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Abstract

In this paper, we introduce the concept of Hausdorff G-metric in the space of fuzzy
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1 Introduction and preliminaries

Fixed point theory is very important in mathematics and has applications in many fields.
A number of authors established fixed point theorems for various mappings in different
metric spaces. In 2006, Mustafa and Sims [1] introduced the G-metric space as a gener-
alization of metric spaces. We now recall some definitions and results in G-metric spaces
in [1].

Definition 1.1 Let X be a nonempty set, and let G: X x X x X — R* be a function satis-
fying:

(Gl) Gx,y,2)=0ifx=y=z,

(G2) 0<G(x,x,y) for all x,y € X with x #y,

(G3) G(x,x,9) <G(x,,2z) forall x,y,z € X, with y # z,

(G4) G(x,y,2) = G(x,2,9) = G(¥,2,%) = - - - (symmetry in all three variables),
(G5) G(x,y,2) < G(x,a,a) + G(a,y,z) for all x,y,z,a € X (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on
X, and the pair (X, G) is a G-metric space.

Lemma 1.1 Every G-metric space (X, G) defines a metric space (X,dg) by
dg(x,y) = Glx,9,9) + G(x,x,9), forallx,ye X.

Definition 1.2 Let (X, G) be a G-metric space. The sequence {x,,} in X is said to be
(i) G-convergent to x if for any & > 0, there exists x € X and N € N such that
G(x,%,,%,,) < &, for all m,m > N.
(ii) G-Cauchy if for any € > 0, there exists N € N such that G(x,, x,.,, 1) < €, for all
n,m,l > N.
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Lemma 1.2 Let (X, G) be a G-metric space, then for a sequence {x,} in X and point x € X
the following are equivalent:
(i) {x4} is G-convergent to x.
(ii) G(x,%,,%) = 0 as n— +00.
(iii) G(x,,%,x) — 0 as n — +oo.
(iv) G(xp, %0, %) — 0 as m,n — +00.

Lemma 1.3 Let (X, G) be a G-metric space, then for a sequence {x,} in X, the following are
equivalent:
(i) The sequence {x,} is G-Cauchy.
(ii) For any € > 0, there exists N € N such that G(X,, Xy, %m) < &, for all n,m > N.
(iii) {x,} is a Cauchy sequence in the metric space (X,dg).

Definition 1.3 A G-metric space (X, G) is said to be G-complete if every G-Cauchy se-
quence in (X, G) is G-convergent in (X, G).

Lemma 1.4 A G-metric space (X, G) is G-complete if and only if (X,dg) is a complete
metric space.

Based on the notion of G-metric spaces, many authors obtained fixed point theorems for
mappings satisfying different contractive-type conditions in G-metric spaces (see, e.g., [2—
7]) and in partially ordered G-metric spaces (see, e.g., [8—13]). Recently, Kaewcharoen and
Kaewkhao [14] introduced the following concepts. Let X be a G-metric space and CB(X)
the family of all nonempty closed bounded subsets of X. Let H(-,-,-) be the Hausdorff
G-distance on CB(X), i.e.,

Hg(A,B,C) = max{sup G(x,B,C),sup G(x, C,A), sup G(x,A,B)},

xeA x€B xeC

where

G(x,B,C) = dg(x,B) + dg(B, C) + dg(x, C),

dg(x,B) = infdg(x,y),
yeB

do(A,B) = inf do(x,y)

Kaewcharoen and Kaewkhao [14] and Tahat et al. [15] obtained some common fixed point
theorems for single-valued and multi-valued mappings in G-metric spaces.

The existence of fixed points of fuzzy mappings has been an active area of research
interest since Heilpern [16] introduced the concept of fuzzy mappings in 1981. Many re-
sults have appeared related to fixed points for fuzzy mappings in ordinary metric spaces
(see, e.g., [17-22]). Qiu and Shu [23, 24] proved some fixed point theorems for fuzzy self-
mappings in ordinary metric spaces. However, there are very few results on fuzzy self-
mappings in G-metric spaces. The purpose of this paper is to introduce the notion of
Hausdorff G-metric in the space of fuzzy sets which extends the Hausdorff G-distance in
[14]. We also establish common fixed point theorems for a family of fuzzy self-mappings

in the space of fuzzy sets on a complete G-metric space.
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2 A Hausdorff G-metric in the space of fuzzy sets
Let (X,dg) be a metric space, a fuzzy set in X is a function with domain X and values in
I=10,1]. If p is a fuzzy set and x € X, then the function value p(x) is called the grade of
membership of x in .

The «-level set of 1, denoted by [it],, is defined as

[]e = {x:,u(x) > a}, ifa €(0,1],

[ulo = {x: u(x) > 0},

where B is the closure of the non-fuzzy set B.

Let C(X) be the family of all nonempty compact subsets of X. Denote by C(X) the totality
of fuzzy sets which satisfy that for each o € I, [u], € C(X). Let 1, n2 € C(X), then p; is
said to be more accurate than u, denoted by p; C o, if and only if 111 (x) < o (x) for each
x € X. uy =y ifand only if uy C pp and py C py.

Let 1, 1y € C(X), define

Doo(prs p2) = sup H([plas [1t2]a)

0<a<l

= Ssup max[ sup dG(x» [MZ]D()’ sup dG(y’ [;le]ot)]-

0<a<l x€[u1]a yeluala

Lemma 2.1 [23] The metric space (C(X), Do) is complete provided (X, dg) is complete.

For 1, ito, 3 € C(X), a € I, we define:

Go(111, 112, 13) = G([11las [2)as [3)a) = sup G, [12]as [143]a),

x€[pla

Goo(f1, oy h3) = sup Go (s fha, 3),

0<a<l

DG,a (Ml) M2, ,LL3)
= HG([Ml]ou [MZ]ar [M3]a)

= max[ Sllp G(xr [MZ]OH [MS]&)» SUP G(x» [MS]O{) [,le]ot)r SuP G(x’ [Ml]w [MZ]a)}

xe[mla xe[pola xe[pusla
= max{Gy (1, h2, 143), Ga (142, 143, 111), G (3, 111, 12) },
D oo (11, 142, 13)

= sup Dgo (i1, 2, U3)

0<a<l

= sup max{Ge (i1, w2, 143), Go (2, 113, 1), Ga (U3, 11, 142) }

0<a<l

= maX[ sup Go (1, 2, 143)s SUp Go(pa, 43, 1), Sup Ga(MB:HI;HZ)}
0<a<l 0<a<l 0<a<1
= max{Goo (11, 2, 143), Goo (2, 3, 1), Goo (3, 141, 12) |-
Proposition 2.1 IfA,B € C(X) and x € A, then there exists y € B such that

2[G(x,y,y) + G(y,x,x)] < Hg(A, B, B).
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Proof For x € A, there exists y € B such that
dooy) = do(.B) = 5 G, B,B),
it follows that
2[G(%,9,9) + G(y,x,%)] = G(x, B, B) < Hs(A, B, B). O

Proposition 2.2 IfA,B € C(X) and A, C A, then there exists B; € C(X) such that B C B
and

HG(AI’BLBI) = HG(A,B,B)
Proof Let C = {y: there exists x € A;, such that 2(G(x,y,y) + G(y,x,x)) < Hg(A, B, B)} and
let By = C N B. For any x € A; € A and B € C(X), Proposition 2.1 implies that B; is
nonempty. Moreover, for any x € A;, there exists y € B; such that 2[G(x,y,y) + G(y,x,x)] <

Hg(A, B, B). It follows that

G(A;, By, B) = sup G(x, By, By) = sup 2dg(x, By)

x€A1 x€A]
=2 sup inf [G(x,y, + G(y,x,x)] < Hg(A, B, B). (1)
xeAy yeB

On the other hand, for any y € By, there exists x € A; such that 2[G(x,y,y) + G(y,%,x)] <
Hg(A, B, B). Hence,

G(B1, B, A1) = sup G(y, Bi, A1) = sup[dc(y,A1)] + sup[da(y, B1)] + d6(A1, Br)

yE€B1 YEB y€B1
= sup inf [G(x,5,9) + G(y,%,%)| + 0+ inf [G(x,5,9) + G(y,x,%)]
yeBy ¥€A1 x€A1,y€B)
< sup inf [G(x,,9) + G(3,%,%)] + sup inf [G(x,y,y) +G(y,x,%)]
y€By xedy yeBy *€
= sup inf Z[G(x,y,y) + G(y,x,x)] < Hg(A,B,B). (2)
yeBy X€A]

From (1) and (2), we have

HG(Al,Bl,Bl) = HG(A)B1B)

Finally, we can conclude that B; € C(X) from the closeness of C and the compactness
of B. O

Proposition 2.3 Let (11, 4y € C(X) and s C 1, then there exists 14 € C(X) such that
Ha C o and

D00 (13, pas ta) < Dg,oo(pl1, oy fh2).
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Proof Leta €1, by s C 1, we have [3]y < [(1]s- Let

Cy= {y: there exists x € [43], such that 2[G(x,y,y) + G(y,x,x)]
SDG,OO(MI://LZ!/’Q)}y
Dy = {z:2dc (2 [113)a) < Dgoo(1t1, ias 112)}5

we can get that C, = D,,. Let B, = Dy N [2]4, then B, is nonempty compact and B, C By,
for 0 < 8 <« <1. From the proof of Proposition 2.2, we have

He([i3)ar Ba» Bo) < D oo(ft1s 2y 112).

Similar to the proof of Theorem 3 in [23], we can conclude that there exists a fuzzy set ji4
such that [u4], = B, for o € I. By the compactness of B,, we have 4 € C(X). Therefore,

Dgoo(35 fas ha) < DG oo 2, h2). O

Proposition 2.4 Let X be a nonempty set. For any [, 2, us € C(X), the following prop-
erties hold:
(1) Dg,oo(t1, 2, n3) = 0 if and only if py = jua = us,
(i) 0 <Dg,oo(tt1, 1, 12) for all pu, po € C(X) with puy # pa,
(iii) Dg,oo(t1, 1415 2) < D oo(1, 2, 13) for all juy, o, a3 € C(X) with y # i3,
(iv) Dgoo(tt1, 2, 13) = DG oo(ti1, 3, 2) = DG oo(has f1, U3) = - - (symmetry in all three
variables),

(v) Dg,oo(t1, 2, 13) < Dg,o0(fh1s s 4) + D o0 (145 b2, 13).

Proof The properties (i), (ii) and (iv) are readily derived from the definition of Dg,x.
First, we prove the property (iii).
Forany o €l and x € [(1]q, ¥ € [(2]e and z € [13]4, wWe have

dg(x,y) —dg(x,2) —dg(z,y) <0,

it follows that

de(x,y) — da(% [1sla) — de ([2]a [143]a)

< sup dg(x,y) - i[nf dg(x,2) — inf dg(z,y)

yeluale z€(psla yeluzlarzelpsle

= sup [dG(x,y) —dgx,2z) - dG(z,y)] <0.

yelnlazelusla

This implies that

inf  dg(xy) - sup dg(x [1nsle) < de([naler (13)a)-

x€[purlayelple xeli]o

Then,

de([i1las [12]a) < sup do(x, [s)a) + de([12)as [13)a)-

x€[pla
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Hence,

G([Ml]a: [Hl]a: [//'Q]a)

sup dg(% [12la) + de([11]er [n2la)

x€[u1]a

= G([Ml]m (13]as [/1’2]0!)

= sup dG(xr [MZ]OZ) + sup dG(x’ [/1'3]01) + dG([MZ]a: [MS]&)~ (3)

x€[p1la x€lu1ly

Similarly, we can prove that

G([//LZ]DU [Ml]w [Ml]a) = G([/’Q]ar [Ml]ar [/1«3]&)~ (4)
By (3) and (4), we have

D oo(p1, 1, 2)

= sup Dg,q (11, i1, (12)

ael

= Ssup maX{G([Ml]w [Ml]w [MZ]&)’ G([MZ]OU [//Ll]ou [Ml]a)}

ael

< Dg,o0(t1, 2, 43) = sup Do (11, 2 i43)

ael

=Ssup maX{G([,u'l]ou [/1'3]01: [MZ]OI)’ G([MZ]OH [,u'l]on [/J'?)]a)) G([M?)]on [Ml]ar [MZ]O{) }

ael

Now, we prove the property (v).
Forany o € I and x € [2]a, ¥ € [it]o, we have

dg (%, [mla) < de(x,) +de (¥, [11]a),

it follows that
sup dG(x, [Ml]a) = sup dG( r[//«]a) + sup dG( ¢[/Ll]a)~ (5)
xe€[p2la ES o™ yelula

From (5) and

do (e [s]a) < da([as [13]a) + de([1)as [11]a)

we have

Got(MZ’ "3, Ml) = G([MZ]DU [MB]a» [Ml]a)
= sup [dg(x [mla) +da (% [13le) + da([1)e (13]a) ]

x€[p2]a

< sup [dg(x [ule) +da(, [143)e) + de([iles [3]a)]

x€[p2la

+ sup [de(y, [ala) + da (9 [1)a) + de ([ [11]a) ]

yelnla

= Gy (2, u3, 1) + Go (1, @y f11). (6)
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Similarly, we can obtain that

Go (s, 2, 1) < Go (U3, o, 1) + Go (s 14y (1), (7)

Ga(ﬂlr n2, /LB) < Ga(/'ln M2, MB) + Ga(/"Ll’ 122 /vL) (8)

By (6), (7) and (8), we have

Dgoo(1s s it3) = sup max{Gy (12, 3, 1), Ga (143, 2, 111), G (41, 1425 13) }

0<a<l

5 Sllp max{ Gut (MZ’ M3, M)r Got (:u/?n Mn2, ,lL), GOt (Mr "2, Mb’)}

0<a<l

+ sup max{Ge (i, s 1), Ga (s s 1), G (1, 11 1) |

0<a<l

= DG,oo(/'L’ MZ)/’LZ") +DG,oo(/'L1;/'L’H-)- g

Remark 2.1 Proposition 2.4 implies that D¢ is a G-metric in C(X), or more specially a
Hausdorff G-metric in C(X).

Definition 2.1 Let (C(X), Dg o) be a metric space. The sequence {u,} in C(X) is said to
be
(i) Dg,0-convergent to u if for every e > 0, there exists u € C(X) and N € N such that
DG oo (s s i) < € for all m,m > N,
(i) Dg,00-Cauchy if for every € > 0, there exists N € N such that Dg oo (thn, b (1) < €
for all n,m,l > N.

Proposition 2.5 Let (C(X), Dg,) be a metric space, then for a sequence {i,,} C C(X) and
i € C(X), the following are equivalent:
(i) {in} is Dg,eo-convergent to .
(ii) Doo(tt, tty) = 0 as n — +00.
(iii) DG oot ny 1) = 0 as n — +o0.
(iv) Dg,oo(tts hy f1y) — 0 as n — +00.

Proof Since Dg is a G-metric, Lemma 1.2 implies that (i), (iii) and (iv) are equivalent.
Now, we prove that (ii) is also an equivalent condition.
“(i) = (ii)” Suppose Dg,oo(1ts by ) — O as n,m — +00, then

Goo(ls ns ) = SUP  SUP [dG(x» [Mn]a) + dG(xr [/"LWI]OI) + dG([an]w [Mm]a)] -0

0<a<lxe[uly

and

Goo(:unr s Mm) = Sup sup [dG(x: [M]a) + dG( ’ [Mm]a) + dG([M]ou [Hm]a)] — 0.

O<a<lxel[unla

Thus, for any « € I,

sup [dg (%, [inla)] = 0 asn— +oo, 9)
x€[p]y
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and

sup [dg(% [ule)] > 0 asn— +oo. (10)

x€[pnla

It follows that

Doo(tts tn) = sup H([wlas [1nle) = 0 asn— +o0.

0<a<l

“(if) = (i)” Suppose Do (14, 1) = 0 as n — +00, then (9) and (10) hold.
Moreover, 0 < dg([tnla []a) < SUPLe,, [d6(x, []4)] implies that as n — +o0,

dG([Mn]on [M]a) — 0. (11)

From (9), (10) and (11), we have as n — +00,

D¢, (Mons s 1)

= sup maX{G([/Ln]w (nlas [M]a)r G([U—]a: (nle [Mn]a)}

0<a<l

= sup max{ sup [dG(x’ [M]a) +dG([/¢Ln]a’[/'L]a)]) sup 2dG("C: [Mn]oz)} — 0.

O<a=<l x€[inla x€[ply
Thus, from
0 < DG o0(ts s o) = DG 00 (Hons s im) < DG 00 (s oy 1) + D00 (1 1y fm)

< DG,oo (s ons tn) + D00 (s s i) + D00 (s s om) + D600 (ms My fom)

= 2DG,00(Mm Mns /,L) + 2DG,00(Mm1 Mms /L),
we can conclude that

DG,oo(M; s i) = O as m,m — +00. 0

Proposition 2.6 Let (C(X), Dg ) be a metric space and {j1,,} a sequence in C(X), then the
following are equivalent:
(i) The sequence {{1,,} is Dg,00-Cauchy.
(ii) Forevery ¢ > 0, there exists N € N such that Dg eo(Iens > o) < € for all nym > N.
(iii) {un} is a Cauchy sequence in the metric space (C(X), D).

Proof “(i) <= (ii)” is evidence.

“(if) = (iil)” Suppose that for every ¢ > 0, there exists N € N such that D¢ o (e, >
m) < &, for all n,m > N, then as n,m — +00,

Goo(Mns loms om) = O (12)
and

Goo(Mms Moms hu) = 0. (13)

Page 8 of 16
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It follows that

1
sup  sup dg(% [mla) = = Goo (s s ) — O. (14)
O0<a<lxe[unly 2

From (13) and

0 < sup sup dG(xr [MV[]O{) =< Goo(,u/mr Mom> Mn)»

O<a=<lxe[mmla

we have

sup sup dg(x, [Mn]a) — 0 asn,m— +00. (15)
O<a<lxe[umla

By (14) and (15), we have
Doo(tn m) — 0 asn,m — +00,

that is, {u,,} is a Cauchy sequence in the metric space (C(X), D).
“(iii) = (ii)” Suppose Doo(thy, ) = 0 as n,m — +00, then (14) and (15) hold. More-

over,

0 < sup dG([/Lm]ar[l'Ln]a) =< sup sup dg(x, [Mn]a)

0<a<l O0<a<lxe[umla

and (15) imply that

sup dg([imlas [nle) = 0 asn,m— +oo. (16)

0<a<l

From (14), (15) and (16), we have as n, m — +00,

Goo(n ms m) = SUP G([Mn]a: (mlas [Mm]a)

0<a<l

= sup sup 2dg(%, [Umla) = O (17)

O<a<lxelunla

and

sup G([Mm]a: [/-'Lm]m [Mn]a)

0<a<l

sup sup [dG(x¢ [Mn]ot) + dG([//Lm]a: [I'Ln]a)] — 0. (18)

O<a<lxe[pmla

GOO(I"LWD Mm; I/Ln)

We can get from (17) and (18) that

DG,OO(IU/H) Moms Mm) — 0 as n,m — +0Q. D

The next proposition follows directly from Lemma 1.4, Lemma 2.1, Proposition 2.5 and
Proposition 2.6.
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Proposition 2.7 The metric space (C(X), Dg ) is complete provided (X, G) is G-complete.
From the definitions of G, and Dg ., we can get the next proposition readily.

Proposition 2.8 If i1, 41, o € C(X) and py C wo, then
(1) Goolpr, s i) < Goo (2, 1y 1),
(i1) Goo(1ts 2s 2) = Goo (s 11, 1) = D00ty 15 1)
(iii) Goo(p1, p2, 2) = 0.

3 Fixed point theorems for fuzzy self-mappings
In this section, we establish two fixed point theorems for fuzzy self-mappings. First, we

recall the concept of a fuzzy self-mapping in [23].

Definition 3.1 [23] Let X be ametric space. A mapping F is said to be a fuzzy self-mapping
if and only if F is a mapping from the space C(X) into C(X), i.e., F(i) € C(X) for each
® € C(X). o € C(X) is said to be a fixed point of a fuzzy self-mapping F of C(X) if and
only if o C F(uo)-

Let @ denote all functions ¢ : [0, +00) — [0, +00) satisfying:

(i) ¢ is non-decreasing and continuous from the right,

(i) Yo7, ¢"(t) < +00, for all £ > 0, where ¢" denotes the nth iterative function of ¢.
Remark 3.1 It can be directly verified that for any ¢ € ® and all £ > 0, ¢(£) < t.

Theorem 3.1 Let (X, G) be a G-complete metric space and {T;}75, a sequence of fuzzy self-
mappings of C(X). Suppose that for each 111, sy € C(X) and for arbitrary positive integers i
and j, i #J,

DG ,oo(Tipt1, Tjha, Tjjta)

< ¢<maX{DG,w(M1: 125 142)s Goo (11, Tittr, Tittr), Goo (125 Tjpha, Titt2),
1
D) [Goo 11, Tjtta, Tjha) + Goo(ta2, Tiptr, Tip) | 1 )5 19)

where ¢ € O. Then there exists at least one u- € C(X) such that - C T~ forall i € Z*.

Proof Let o € C(X) and w1 C Tipo, by Proposition 2.3, there exists pp € C(X) such that
ta C Topy and

D oo (111, 2, 112) < DG,oo(T1 0, Toptr, Taptr).
Again by Proposition 2.3, we can find p3 € C(X) such that u3 C T3u, and
D o142, 13, 143) < D oo(Tapr, T3it2, T3 42).
Continuing this process, we can construct a sequence {x,} in C(X) such that

Mns1 C Tn+1/1«nr n=0,12,...
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and
DG,oo(tns nsts ns1) < DG oo(Tuttn-1, Tusifbns Tusittn), n=12,.... (20)
By (19), (20), Proposition 2.8 and (v) in Proposition 2.4, we have

DG,oo (,u-nr Mn+1s ,un+1)

= DG,oo(Tnﬂn—l» Ty thns Tre1fon)

< ¢<maX{DG,oo(PLnl: Mns I'Ln)y Goo(,“«n—l; Tnﬂn—lr Tnlu«n—l)v Goo(:um Tn+1:uny Tn+1,“«n):
1
) [Goo Mn-1s Tt Tuerfbn) + Goo (s Tfbn-1, Tnﬂn—l)]

<¢| ma {DGOO Mon=1s ons on)s DGoo(Mn 15 Mons Hon)s DGoo(Mm//von,u'ml)

N

[DGoo(Mn 1 Mn+1s U«n+1) + O] })

<o maX{DG,oo(Mn—l; s Mn)s DG,oo(//Ln: Mn+1, Mn+l):

N

[DG,oo(Mn—lx Mons en) + DG oo (ns Uns1s Mn+1)] })

= ¢(maX{DG,oo(,U«n—1, Mns Mn);DG,m (/’Ln: Mn+1s ,U«n+1); n= 1; 2: 3; oo (21)
Suppose that 0 = DG,oo(l/Ln—lr Mo //Ln) < DG,oo(/Lm Mns1s /'Ln+l)’ then

DG,oo(Mnr Mn+1s Mn+1) < ¢(DG,00 (/’Lnr Mn+1s Mn+l)) < DG,OO(/’L}’U Mn+ls /’Ln+l)7

which is a contradiction since Dg o0 (> hns1> Uns1) > O.

Hence,
DG o0(tns Uns1s ns1) < Da,oo(ln-1) ns en) (22)
and
D600 (bns sty ns1) < S (D600 (tnets s i) < -+ < @™ (D00 (05 11, 1)) (23)

Now, we prove that {i,} is a Dg,-Cauchy sequence. For positive integers m, n, we
distinguish the following two cases.
Case 1. If m > n, then

DG,oo (/’Lm Moms ,le)

< DG,oo(Mm Mn+1s /’LVH-l) + DG,OO(/‘L}’I+1) Mn+2s //«n+2) +eeet DG,OO(/’LWI—I! Mms //«m)
m-1 m-1

=Y Daoothis tiss 1is1) < Y ¢ (Do (10, 11, 111))- (24)

i=n i=n
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Assume that Dg o0 (tto, 11, i11) = 0, then 1o = p1. Inequality (21) implies that

Do (111, 2, 112) < ¢ (max{ D oo (10, 11, 141), Do (141, 12y 2) })

= ¢(Da,00 (111, 112, 12)).-

It follows from ¢(¢) < t that Dg eo(141, o, i42) = 0, that is, u; = u,. By induction, we have
Mo =p1="---=pg=---.Thus, po = px C Trpi-1 = Txpeo, k=1,2,....
Suppose that Dg oo (1o, 41, 141) > 0. Yoo #'(£) < 00 and (24) yield that

DG,00(Mns s o) = 0, as 1, m — +00. (25)
Case 2. If m < n, from (25) and

0= DG,oo(Mn’ Moms ) = DG,oo(Mm’ Moms [on)

< DG,oo(Mmr Mns Mn) + DG,oo(Mn: Mm» /an) = 2DG,00(/¢Lm’ Mns Mn):
we can get that
DG oo oy ) = O as n,m — +00. (26)

Thus, (25) and (26) imply that {u,,} is a Dg,.-Cauchy sequence. As (X, G) is G-complete,
by Proposition 2.7, we conclude that (C(X), D¢, ) is complete. There exists 1+ € C(X) such
that Dg oo (s, s i) — 0 as m — +00.

Now, Proposition 2.8 and (19) imply that

Goo(pts, Tipts, Tipu)
< Goolles js ) + Goo (s Tipee, Tijuv)
< Goolttos tjs 1)) + Goo(Tjptj1, Tipae, Tipie)
< Goo(tts, 1js 1)) + D oo (Tiptjor, Tigae, Tigae)

< Goo (1, i Mj)

+ d’ (maX{DG,oo(//Lj—lﬂ 58] M*)¢ Goo (/’Lj—h T}’Mj—l: I}'/’Lj—l)r Goo(//f*r Ti/’“‘: Til’“‘):

1
3 [Goo(tj-1, Tipre, Tipte) + Goo (e, Tiptjo, Tiptjcn)] }>

< Dgeo(pts) s 1))
+ ¢ <maX{DG,oo(Mjl¢ 158 M*)¢DG,OO(/’Lj—1¢ Wi /,L}), Goo(ﬂ*’ Ti/‘L*; Tilu“*);

1
5 [Goolitjrs o ) + G (e, Tipae, Tigee)

+ Goo(tte, 1, 147) + Goo (1t Tytjr, Tjsja) ] })

< Dg oo (s s 14))

Page 12 of 16
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+¢ <maX{DG,oo(M;1, Mooy 1), D00 (115 fos =) + D 00 (12 )5 A7),
1
Goolpees Topte, Tigte), 5 [Goo(j1, e, 1)
+ Goo (e, Tipee, Tipt) + Goo (e, 5, 145) + 0] }) (27)
Letting j — +00, we can see from (27) and Proposition 2.5 that
Goo(t, Tipts, Tipts) < ¢(Goolr, Tiae, Tijae)).
It implies that Goo (u+, T+, Tipu+) = 0, that is, p- C Tjpu-.
If in Theorem 3.1 we choose ¢(t) = kt, where k € (0,1) is a constant, we obtain the fol-

lowing corollary. 0

Corollary 3.1 Let (X, G) be a G-complete metric space and {T;}°, a sequence of fuzzy self-
mappings of C(X). Suppose that for each i1, o € C(X) and for arbitrary positive integers i
and j, i %},

DG,OO(:ri/’Llr T}'HZ’ 7}/"/2)

< k<maX{DG,oo(u1, W2, 2), Goo (11, Tiptr, Tiptr), Goo (2, Titka, Tjpka),
1
5[Goo(u1, Tja, Tjita) + Goott2, Tiptr, Tyt1) ] 1 ),

where k € (0,1). Then there exists at least one i+ € C(X) such that - C T;u- forall i € Z.*.
The following example illustrates Theorem 3.1.

Example 3.1 Let X ={0,1,2,3,...}. Define G: X x X x X — X by

x+y+z ifxy,zareall distinct and different from zero;
x+2z, if x = y # z and all are different from zero;
y+z+1, ifx=0,y+#zandy,z are different from zero;
Gx,y,2) =
y+2, ifx=0,y=2#0;

z+1, ifx=0,y=0,z#0;

0, ifx=y=2z

Then X is a complete nonsymmetric G-metric space [5].
For ,v € C(X), y € X and A > 0, owing to Zadeh’s extension principle [25], scalar mul-
tiplication and addition are defined by

A = M(%)

and

(w+v)@) = sup  min{u(u), ).

X1,X92:X]1 +X2 =X
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For any 0 <a <1 and p,v,w € C(X), we can get easily from the definition of G(x,y,z)
that

Dgoolap, av,aw) = aDg (i, v, ) (28)
and
Dg,oo(pt,av,av) < Dgoo(it, v, v). (29)

Now, suppose 0 < p <1, define po: X — C(X) by

p, ifx=0;
o (x) =
0, otherwise.

Suppose 0 < g < 1, define {T;}?°, a sequence of fuzzy self-mappings of C(X) as
Tin)=q'mw+pmo for any u € C(X).

Forany i,j € Z*, without loss of generality, suppose i < j. For each u,, 1y € C(X), by (28),
(29) and the definition of «-level set, we have

DG ,oo(Tipt1, Tjfha, Tjjta)
= Dgoo(q' 11 + 1or @ 2 + 10,4 1 + [L0)

<q' DG (er qj_i,uz,qj_iﬂz) < q'Dgoo (1, 112, 12)

<q (maX{DG,oo(Ml, M2, 142), Goo (1, Tiptr, i), Goo (2, Tipta, Tiita),

1
E[Goo(ﬂly Tjita, Tjita) + Goo(tho, Tiptr, Tept1) ] )-

Therefore, {T;}%, satisfy the conditions of Theorem 3.1 with ¢(¢) = g’¢. Moreover, for each
0<b<p,

b, ifx=0;
(%) =
0, otherwise

is a common fixed point of {T;}7°,.

4 Conclusion

In this work, by using the new concept of Hausdorff G-metric in the space of fuzzy sets,
we establish some common fixed point theorems for a family of fuzzy self-mappings in
the space of fuzzy sets on a complete G-metric space. These results are useful in fractal.
An iterated function system (i.e., IFS) is the significant content in fractal, and the attractor
of the IFS plays a very important role in the fractal graphics. On account of the fuzziness
of parameters in fractal, by Zadeh'’s extension principle [25], we can get an iterated fuzzy
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function system (i.e., IFFS) corresponding the IFS [24]. For example, { 7;}", in Example 3.1
isan IFFS and {u; : 0 < b < p} C A, where A is the set of attractors of IFFS. Moreover, we
can estimate the area of attractors basing on the fixed points of {T;}",. Our results are
also useful in fuzzy differential equation. As we all know, the existence of a solution for
a fuzzy differential equation can be established via the fixed point analysis approach (see
[26-28]). Therefore, our results provide a new method for studying the fuzzy differential
equation in G-metric spaces.
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