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Abstract

The purpose of this article is to study the strong and weak convergence of implicit
iterative sequence to a common fixed point for pseudocontractive semigroups in
Banach spaces. The results presented in this article extend and improve the
corresponding results of many authors.

1 Introduction and preliminaries
Throughout this article we assume that E is a real Banach space with norm ||·||, E* is

the dual space of E; 〈·, ·〉 is the duality pairing between E and E*; C is a nonempty

closed convex subset of E; N denotes the natural number set; ℜ+ is the set of nonnega-

tive real numbers; The mapping J : E → 2E
∗ defined by

J(x) =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖2; ∥∥f ∗∥∥ = ‖x‖ , x ∈ E

}
(1)

is called the normalized duality mapping. We denote a single valued normalized dua-

lity mapping by j.

Let T: C ® C be a nonlinear mapping; F(T) denotes the set of fixed points of map-

ping T, i.e., F(T) := {x Î C, x = Tx}. We use “®” to stand for strong convergence and

“⇀” for weak convergence. For a given sequence {xn} ⊂ C, let ωw(xn) denote the weak

ω-limit set.

Recall that T is said to be pseudocontractive if for all x, y Î C, there exists j(x - y) Î J

(x - y) such that〈
Tx − Ty, j(x − y)

〉 ≤ ∥∥x − y
∥∥2; (2)

T is said to be strongly pseudocontr active if there exists a constant a Î (0,1), such

that for any x, y Î C, there exists j(x - y) Î J(x - y)〈
Tx − Ty, j(x − y) ≤ α

∥∥x − y
∥∥2 . (3)

In recent years, many authors have focused on the studies about the existence and

convergence of fixed points for the class of pseudocontractions. Especially in 1974,

Deimling [1] proved the following existence theorem of fixed point for a continuous

and strong pseudocontraction in a nonempty closed convex subset of Banach spaces.
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Theorem D. Let E be a Banach space, C be a nonempty closed convex subset of E

and T: C ® C be a continuous and strong pseudocontraction. Then T has a unique

fixed point in C.

Recently, the problems of convergence of an implicit iterative algorithm to a com-

mon fixed point for a family of nonexpansive mappings or pseudocontractive mappings

have been considered by several authors, see [2-5]. In 2001, Xu and Ori [2] firstly

introduced an implicit iterative xn = anxn-1 + (1 - an)Tnxn, n Î N, x0 Î C for a finite

family of nonexpansive mappings {Ti}Ni=1 and proved some weak convergence theorems

to a common fixed point for a finite family of nonexpansive mappings in a Hilbert

space. In 2004, Osilike [3] improved the results of Xu and Ori [2] from nonexpansive

mappings to strict pseudocontractions in the framework of Hilbert spaces. In 2006,

Chen et al. [4] extended the results of Osilike [3] to more general Banach spaces.

On the other hand, the convergence problems of semi-groups have been considered

by many authors recently. Suzuki [6] considered the strong convergence to common

fixed points of nonexpansive semigroups in Hilbert spaces. Xu [7] gave strong conver-

gence theorem for contraction semigroups in Banach spaces. Chang et al. [8] proved

the strong convergence theorem for nonexpansive semi-groups in Banach space. He

also studied the weak convergence problems of the implicit iteration process for

Lipschitzian pseudocontractive semi-groups in the general Banach spaces [9]. The

pseudocontractive semi-groups is defined as follows.

Definition 1.1 (1) One-parameter family T: = {T(t): t ≥ 0} of mappings from C into

itself is said to be a pseudo-contraction semigroup on C, if the following conditions are

satisfied:

(a). T(0)x = x for each x Î C;

(b). T(t + s)x = T(s)T(t) for any t, s Î ℜ+ and x Î C;

(c). For any x Î C, the mapping t ® T(t)x is continuous;

(d). For all x, y Î C, there exists j(x - y) Î J(x - y) such that〈
T(t)x − T(t)y, j(x − y) ≤ ∥∥x − y

∥∥2, for any t > 0. (4)

(2) A pseudo-contraction semigroup of mappings from C into itself is said to be a

Lipschitzian if the condition (a)-(d) and following condition (f) are satisfied.

(f) there exists a bounded measurable function L: [0, ∞) ® [0, ∞) such that for any x,

y Î C,∥∥T(t)x − T(t)y
∥∥ ≤ L(t)

∥∥x − y
∥∥

for any t > 0. In the sequel, we denote it by

L = sup
t≥0

L(t) < ∞ (5)

Cho et al. [10] considered viscosity approximations with continuous strong pseudo-

contractions for a pseudocontraction semigroup and prove the following theorem.

Theorem Cho. Let E be a real uniformly convex Banach space with a uniformly

Gâteaux differentiable norm, and C be a nonempty closed convex subset of E. Let T(t):

t ≥ 0 be a strongly continuous L-Lipschitz semigroup of pseudocontractions on C such

that � 	=	 0, where Ω is the set of common fixed points of semi-group T(t). Let f: C ®
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C be a fixed bounded, continuous and strong pseudocontraction with the coefficient a
in (0,1), let an and tn be sequences of real numbers satisfying an Î (0, 1), tn > 0, and

limn→∞tn = limn→∞
αn

tn
= 0; Let {xn} be a sequence generated in the following manner:

xn = (1 − αn)f (xn) + αnT(tn)xn, ∀n ≥ 1. (6)

Assume that LIM||T(t)xn - T(t)x*|| ≤ ||xn - x*||, ∀x* Î K, t ≥ 0, where K := {x* Î C:

F(x*) = minxÎC F(x)} with F(x) = LIM||xn - x||2, ∀x Î C. Then xn converges strongly

to x* Î Ω which solves the following variational inequality: 〈(I - f)x*, j(x* - x)〉 ≤ 0, ∀x
Î Ω.

Qin and Cho [11] established the theorems of weak convergence of an implicit itera-

tive algorithm with errors for strongly continuous semigroups of Lipschitz pseudocon-

tractions in the framework of real Banach spaces.

Theorem Q. Let E be a reflexive Banach space which satisfies Opial’s condition and

K a nonempty closed convex subset of E. Let T := {T(t) : t ≥ 0} be a strongly continu-

ous semigroup of Lipschitz pseudocontractions from K into itself with

F :=
⋂

t≥0 F(T(t)) 	=	 0; Assume that supt≥0{L(t)} < ∞, where L(t) is the Lipschitz con-

stant of the mapping T(t). Let {xn} be a sequence generated by the following iterative

process:

x0 ∈ K; xn = αnxn−1 + βnT(tn)xn + γnun; ∀n ≥ 1; (7)

where {an}, {bn}, {gn} are sequences in (0,1), {tn} is a sequence in (0, ∞) and {un} is a

bounded sequence in K. Assume that the following conditions are satisfied:

(a) an + bn + gn = 1;

(b) limn→∞tn = limn→∞
αn + γn

tn
= 0.

Then the sequence {xn} generated in (7) converges weakly to a common fixed point

of the semigroup T := {T(t) : t ≥ 0};
Agarwal et al. [12] studied strongly continuous semigroups of Lipschitz pseudocon-

tractions and proved the strong convergence theorems of fixed points in an arbitrary

Banach space based on an implicit iterative algorithm.

Theorem A. Let E be an arbitrary Banach space and K a nonempty closed convex

subset of E. Let T := {T(t) : t ≥ 0} be a strongly continuous semigroup of Lipschitz

pseudocontractions from K into itself with F :=
⋂

t≥0 F(T(t)) 	=	 0. Assume that supt≥0{L

(t)} < ∞, where L(t) is the Lipschitz constant of the mapping T(t). Let {xn} be a

sequence in

x0 ∈ K; xn = αnxn−1 + βnT(tn)xn + γnun; ∀n ≥ 1, (8)

where {an}, {bn}, {gn} are sequences in (0,1) such that an + bn + gn = 1, {tn} is a

sequence in (0, ∞) and {un} is a bounded sequence in K. Assume that

limn→∞
γn

αn + γn
< ∞, limn→∞

γn

αn + γn
< ∞ and there is a nondecreasing function f: (0,

∞) ® (0, ∞) with f(0) = 0 and f(t) > 0 for all t Î (0, ∞) such that, for all x Î C,

sup{∥∥x − T(t)x
∥∥ : t ≥ 0} ≥ f (dist(x,F)). Then the sequence {xn} converges strongly to

a common fixed point of the semigroup T := {T(t) : t ≥ 0}.
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The purpose of this article is to prove the strong and weak convergence of implicit

iterative process

xn = (1 − αn)xn−1 + αnT(tn)xn, n ∈ N, x0 ∈ C (9)

for a pseudocontraction semigroup T: = {T(t): t ≥ 0} in the framework of Banach

spaces, which improves and extends the corresponding results of many author’s. We

need the following Lemma.

Lemma 1.1 [9]Let E be a real reflexive Banach space with Opial condition. Let C be

a nonempty closed convex subset of E and T: C ® C be a continuous pseudocontractive

mapping. Then I - T is demiclosed at zero, i.e., for any sequence {xn} ⊂ E, if xn ⇀ y and

||(I - T)xn|| ® 0, then (I - T)y = 0.

2 Main results
Theorem 2.1 Let E be a real Banach space and C be a nonempty compact convex sub-

set of E. Let T: = {T(t): t ≥ 0}: C ® C be a Lipschitian and pseudocontraction semi-

group defined by Definition 1.1 with a bounded measurable function L: [0, ∞) ® [0, ∞).

Suppose F(T) :=
⋂

t≥0 F(T(t)) 	=	 0. Let an and tn be sequences of real numbers satisfying

tn > 0, an Î [a, 1) ⊂ (0, 1) and limn®∞ an = 1. Then the sequence {xn} defined by (9)

converges strongly to a common fixed point x* Î F(T) in C.

Proof. We divide the proof into five steps.

(I). The sequence {xn} defined by xn = (1 - an)xn-1 + anT(tn)xn, n Î N, x0 Î C is well

defined.

In fact for all n Î N, we define a mapping Sn as follows:

Snx = (1 − αn)xn−1 + αnT(tn)x, n ∈, ∀x ∈ C. (10)

Then we have〈
Snx − Sny, j(x − y)

〉
= αn

〈
T(tn)x − T(tn)y, j(x − y)

〉 ≤ αn
∥∥x − y

∥∥2. (11)

So Sn is strongly pseudo-contraction, thus from Theorem D, there exists a point xn
such that xn = (1 - an)xn-1 + anT(tn)xn, that is the sequence {xn} defined by xn = (1 -

an)xn-1 + anT(tn)xn, n Î N, x0 Î C is well defined.

(II). Since the common fixed-point set F(T) is nonempty let p Î F(T). For each p Î
F(T), we prove that limn®∞ ||xn - p|| exists.

In fact∥∥xn − p
∥∥2 =

〈
xn − p, j(xn − p)

〉
=

〈
(1 − αn)(xn−1 − p) + αn(T(tn)xn − p), j(x − p)

〉
≤ (1 − αn)

∥∥xn−1 − p
∥∥ ∥∥xn − p

∥∥ + αn
∥∥xn − p

∥∥2.
(12)

So we get ||xn - p|| ≤ (1 - an)||xn-1 - p|| + an||xn - p||, that is∥∥xn − p
∥∥ ≤ ∥∥xn−1 − p

∥∥ .
This implies that the limit limn®∞ ||xn - p|| exists.

(III). We prove limn®∞ ||T(tn)xn - xn|| = 0.

The sequence {||xn - p||nÎN} is bounded since limn®∞ ||xn - p|| exists, so the

sequence {xn} is bounded. Since
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∥∥T(tn)xn∥∥ =

∥∥∥∥xn − (1 − αn)xn−1

αn

∥∥∥∥
≤ ‖xn‖

αn
+
(1 − αn) ‖xn−1‖

αn

≤ ‖xn‖
a

+
(1 − αn) ‖xn−1‖

a
,

(13)

This shows that {T(tn)xn} is bounded. In view of∥∥xn − T(tn)xn
∥∥ =

∥∥(1 − αn)(xn−1 − T(tn)xn)
∥∥ = ‖1 − αn‖ · ∥∥xn−1 − T(tn)xn

∥∥
and condition limn®∞ an = 1, we have

lim
n→∞

∥∥T(tn)xn − xn
∥∥ = 0. (14)

(IV). Now we prove that for all t > 0, limn®∞ ||T(t)xn - xn|| = 0.

Since pseudocontraction semigroup T: = {T(t) : t ≥ 0} is Lipschitian, for any k Î N,∥∥T((k + 1)tn)xn − T(ktn)xn
∥∥

=
∥∥T(ktn)T(tn)xn − T(ktn)xn

∥∥
≤ L(ktn)

∥∥T(tn)xn − xn
∥∥

≤ L
∥∥T(tn)xn − xn

∥∥ .
(15)

Because limn®∞ ||T(tn)xn - xn|| = 0, so for any k Î N,

lim
n→∞

∥∥T((k + 1)tn)xn − T(ktn)xn
∥∥ = 0. (16)

Since∥∥∥∥T(t)xn − T
([

t
tn

]
tn

)
xn

∥∥∥∥
=

∥∥∥∥T
([

t
tn

]
tn

)
T

(
t −

[
t
tn

]
tn

)
xn − T

([
t
tn

]
tn

)
xn

∥∥∥∥
≤ L

∥∥∥∥T
(
t −

[
t
tn

]
tn

)
xn − xn

∥∥∥∥
(17)

and T(·) is continuous, we have

lim
n→∞

∥∥∥∥T
([

t
tn

]
tn

)
xn − T(t)xn

∥∥∥∥ = 0. (18)

So from∥∥xn − T(t)xn
∥∥

≤

[ t
tn

]
−1∑

k=0

∥∥T((k + 1)tn)xn − T(ktn)xn
∥∥ +

∥∥∥∥T
([

t
tn

]
tn

)
xn − T(t)xn

∥∥∥∥ ,
(19)

and limn®∞ ||T((k+1)tn)xn - T(ktn)xn|| = 0 as well as

limn→∞

∥∥∥∥T
([

t
tn

]
tn

)
xn − T(t)xn

∥∥∥∥ = 0, we can get
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lim
n→∞

∥∥T(t)xn − xn
∥∥ = 0. (20)

(V). We prove {xn} converges strongly to an element of F(T).

Since C is a compact convex subset of E, we know there exists a subsequence{
xnj

} ⊂ {xn}, such that xnj → x ∈ C. So we have limj→∞
∥∥T(t)xnj − xnj

∥∥ = 0 from

limn®∞ ||T(t)xn - xn|| = 0, and∥∥x − T(t)x
∥∥ = lim

j→∞
∥∥T(t)xnj − xnj

∥∥ = 0. (21)

This manifests that x Î F(T). Because for any p Î F(T), limn®∞ ||xn - p|| exists, and

limn→∞ ‖xn − x‖ = limj→∞
∥∥xnj − x

∥∥ = 0, we have that {xn} converges strongly to an

element of F(T). This completes the proof of Theorem 2.1.

Theorem 2.2 Let E be a reflexive Banach space satisfying the Opial condition and C

be a nonempty closed convex subset of E. Let T: = {T(t): t ≥ 0}: C ® C be a Lipschitian

and pseudocontraction semigroup defined by Definition 1.1 with a bounded measurable

function L: [0, ∞) ® [0, ∞). Suppose F(T) :=
⋂

t≥0 F(T(t)) 	=	 0. Let an and tn be

sequences of real numbers satisfying tn > 0, an Î [a, 1) ⊂ (0,1) and limn®∞ an = 1.

Then the sequence {xn} defined by xn = (1 - an)xn-1 + anT(tn)xn, x0 Î C, n Î N, con-

verges weakly to a common fixed point x* Î F(T) in C.

Proof. It can be proved as in Theorem 2.1, that for each p Î F(T), the limit limn®∞

||xn - p|| exists and {T(tn)xn} is bounded, for all t > 0, limn®∞ ||T(t)xn - xn|| = 0. Since

E is reflexive, C is closed and convex, {xn} is bounded, there exist a subsequence{
xnj

} ⊂ {xn} such that xnj ⇀ x. For any t > 0, we have limnj→∞
∥∥T(t)xnj − xnj

∥∥ = 0. By

Lemma 1.1, x Î F(T(t)), ∀t > 0. Since the space E satisfies Opial condition, we see that

ωw(xn) is a singleton. This completes the proof.

Remark 2.1 There is no other condition imposed on tn in the Theorems 2.1 and 2.2

except that in the definition of pseudo-contraction semigroups. So our results improve

corresponding results of many authors such as [10-12], of cause extend many results in

[4-8].
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