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Abstract
In this paper, we introduce the concept of Hausdorff G-metric in the space of fuzzy
sets induced by the metric dG and obtain some results on Hausdorff G-metric. We also
prove common fixed point theorems for a family of fuzzy self-mappings in the space
of fuzzy sets on a complete G-metric space.
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1 Introduction and preliminaries
Fixed point theory is very important in mathematics and has applications in many fields.
A number of authors established fixed point theorems for various mappings in different
metric spaces. In , Mustafa and Sims [] introduced the G-metric space as a gener-
alization of metric spaces. We now recall some definitions and results in G-metric spaces
in [].

Definition . Let X be a nonempty set, and let G : X ×X ×X →R
+ be a function satis-

fying:

(G) G(x, y, z) =  if x = y = z,
(G)  <G(x,x, y) for all x, y ∈ X with x �= y,
(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X , with y �= z,
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables),
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on
X, and the pair (X,G) is a G-metric space.

Lemma . Every G-metric space (X,G) defines a metric space (X,dG) by

dG(x, y) =G(x, y, y) +G(x,x, y), for all x, y ∈ X.

Definition . Let (X,G) be a G-metric space. The sequence {xn} in X is said to be
(i) G-convergent to x if for any ε > , there exists x ∈ X and N ∈N such that

G(x,xn,xm) < ε, for all n,m ≥ N .
(ii) G-Cauchy if for any ε > , there exists N ∈N such that G(xn,xm,xl) < ε, for all

n,m, l ≥ N .
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Lemma . Let (X,G) be a G-metric space, then for a sequence {xn} in X and point x ∈ X
the following are equivalent:

(i) {xn} is G-convergent to x.
(ii) G(xn,xn,x) →  as n→ +∞.
(iii) G(xn,x,x)→  as n→ +∞.
(iv) G(xm,xn,x)→  as m,n→ +∞.

Lemma . Let (X,G) be a G-metric space, then for a sequence {xn} in X, the following are
equivalent:

(i) The sequence {xn} is G-Cauchy.
(ii) For any ε > , there exists N ∈N such that G(xn,xm,xm) < ε, for all n,m ≥ N .
(iii) {xn} is a Cauchy sequence in the metric space (X,dG).

Definition . A G-metric space (X,G) is said to be G-complete if every G-Cauchy se-
quence in (X,G) is G-convergent in (X,G).

Lemma . A G-metric space (X,G) is G-complete if and only if (X,dG) is a complete
metric space.

Based on the notion ofG-metric spaces,many authors obtained fixed point theorems for
mappings satisfying different contractive-type conditions inG-metric spaces (see, e.g., [–
]) and in partially orderedG-metric spaces (see, e.g., [–]). Recently, Kaewcharoen and
Kaewkhao [] introduced the following concepts. Let X be a G-metric space and CB(X)
the family of all nonempty closed bounded subsets of X. Let H(·, ·, ·) be the Hausdorff
G-distance on CB(X), i.e.,

HG(A,B,C) =max
{
sup
x∈A

G(x,B,C), sup
x∈B

G(x,C,A), sup
x∈C

G(x,A,B)
}
,

where

G(x,B,C) = dG(x,B) + dG(B,C) + dG(x,C),

dG(x,B) = inf
y∈BdG(x, y),

dG(A,B) = inf
x∈A,y∈B

dG(x, y).

Kaewcharoen and Kaewkhao [] and Tahat et al. [] obtained some common fixed point
theorems for single-valued and multi-valued mappings in G-metric spaces.
The existence of fixed points of fuzzy mappings has been an active area of research

interest since Heilpern [] introduced the concept of fuzzy mappings in . Many re-
sults have appeared related to fixed points for fuzzy mappings in ordinary metric spaces
(see, e.g., [–]). Qiu and Shu [, ] proved some fixed point theorems for fuzzy self-
mappings in ordinary metric spaces. However, there are very few results on fuzzy self-
mappings in G-metric spaces. The purpose of this paper is to introduce the notion of
Hausdorff G-metric in the space of fuzzy sets which extends the Hausdorff G-distance in
[]. We also establish common fixed point theorems for a family of fuzzy self-mappings
in the space of fuzzy sets on a complete G-metric space.
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2 A Hausdorff G-metric in the space of fuzzy sets
Let (X,dG) be a metric space, a fuzzy set in X is a function with domain X and values in
I = [, ]. If μ is a fuzzy set and x ∈ X, then the function value μ(x) is called the grade of
membership of x in μ.
The α-level set of μ, denoted by [μ]α , is defined as

[μ]α =
{
x : μ(x)≥ α

}
, if α ∈ (, ],

[μ] =
{
x : μ(x) > 

}
,

where B is the closure of the non-fuzzy set B.
LetC(X) be the family of all nonempty compact subsets ofX. Denote byC(X) the totality

of fuzzy sets which satisfy that for each α ∈ I , [μ]α ∈ C(X). Let μ,μ ∈ C(X), then μ is
said to be more accurate than μ, denoted by μ ⊂ μ, if and only if μ(x) ≤ μ(x) for each
x ∈ X. μ = μ if and only if μ ⊂ μ and μ ⊂ μ.
Let μ,μ ∈ C(X), define

D∞(μ,μ) = sup
≤α≤

H
(
[μ]α , [μ]α

)

= sup
≤α≤

max
{

sup
x∈[μ]α

dG
(
x, [μ]α

)
, sup
y∈[μ]α

dG
(
y, [μ]α

)}
.

Lemma . [] The metric space (C(X),D∞) is complete provided (X,dG) is complete.

For μ,μ,μ ∈ C(X), α ∈ I , we define:

Gα(μ,μ,μ) =G
(
[μ]α , [μ]α , [μ]α

)
= sup

x∈[μ]α
G

(
x, [μ]α , [μ]α

)
,

G∞(μ,μ,μ) = sup
≤α≤

Gα(μ,μ,μ),

DG,α(μ,μ,μ)

=HG
(
[μ]α , [μ]α , [μ]α

)

=max
{

sup
x∈[μ]α

G
(
x, [μ]α , [μ]α

)
, sup
x∈[μ]α

G
(
x, [μ]α , [μ]α

)
, sup
x∈[μ]α

G
(
x, [μ]α , [μ]α

)}

=max
{
Gα(μ,μ,μ),Gα(μ,μ,μ),Gα(μ,μ,μ)

}
,

DG,∞(μ,μ,μ)

= sup
≤α≤

DG,α(μ,μ,μ)

= sup
≤α≤

max
{
Gα(μ,μ,μ),Gα(μ,μ,μ),Gα(μ,μ,μ)

}

=max
{
sup

≤α≤
Gα(μ,μ,μ), sup

≤α≤
Gα(μ,μ,μ), sup

≤α≤
Gα(μ,μ,μ)

}

=max
{
G∞(μ,μ,μ),G∞(μ,μ,μ),G∞(μ,μ,μ)

}
.

Proposition . If A,B ∈ C(X) and x ∈ A, then there exists y ∈ B such that


[
G(x, y, y) +G(y,x,x)

] ≤ HG(A,B,B).
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Proof For x ∈ A, there exists y ∈ B such that

dG(x, y) = dG(x,B) =


G(x,B,B),

it follows that


[
G(x, y, y) +G(y,x,x)

]
=G(x,B,B)≤ HG(A,B,B). �

Proposition . If A,B ∈ C(X) and A ⊆ A, then there exists B ∈ C(X) such that B ⊆ B
and

HG(A,B,B) ≤ HG(A,B,B).

Proof Let C = {y : there exists x ∈ A, such that (G(x, y, y) +G(y,x,x))≤ HG(A,B,B)} and
let B = C ∩ B. For any x ∈ A ⊆ A and B ∈ C(X), Proposition . implies that B is
nonempty. Moreover, for any x ∈ A, there exists y ∈ B such that [G(x, y, y) +G(y,x,x)] ≤
HG(A,B,B). It follows that

G(A,B,B) = sup
x∈A

G(x,B,B) = sup
x∈A

dG(x,B)

=  sup
x∈A

inf
y∈B

[
G(x, y, y) +G(y,x,x)

] ≤ HG(A,B,B). ()

On the other hand, for any y ∈ B, there exists x ∈ A such that [G(x, y, y) +G(y,x,x)]≤
HG(A,B,B). Hence,

G(B,B,A) = sup
y∈B

G(y,B,A) = sup
y∈B

[
dG(y,A)

]
+ sup

y∈B

[
dG(y,B)

]
+ dG(A,B)

= sup
y∈B

inf
x∈A

[
G(x, y, y) +G(y,x,x)

]
+  + inf

x∈A,y∈B
[
G(x, y, y) +G(y,x,x)

]

≤ sup
y∈B

inf
x∈A

[
G(x, y, y) +G(y,x,x)

]
+ sup

y∈B
inf
x∈A

[
G(x, y, y) +G(y,x,x)

]

= sup
y∈B

inf
x∈A


[
G(x, y, y) +G(y,x,x)

] ≤ HG(A,B,B). ()

From () and (), we have

HG(A,B,B) ≤ HG(A,B,B).

Finally, we can conclude that B ∈ C(X) from the closeness of C and the compactness
of B. �

Proposition . Let μ,μ ∈ C(X) and μ ⊂ μ, then there exists μ ∈ C(X) such that
μ ⊂ μ and

DG,∞(μ,μ,μ)≤ DG,∞(μ,μ,μ).
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Proof Let α ∈ I , by μ ⊂ μ, we have [μ]α ⊆ [μ]α . Let

Cα =
{
y : there exists x ∈ [μ]α such that 

[
G(x, y, y) +G(y,x,x)

]
≤ DG,∞(μ,μ,μ)

}
,

Dα =
{
z : dG

(
z, [μ]α

) ≤ DG,∞(μ,μ,μ)
}
,

we can get that Cα =Dα . Let Bα =Dα ∩ [μ]α , then Bα is nonempty compact and Bα ⊆ Bβ ,
for  ≤ β ≤ α ≤ . From the proof of Proposition ., we have

HG
(
[μ]α ,Bα ,Bα

) ≤ DG,∞(μ,μ,μ).

Similar to the proof of Theorem  in [], we can conclude that there exists a fuzzy set μ

such that [μ]α = Bα for α ∈ I . By the compactness of Bα , we have μ ∈ C(X). Therefore,

DG,∞(μ,μ,μ)≤ DG,∞(μ,μ,μ). �

Proposition . Let X be a nonempty set. For any μ,μ,μ ∈ C(X), the following prop-
erties hold:

(i) DG,∞(μ,μ,μ) =  if and only if μ = μ = μ,
(ii)  <DG,∞(μ,μ,μ) for all μ,μ ∈ C(X) with μ �= μ,
(iii) DG,∞(μ,μ,μ) ≤ DG,∞(μ,μ,μ) for all μ,μ,μ ∈ C(X) with μ �= μ,
(iv) DG,∞(μ,μ,μ) =DG,∞(μ,μ,μ) =DG,∞(μ,μ,μ) = · · · (symmetry in all three

variables),
(v) DG,∞(μ,μ,μ) ≤ DG,∞(μ,μ,μ) +DG,∞(μ,μ,μ).

Proof The properties (i), (ii) and (iv) are readily derived from the definition of DG,∞.
First, we prove the property (iii).
For any α ∈ I and x ∈ [μ]α , y ∈ [μ]α and z ∈ [μ]α , we have

dG(x, y) – dG(x, z) – dG(z, y) ≤ ,

it follows that

dG(x, y) – dG
(
x, [μ]α

)
– dG

(
[μ]α , [μ]α

)
≤ sup

y∈[μ]α
dG(x, y) – inf

z∈[μ]α
dG(x, z) – inf

y∈[μ]α ,z∈[μ]α
dG(z, y)

= sup
y∈[μ]α ,z∈[μ]α

[
dG(x, y) – dG(x, z) – dG(z, y)

] ≤ .

This implies that

inf
x∈[μ]α ,y∈[μ]α

dG(x, y) – sup
x∈[μ]α

dG
(
x, [μ]α

) ≤ dG
(
[μ]α , [μ]α

)
.

Then,

dG
(
[μ]α , [μ]α

) ≤ sup
x∈[μ]α

dG
(
x, [μ]α

)
+ dG

(
[μ]α , [μ]α

)
.
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Hence,

G
(
[μ]α , [μ]α , [μ]α

)
= sup

x∈[μ]α
dG

(
x, [μ]α

)
+ dG

(
[μ]α , [μ]α

)

≤ G
(
[μ]α , [μ]α , [μ]α

)
= sup

x∈[μ]α
dG

(
x, [μ]α

)
+ sup

x∈[μ]α
dG

(
x, [μ]α

)
+ dG

(
[μ]α , [μ]α

)
. ()

Similarly, we can prove that

G
(
[μ]α , [μ]α , [μ]α

) ≤ G
(
[μ]α , [μ]α , [μ]α

)
. ()

By () and (), we have

DG,∞(μ,μ,μ)

= sup
α∈I

DG,α(μ,μ,μ)

= sup
α∈I

max
{
G

(
[μ]α , [μ]α , [μ]α

)
,G

(
[μ]α , [μ]α , [μ]α

)}

≤ DG,∞(μ,μ,μ) = sup
α∈I

DG,α(μ,μ,μ)

= sup
α∈I

max
{
G

(
[μ]α , [μ]α , [μ]α

)
,G

(
[μ]α , [μ]α , [μ]α

)
,G

(
[μ]α , [μ]α , [μ]α

)}
.

Now, we prove the property (v).
For any α ∈ I and x ∈ [μ]α , y ∈ [μ]α , we have

dG
(
x, [μ]α

) ≤ dG(x, y) + dG
(
y, [μ]α

)
,

it follows that

sup
x∈[μ]α

dG
(
x, [μ]α

) ≤ sup
x∈[μ]α

dG
(
x, [μ]α

)
+ sup

y∈[μ]α
dG

(
y, [μ]α

)
. ()

From () and

dG
(
[μ]α , [μ]α

) ≤ dG
(
[μ]α , [μ]α

)
+ dG

(
[μ]α , [μ]α

)
,

we have

Gα(μ,μ,μ) = G
(
[μ]α , [μ]α , [μ]α

)
= sup

x∈[μ]α

[
dG

(
x, [μ]α

)
+ dG

(
x, [μ]α

)
+ dG

(
[μ]α , [μ]α

)]

≤ sup
x∈[μ]α

[
dG

(
x, [μ]α

)
+ dG

(
x, [μ]α

)
+ dG

(
[μ]α , [μ]α

)]

+ sup
y∈[μ]α

[
dG

(
y, [μ]α

)
+ dG

(
y, [μ]α

)
+ dG

(
[μ]α , [μ]α

)]

= Gα(μ,μ,μ) +Gα(μ,μ,μ). ()
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Similarly, we can obtain that

Gα(μ,μ,μ)≤ Gα(μ,μ,μ) +Gα(μ,μ,μ), ()

Gα(μ,μ,μ)≤ Gα(μ,μ,μ) +Gα(μ,μ,μ). ()

By (), () and (), we have

DG,∞(μ,μ,μ) = sup
≤α≤

max
{
Gα(μ,μ,μ),Gα(μ,μ,μ),Gα(μ,μ,μ)

}

≤ sup
≤α≤

max
{
Gα(μ,μ,μ),Gα(μ,μ,μ),Gα(μ,μ,μ)

}

+ sup
≤α≤

max
{
Gα(μ,μ,μ),Gα(μ,μ,μ),Gα(μ,μ,μ)

}

= DG,∞(μ,μ,μ) +DG,∞(μ,μ,μ). �

Remark . Proposition . implies that DG,∞ is a G-metric in C(X), or more specially a
Hausdorff G-metric in C(X).

Definition . Let (C(X),DG,∞) be a metric space. The sequence {μn} in C(X) is said to
be

(i) DG,∞-convergent to μ if for every ε > , there exists μ ∈ C(X) and N ∈N such that
DG,∞(μ,μn,μm) < ε for all n,m ≥ N ,

(ii) DG,∞-Cauchy if for every ε > , there exists N ∈N such that DG,∞(μn,μm,μl) < ε

for all n,m, l ≥ N .

Proposition . Let (C(X),DG,∞) be a metric space, then for a sequence {μn} ⊂ C(X) and
μ ∈ C(X), the following are equivalent:

(i) {μn} is DG,∞-convergent to μ.
(ii) D∞(μ,μn) →  as n → +∞.
(iii) DG,∞(μn,μn,μ) →  as n→ +∞.
(iv) DG,∞(μ,μ,μn)→  as n→ +∞.

Proof Since DG,∞ is a G-metric, Lemma . implies that (i), (iii) and (iv) are equivalent.
Now, we prove that (ii) is also an equivalent condition.
“(i) =⇒ (ii)” Suppose DG,∞(μ,μn,μm) →  as n,m → +∞, then

G∞(μ,μn,μm) = sup
≤α≤

sup
x∈[μ]α

[
dG

(
x, [μn]α

)
+ dG

(
x, [μm]α

)
+ dG

(
[μn]α , [μm]α

)] → 

and

G∞(μn,μ,μm) = sup
≤α≤

sup
x∈[μn]α

[
dG

(
x, [μ]α

)
+ dG

(
x, [μm]α

)
+ dG

(
[μ]α , [μm]α

)] → .

Thus, for any α ∈ I ,

sup
x∈[μ]α

[
dG

(
x, [μn]α

)] →  as n→ +∞, ()
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and

sup
x∈[μn]α

[
dG

(
x, [μ]α

)] →  as n→ +∞. ()

It follows that

D∞(μ,μn) = sup
≤α≤

H
(
[μ]α , [μn]α

) →  as n→ +∞.

“(ii) =⇒ (i)” Suppose D∞(μ,μn) →  as n→ +∞, then () and () hold.
Moreover,  ≤ dG([μn]α , [μ]α) ≤ supx∈[μn]α [dG(x, [μ]α)] implies that as n→ +∞,

dG
(
[μn]α , [μ]α

) → . ()

From (), () and (), we have as n→ +∞,

DG,∞(μn,μn,μ)

= sup
≤α≤

max
{
G

(
[μn]α , [μn]α , [μ]α

)
,G

(
[μ]α , [μn]α , [μn]α

)}

= sup
≤α≤

max
{

sup
x∈[μn]α

[
dG

(
x, [μ]α

)
+ dG

(
[μn]α , [μ]α

)]
, sup
x∈[μ]α

dG
(
x, [μn]α

)} → .

Thus, from

 ≤ DG,∞(μ,μn,μm) =DG,∞(μn,μ,μm)≤ DG,∞(μn,μ,μ) +DG,∞(μ,μ,μm)

≤ DG,∞(μ,μn,μn) +DG,∞(μn,μ,μn) +DG,∞(μ,μm,μm) +DG,∞(μm,μ,μm)

= DG,∞(μn,μn,μ) + DG,∞(μm,μm,μ),

we can conclude that

DG,∞(μ,μn,μm) →  as n,m → +∞. �

Proposition . Let (C(X),DG,∞) be ametric space and {μn} a sequence in C(X), then the
following are equivalent:

(i) The sequence {μn} is DG,∞-Cauchy.
(ii) For every ε > , there exists N ∈N such that DG,∞(μn,μm,μm) < ε for all n,m >N .
(iii) {μn} is a Cauchy sequence in the metric space (C(X),D∞).

Proof “(i) ⇐⇒ (ii)” is evidence.
“(ii) =⇒ (iii)” Suppose that for every ε > , there exists N ∈ N such that DG,∞(μn,μm,

μm) < ε, for all n,m >N , then as n,m → +∞,

G∞(μn,μm,μm) →  ()

and

G∞(μm,μm,μn) → . ()
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It follows that

sup
≤α≤

sup
x∈[μn]α

dG
(
x, [μm]α

)
=


G∞(μn,μm,μm) → . ()

From () and

 ≤ sup
≤α≤

sup
x∈[μm]α

dG
(
x, [μn]α

) ≤ G∞(μm,μm,μn),

we have

sup
≤α≤

sup
x∈[μm]α

dG
(
x, [μn]α

) →  as n,m → +∞. ()

By () and (), we have

D∞(μn,μm) →  as n,m → +∞,

that is, {μn} is a Cauchy sequence in the metric space (C(X),D∞).
“(iii) =⇒ (ii)” Suppose D∞(μn,μm) →  as n,m → +∞, then () and () hold. More-

over,

 ≤ sup
≤α≤

dG
(
[μm]α , [μn]α

) ≤ sup
≤α≤

sup
x∈[μm]α

dG
(
x, [μn]α

)

and () imply that

sup
≤α≤

dG
(
[μm]α , [μn]α

) →  as n,m → +∞. ()

From (), () and (), we have as n,m → +∞,

G∞(μn,μm,μm) = sup
≤α≤

G
(
[μn]α , [μm]α , [μm]α

)

= sup
≤α≤

sup
x∈[μn]α

dG
(
x, [μm]α

) →  ()

and

G∞(μm,μm,μn) = sup
≤α≤

G
(
[μm]α , [μm]α , [μn]α

)

= sup
≤α≤

sup
x∈[μm]α

[
dG

(
x, [μn]α

)
+ dG

(
[μm]α , [μn]α

)] → . ()

We can get from () and () that

DG,∞(μn,μm,μm) →  as n,m → +∞. �

The next proposition follows directly from Lemma ., Lemma ., Proposition . and
Proposition ..
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Proposition . Themetric space (C(X),DG,∞) is complete provided (X,G) is G-complete.

From the definitions of G∞ and DG,∞, we can get the next proposition readily.

Proposition . If μ,μ,μ ∈ C(X) and μ ⊂ μ, then
(i) G∞(μ,μ,μ) ≤ G∞(μ,μ,μ),
(ii) G∞(μ,μ,μ) ≤ G∞(μ,μ,μ) ≤ DG,∞(μ,μ,μ),
(iii) G∞(μ,μ,μ) = .

3 Fixed point theorems for fuzzy self-mappings
In this section, we establish two fixed point theorems for fuzzy self-mappings. First, we
recall the concept of a fuzzy self-mapping in [].

Definition. [] LetX be ametric space. Amapping F is said to be a fuzzy self-mapping
if and only if F is a mapping from the space C(X) into C(X), i.e., F(μ) ∈ C(X) for each
μ ∈ C(X). μ ∈ C(X) is said to be a fixed point of a fuzzy self-mapping F of C(X) if and
only if μ ⊂ F(μ).
Let � denote all functions φ : [, +∞)→ [, +∞) satisfying:
(i) φ is non-decreasing and continuous from the right,
(ii)

∑∞
n= φ

n(t) < +∞, for all t > , where φn denotes the nth iterative function of φ.

Remark . It can be directly verified that for any φ ∈ � and all t > , φ(t) < t.

Theorem . Let (X,G) be a G-complete metric space and {Ti}∞i= a sequence of fuzzy self-
mappings of C(X). Suppose that for each μ,μ ∈ C(X) and for arbitrary positive integers i
and j, i �= j,

DG,∞(Tiμ,Tjμ,Tjμ)

≤ φ

(
max

{
DG,∞(μ,μ,μ),G∞(μ,Tiμ,Tiμ),G∞(μ,Tjμ,Tjμ),



[
G∞(μ,Tjμ,Tjμ) +G∞(μ,Tiμ,Tiμ)

]})
, ()

where φ ∈ �. Then there exists at least one μ* ∈ C(X) such that μ* ⊂ Tiμ* for all i ∈ Z
+.

Proof Let μ ∈ C(X) and μ ⊂ Tμ, by Proposition ., there exists μ ∈ C(X) such that
μ ⊂ Tμ and

DG,∞(μ,μ,μ) ≤ DG,∞(Tμ,Tμ,Tμ).

Again by Proposition ., we can find μ ∈ C(X) such that μ ⊂ Tμ and

DG,∞(μ,μ,μ) ≤ DG,∞(Tμ,Tμ,Tμ).

Continuing this process, we can construct a sequence {μn} in C(X) such that

μn+ ⊂ Tn+μn, n = , , , . . .
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and

DG,∞(μn,μn+,μn+) ≤ DG,∞(Tnμn–,Tn+μn,Tn+μn), n = , , . . . . ()

By (), (), Proposition . and (v) in Proposition ., we have

DG,∞(μn,μn+,μn+)

≤ DG,∞(Tnμn–,Tn+μn,Tn+μn)

≤ φ

(
max

{
DG,∞(μn–,μn,μn),G∞(μn–,Tnμn–,Tnμn–),G∞(μn,Tn+μn,Tn+μn),



[
G∞(μn–,Tn+μn,Tn+μn) +G∞(μn,Tnμn–,Tnμn–)

]})

≤ φ

(
max

{
DG,∞(μn–,μn,μn),DG,∞(μn–,μn,μn),DG,∞(μn,μn+,μn+),



[
DG,∞(μn–,μn+,μn+) + 

]})

≤ φ

(
max

{
DG,∞(μn–,μn,μn),DG,∞(μn,μn+,μn+),



[
DG,∞(μn–,μn,μn) +DG,∞(μn,μn+,μn+)

]})

= φ(max{DG,∞(μn–,μn,μn),DG,∞(μn,μn+,μn+), n = , , , . . . . ()

Suppose that  ≤ DG,∞(μn–,μn,μn) <DG,∞(μn,μn+,μn+), then

DG,∞(μn,μn+,μn+) ≤ φ
(
DG,∞(μn,μn+,μn+)

)
<DG,∞(μn,μn+,μn+),

which is a contradiction since DG,∞(μn,μn+,μn+) > .
Hence,

DG,∞(μn,μn+,μn+) ≤ DG,∞(μn–,μn,μn) ()

and

DG,∞(μn,μn+,μn+) ≤ φ
(
DG,∞(μn–,μn,μn)

) ≤ · · · ≤ φn(DG,∞(μ,μ,μ)
)
. ()

Now, we prove that {μn} is a DG,∞-Cauchy sequence. For positive integers m, n, we
distinguish the following two cases.
Case . Ifm > n, then

DG,∞(μn,μm,μm)

≤ DG,∞(μn,μn+,μn+) +DG,∞(μn+,μn+,μn+) + · · · +DG,∞(μm–,μm,μm)

=
m–∑
i=n

DG,∞(μi,μi+,μi+) ≤
m–∑
i=n

φi(DG,∞(μ,μ,μ)
)
. ()
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Assume that DG,∞(μ,μ,μ) = , then μ = μ. Inequality () implies that

DG,∞(μ,μ,μ) ≤ φ
(
max

{
DG,∞(μ,μ,μ),DG,∞(μ,μ,μ)

})
= φ

(
DG,∞(μ,μ,μ)

)
.

It follows from φ(t) < t that DG,∞(μ,μ,μ) = , that is, μ = μ. By induction, we have
μ = μ = · · · = μk = · · · . Thus, μ = μk ⊂ Tkμk– = Tkμ, k = , , . . . .
Suppose that DG,∞(μ,μ,μ) > .

∑∞
i= φ

i(t) < ∞ and () yield that

DG,∞(μn,μm,μm) → , as n,m → +∞. ()

Case . Ifm < n, from () and

 ≤ DG,∞(μn,μm,μm) =DG,∞(μm,μm,μn)

≤ DG,∞(μm,μn,μn) +DG,∞(μn,μm,μn) = DG,∞(μm,μn,μn),

we can get that

DG,∞(μn,μm,μm) →  as n,m → +∞. ()

Thus, () and () imply that {μn} is a DG,∞-Cauchy sequence. As (X,G) is G-complete,
by Proposition ., we conclude that (C(X),DG,∞) is complete. There existsμ* ∈ C(X) such
that DG,∞(μ*,μm,μm) →  asm → +∞.
Now, Proposition . and () imply that

G∞(μ*,Tiμ*,Tiμ*)

≤ G∞(μ*,μj,μj) +G∞(μj,Tiμ*,Tiμ*)

≤ G∞(μ*,μj,μj) +G∞(Tjμj–,Tiμ*,Tiμ*)

≤ G∞(μ*,μj,μj) +DG,∞(Tjμj–,Tiμ*,Tiμ*)

≤ G∞(μ*,μj,μj)

+ φ

(
max

{
DG,∞(μj–,μ*,μ*),G∞(μj–,Tjμj–,Tjμj–),G∞(μ*,Tiμ*,Tiμ*),



[
G∞(μj–,Tiμ*,Tiμ*) +G∞(μ*,Tjμj–,Tjμj–)

]})

≤ DG,∞(μ*,μj,μj)

+ φ

(
max

{
DG,∞(μj–,μ*,μ*),DG,∞(μj–,μj,μj),G∞(μ*,Tiμ*,Tiμ*),



[
G∞(μj–,μ*,μ*) +G∞(μ*,Tiμ*,Tiμ*)

+G∞(μ*,μj,μj) +G∞(μj,Tjμj–,Tjμj–)
]})

≤ DG,∞(μ*,μj,μj)
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+ φ

(
max

{
DG,∞(μj–,μ*,μ*),DG,∞(μj–,μ*,μ*) +DG,∞(μ*,μj,μj),

G∞(μ*,Tiμ*,Tiμ*),


[
G∞(μj–,μ*,μ*)

+G∞(μ*,Tiμ*,Tiμ*) +G∞(μ*,μj,μj) + 
]})

. ()

Letting j → +∞, we can see from () and Proposition . that

G∞(μ*,Tiμ*,Tiμ*)≤ φ
(
G∞(μ*,Tiμ*,Tiμ*)

)
.

It implies that G∞(μ*,Tiμ*,Tiμ*) = , that is, μ* ⊂ Tiμ*.
If in Theorem . we choose φ(t) = kt, where k ∈ (, ) is a constant, we obtain the fol-

lowing corollary. �

Corollary . Let (X,G) be a G-complete metric space and {Ti}∞i= a sequence of fuzzy self-
mappings of C(X). Suppose that for each μ,μ ∈ C(X) and for arbitrary positive integers i
and j, i �= j,

DG,∞(Tiμ,Tjμ,Tjμ)

≤ k
(
max

{
DG,∞(μ,μ,μ),G∞(μ,Tiμ,Tiμ),G∞(μ,Tjμ,Tjμ),



[
G∞(μ,Tjμ,Tjμ) +G∞(μ,Tiμ,Tiμ)

]})
,

where k ∈ (, ). Then there exists at least one μ* ∈ C(X) such that μ* ⊂ Tiμ* for all i ∈ Z
+.

The following example illustrates Theorem ..

Example . Let X = {, , , , . . .}. Define G : X ×X ×X → X by

G(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y + z, if x, y, z are all distinct and different from zero;

x + z, if x = y �= z and all are different from zero;

y + z + , if x = , y �= z and y, z are different from zero;

y + , if x = , y = z �= ;

z + , if x = , y = , z �= ;

, if x = y = z.

Then X is a complete nonsymmetric G-metric space [].
For μ,ν ∈ C(X), y ∈ X and λ > , owing to Zadeh’s extension principle [], scalar mul-

tiplication and addition are defined by

(λμ)(y) = μ

(
y
λ

)

and

(μ + ν)(x) = sup
x,x:x+x=x

min
{
μ(x),ν(x)

}
.
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For any  < a <  and μ,ν,ω ∈ C(X), we can get easily from the definition of G(x, y, z)
that

DG,∞(aμ,aν,aω) = aDG,∞(μ,ν,ω) ()

and

DG,∞(μ,aν,aν)≤ DG,∞(μ,ν,ν). ()

Now, suppose  < p ≤ , define μ : X → C(X) by

μ(x) =

⎧⎨
⎩
p, if x = ;

, otherwise.

Suppose  < q < , define {Ti}∞i= a sequence of fuzzy self-mappings of C(X) as

Ti(μ) = qiμ +μ for any μ ∈ C(X).

For any i, j ∈ Z+, without loss of generality, suppose i < j. For each μ,μ ∈ C(X), by (),
() and the definition of α-level set, we have

DG,∞(Tiμ,Tjμ,Tjμ)

=DG,∞
(
qiμ +μ,qjμ +μ,qjμ +μ

)
≤ qiDG,∞

(
μ,qj–iμ,qj–iμ

) ≤ qiDG,∞(μ,μ,μ)

≤ qi
(
max

{
DG,∞(μ,μ,μ),G∞(μ,Tiμ,Tiμ),G∞(μ,Tjμ,Tjμ),



[
G∞(μ,Tjμ,Tjμ) +G∞(μ,Tiμ,Tiμ)

]})
.

Therefore, {Ti}∞i= satisfy the conditions of Theorem . with φ(t) = qit. Moreover, for each
 < b≤ p,

μb(x) =

⎧⎨
⎩
b, if x = ;

, otherwise

is a common fixed point of {Ti}∞i=.

4 Conclusion
In this work, by using the new concept of Hausdorff G-metric in the space of fuzzy sets,
we establish some common fixed point theorems for a family of fuzzy self-mappings in
the space of fuzzy sets on a complete G-metric space. These results are useful in fractal.
An iterated function system (i.e., IFS) is the significant content in fractal, and the attractor
of the IFS plays a very important role in the fractal graphics. On account of the fuzziness
of parameters in fractal, by Zadeh’s extension principle [], we can get an iterated fuzzy
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function system (i.e., IFFS) corresponding the IFS []. For example, {Ti}ni= in Example .
is an IFFS and {μb :  < b ≤ p} ⊆ A, where A is the set of attractors of IFFS. Moreover, we
can estimate the area of attractors basing on the fixed points of {Ti}ni=. Our results are
also useful in fuzzy differential equation. As we all know, the existence of a solution for
a fuzzy differential equation can be established via the fixed point analysis approach (see
[–]). Therefore, our results provide a new method for studying the fuzzy differential
equation in G-metric spaces.
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3. Abbas, M, Nazir, T, Dorić, D: Common fixed point of mappings satisfying (E.A) property in generalized metric spaces.

Appl. Math. Comput. 218, 7665-7670 (2012)
4. Abbas, M, Nazir, T, Vetro, P: Common fixed point results for three maps in G-metric spaces. Filomat 25, 1-17 (2011)
5. Choudhury, BS, Maity, P: Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 54, 73-79

(2011)
6. Mustafa, Z, Sims, B: Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory

Appl. 2009, Article ID 917175 (2009)
7. Shatanawi, W: Fixed point theory for contractive mappings satisfying �-maps in G-metric spaces. Fixed Point Theory

Appl. 2010, Article ID 181650 (2010)
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