(1- ‘Xn)an}

forall n e N, where {8,} C (0,1) and {«,} C (0,1) satisfy

n—00

oo
lim «, =0, E oy, =00
n=1
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and

0 <liminf B, <limsup g, <1.
n—00 n—00

Then the sequence {x,} converges strongly to z € F(S), where zy = Pr(syu.

Proof Put A=0,B=W =0dicand A, =r, =1 for all # € N in Theorem 10. Then we have
Ja, = Ty, = Pc for all n € N. Furthermore, put g(x) = u and V(x) = x for all x € H. Then we
can take ¥ = L = 1. Thus, we can take u = 1. On the other hand, since ||g(x) —g(»)|| =0 <
%le —y|l for all x,y € H, we can take k = % So, we can take y = 1. Then for u,x; € C, we
get that

Xne1 = Buon + (1= Bu){uts + (I — ) S, }
for all #n € N. So, we have {x,} C C. We also have
zo = Prisync — V + v@)zo = Pr(s)(zo — 20 + 1 - u) = Pr(syus.
Thus, we obtain the desired result by Theorem 10. O

Theorem 11 solves the problem posed by Kurokawa and Takahashi [9]. The following
result is a strong convergence theorem of Halpern’s type [6] for finding a common solution
of a monotone inclusion problem for the sum of two monotone mappings, of a fixed point
problem for nonexpansive mappings and of an equilibrium problem for bifunctions in a

Hilbert space.

Theorem 12 Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H. Let o > 0, and let A be an a-inverse strongly-monotone mapping of C into H. Let
B and W be maximal monotone operators on H such that the domains of B and W are
included in C. Let J, = (I + AB)™ and T, = (I + rW)™! be resolvents of B and W for A > 0
and r > 0, respectively. Let S be a nonexpansive mapping of C into H. Let 0 < k < 1, and let
g be a k-contraction of H into itself. Let V be a y-strongly monotone and L-Lipschitzian
continuous operator with’y >0 and L > 0. Take i,y € R as follows:

~

2
_ “
Y5

Suppose F(S)N (A + BY 10N W0 # 0. Let x; = x € H, and let {x,} C H be a sequence
generated by

Xps1 = BnXn + (1- ,Bn){an)/g(xn) +(—ay V)S]kn (I = r,A) Trnxn}

for all n € N, where {a,} C (0,1), {8,} € (0,1), {1,,} C (0,00) and {r,} C (0,00) satisfy

o0
lim «, =0, E oy = 00, 0 <liminf B, <limsupfB, <1,
n—00 n—>00 H—>00
n=1

liminfr, >0 and O<a<M\,<b<2a.

n—00
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Then the sequence {x,} converges strongly to zo € F(S) N (A + B)™'0 N W10, where zy =
Pris)nasp-tonw-10d =V + yg)zo.

Proof We know that a nonexpansive mapping T of C into H is a (1,0)-generalized hybrid
mapping. So, we obtain the desired result by Theorem 10. O

Let f: C x C — R be a bifunction. The equilibrium problem (with respect to C) is to
find x € C such that

f(&,y) >0, VyeC. (4.1)
The set of such solutions x is denoted by EP(f), i.e.,
EP(f)={x € C:f(&,y) = 0,Vy e C}.

For solving the equilibrium problem, let us assume that the bifunction f: C x C - R
satisfies the following conditions:

(A1) f(x,x) =0 forallx € C;

(A2) f is monotone, ie., f(x,y) +f(y,x) <0 for all x,y € C;

(A3) forallx,y,z e C,

limsupf(tz + (1 - t)x,y) <f(%,p);
£40

(A4) forallx € C, f(x,-) is convex and lower semicontinuous.
The following lemmas were given in Combettes and Hirstoaga [23] and Takahashi, Taka-
hashi and Toyoda [16]; see also [24, 25].

Lemma 13 ([23]) Let H be a real Hilbert space, and let C be a nonempty closed convex
subset of H. Assume that f : C x C — R satisfies (A1)-(A4). For r >0 and x € H, define a
mapping T, : H — C as follows:

1
Tx = {ze C:f(z,y) + ;(y—z,z—x) >0,Vye C}

for all x € H. Then the following hold:
(1) T, is single-valued,;
(2) T, is a firmly nonexpansive mapping, i.e., for all x,y € H,
” Trx - Try”2 =< (Trx - Tr » X —}’>;

(3) E(T,) = EP(f);
(4) EP(f) is closed and convex.

We call such T, the resolvent of f for > 0.

Lemma 14 ([16]) Let H be a Hilbert space, and let C be a nonempty closed convex subset
of H. Let f : C x C — R satisfy (Al)-(A4). Let Ay be a set-valued mapping of H into itself
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defined by

{zeH:f(x,y) > (y—x,2),Vye C}, VxeC(C,
@, Vx ¢ C.

Then EP(f) = Af‘]0 and Ay is a maximal monotone operator with D(As) C C. Furthermore,
forany x € H and r > 0, the resolvent T, of f coincides with the resolvent of Ay, i.e.,

Tx=(+ rAf)’lx.

Using Lemmas 13, 14 and Theorem 10, we also obtain the following result for generalized
hybrid mappings of C into H with equilibrium problem in a Hilbert space; see also [26—
28].

Theorem 15 Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H. Let S be a generalised hybrid mapping of C into H. Let f be a bifunction of C x C into
R satisfying (Al)-(A4). Let 0 < k <1, and let g be a k-contraction of H into itself. Let V be
a y-strongly monotone and L-Lipschitzian continuous operator of H into itself withy > 0
and L > 0. Take 1,y € R as follows:
7o

k

2y
0<M<ﬁ’ O<y<

Suppose that F(S) NEP(f) # (. Let x, = x € H, and let {x,,} C H be a sequence generated by

1
funy)+ —(y—upu,—x,) >0, VyeC,
,

n

Xns1 = Bk + (1= ﬂn){anyg(xn) + ([ —ay V)Sun}

forall n e N, where {8,} C (0,1), {&,,} C (0,1) and {r,} C (0, 00) satisfy
lim «, =0, Zay, =00, liminfr, >0,
n=1

and 0 <liminf 8, <limsup g, <1.
n—00 n—00
Then the sequence {x,} converges strongly to zo € F(S) N EP(f), where zo = Pr(synepyyl =V +
Y8)zo.

Proof Put A =0 and B = di¢ in Theorem 10. Furthermore, for the bifunction f: C x C —
R, define A as in Lemma 14. Put W = Ay in Theorem 10, and let T}, be the resolvent of
Ay for r, > 0. Then we obtain that the domain of Ay is included in C and T, x,, = u, for all
n € N. Thus, we obtain the desired result by Theorem 10. O
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