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Abstract
In this paper, we consider some iteration processes for one-parameter continuous
semigroups of nonexpansive mappings in a nonempty compact convex subset C of a
complete CAT(0) space X and prove that the proposed sequence converges to a
common fixed point for these semigroups of nonexpansive mappings. Note that our
results generalize Cho et al. result (Nonlinear Anal. 74:6050-6059, 2011) and related
results.
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1 Introduction
Fixed point theory in CAT() spaces was first studied by Kirk [, ]. He showed that every
nonexpansive (single-valued) mapping defined on a bounded closed convex subset of a
complete CAT() space always has a fixed point. Since then, the fixed point theory for
single-valued and multivalued mappings in CAT() spaces has been rapidly developed,
and many papers have appeared; for example, one can see [–] and related references.
Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a

geodesic from x to y) is a map c from a closed interval [,�] ⊆ R to X such that c() = x,
c(�) = y, and d(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [,�]. In particular, c is an isometry and
d(x, y) = �. The image α of c is called a geodesic (or metric) segment joining x and y. When
it is unique, this geodesic is denoted by [x, y]. The space (X,d) is said to be a geodesic space
if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if
there is exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to be
convex if Y includes every geodesic segment joining any two of its points.
A geodesic triangle �(x,x,x) in a geodesic space (X,d) consists of three points x,

x, and x in X (the vertices of � and a geodesic segment between each pair of vertices
(the edge of �)). A comparison triangle for geodesic triangle �(x,x,x) in (X,d) is a
triangle�(x,x,x) := �(x̄, x̄, x̄) in the Euclidean planeE such that dE (x̄i, x̄j) = d(xi,xj)
for i, j ∈ {, , }.
A geodesic space is said to be a CAT() space if all geodesic triangles of appropriate size

satisfy the following comparison axiom.
CAT(): Let � be a geodesic triangle in X, and let � be a comparison triangle for �.

Then � is said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points
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x̄, ȳ ∈ �, d(x, y) ≤ dE (x̄, ȳ). It is well known that any complete, simply connected Rieman-
nian manifold having nonpositive sectional curvature is a CAT() space. Other examples
include pre-Hilbert spaces [], R-trees [], the complexHilbert ball with a hyperbolic met-
ric [], and many others.
If x, y, y are points in a CAT() space, and if y is the midpoint of the segment [y, y],

then the CAT() inequality implies

d(x, y) ≤ 

d(x, y) +



d(x, y) –



d(y, y).

This is the (CN) inequality of Bruhat and Tits []. In fact, a geodesic space is a CAT()
space if and only if it satisfies the (CN) inequality [, p. ].
In , Dhompongsa and Panyanak [] gave the following result, and the proof is sim-

ilar to the proof of the remark in [, p. ].

Lemma . [] Let X be a CAT() space. Then

d
(
( – t)x⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z)

for all x, y, z ∈ X and t ∈ [, ].

By the above lemma, we know that CAT() space is a convex metric space. Indeed, it is
a metric space X with a convex structure if there exists a mappingW : X ×X × [, ]→ X
such that

d
(
W (x, y, t), z

) ≤ td(x, z) + ( – t)d(y, z)

for all x, y, z ∈ X and t ∈ [, ] and this space X is called a convex metric space []. Fur-
thermore, Takahashi [] has proved that

d(x, y) = td
(
x,W (x, y, t)

)
+ ( – t)d

(
y,W (x, y, t)

)

for all x, y, z ∈ X and t ∈ [, ] when X is a convex metric space with a convex structure.
So, we also get the following result, and it is proved in [].

Lemma . [] Let X be a CAT() space and x, y ∈ X. For each t ∈ [, ], there exists a
unique point z ∈ [x, y] such that d(x, z) = td(x, y) and d(y, z) = ( – t)d(x, y).

For convenience, from now on we will use the notation z = ( – t)x ⊕ ty. Therefore, we
have

z = ( – t)x⊕ ty ⇔ z ∈ [x, y],

d(x, z) = td(x, y), and d(y, z) = ( – t)d(x, y).

Let C be a nonempty closed convex subset of a CAT() space X, and let T be a nonex-
pansive mapping on C, i.e., T : C → C such that d(Tx,Ty) ≤ d(x, y) for all x, y ∈ C. We use
F(T) to denote the set of fixed points of T , i.e., F(T) := {x ∈ C : Tx = x}. Let N be the set of
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positive integers, R be the set of real numbers, and let R+ be the set of nonnegative real
numbers.
A family {T(t) : t ≥ } of mappings is called a one-parameter continuous semigroup of

nonexpansive mappings on a nonempty closed convex subset C of a CAT() space X if the
following conditions hold:

(SG) for each t ∈R+, T(t) is a nonexpansive mapping on C;
(SG) T(s + t) = T(t) ◦ T(s) for all t, s ∈R+;
(SG) for each x ∈ X , the mapping T(·)x from R+ into C is continuous.

A family {T(t) : t ≥ } of mappings is called a one-parameter strongly continuous semi-
group of nonexpansivemappings on a nonempty closed convex subsetC of aCAT() space
X if conditions (SG)i, i = , , , and the following condition are satisfied:

(SG) T()x = x for all x ∈ C.

Note that if C is a nonempty compact subset of a Banach space and {T(t) : t ≥ } is a semi-
group of nonexpansive mappings, then

⋂
t≥ F(T(t)) �= ∅ []; see also [–] and others.

For the example of a one-parameter continuous semigroup of nonexpansive mappings,
one can see [].
Construction of commonfixed points of a nonexpansive semigroup is an important sub-

ject in the theory of nonexpansive semigroupmappings and its applications. Fox example,
one can refer to [, ]. In [], Shioji and Takahashi introduced the implicit iteration
(A) un = αnu + ( – αn) 

tn

∫ tn
 T(s)un ds, n≥ ,

where C is a nonempty closed convex subset of a real Hilbert space H , u ∈ C, {αn} is a se-
quence in (, ), {tn} is a sequence of positive real numbers divergent to ∞. Under suitable
conditions, Shioji and Takahashi [] proved strong convergence of {xn} to a member of⋂

t≥ F(T(t)). Note that their iterate xn at step n is constructed through the average of a
semigroup over the interval (,∞).
In , Suzuki [] introduced the following implicit iteration process in a Hilbert

space:
(B) xn = αnu + ( – αn)T(tn)xn, n≥ 

for a nonexpansive semigroup, where C is a nonempty closed convex subset of a real
Hilbert space H , u ∈ C, {αn} is a sequence in (, ), {tn} is a sequence of positive real num-
bers. Note that xn is constructed directly from the T(tn). So, Zegeye and Shahzad []
viewed Suzuki’s iteration process (B) as an extension of the implicit process (A) to nonex-
pansive semigroups.
In , Suzuki [] considered an iterative process {xn} for a one-parameter continu-

ous semigroup of nonexpansive mappings on C, where C is a nonempty compact convex
subset of a Banach space E, defined by

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn+ := λT(tn)xn + ( – λ)xn,
(.)

where λ ∈ (, ) and {tn} ⊆ [,∞). Then Suzuki [] proved that {xn} converges strongly
to a common fixed point of {T(t) : t ≥ } if

lim inf
n→∞ tn < lim sup

n→∞
tn, and lim

n→∞(tn+ – tn) = .
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In , Dhompongsa et al. [] gave the following important result for a strongly con-
tinuous semigroup of nonexpansive mappings.

Theorem. [] Let C be a nonempty bounded closed convex subset of a complete CAT()
space X, and let {T(t) : t ≥ } be a strongly continuous semigroup of nonexpansive map-
pings on C. Let {αn} and {tn} be sequences of real numbers satisfying  < αn < , tn > , and
limn→∞ tn = limn→∞ αn

tn = . Let x ∈ C, and let {xn} be a sequence in C with

xn = αnx ⊕ ( – αn)T(tn)xn, ∀n ∈N.

Then
⋂

t≥ F(T(t)) �= ∅ and {xn} converges to the element of
⋂

t≥ F(T(t)) nearest to x.

In , Cho et al. [] gave the following result for a continuous semigroup of non-
expansive mappings on a nonempty compact convex subset C of a complete CAT()
space X.

Theorem. [] Let C be a nonempty compact convex subset of a complete CAT() space
X, and {T(t) : t ≥ } be a one-parameter continuous semigroup of nonexpansive mappings
on C. Let {tn} be a sequence in [,∞) satisfying

lim inf
n→∞ tn < lim sup

n→∞
tn, and lim

n→∞(tn+ – tn) = .

For any λ ∈ (, ), define a sequence {xn} in C by

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn+ := λT(tn)xn ⊕ ( – λ)xn.
(.)

Then {xn} converges to a common fixed point of the semigroup {T(t) : t ≥ }.

Remark . By Theorems . and ., we know that
(a) if C is a nonempty bounded closed convex subset of a complete CAT() space X ,

and {T(t) : t ≥ } is a strongly continuous semigroup of nonexpansive mappings on
C, then

⋂
t≥ F(T(t)) �= ∅;

(b) if C is a compact convex subset of a complete CAT() space X , and {T(t) : t ≥ } is a
one-parameter continuous semigroup of nonexpansive mappings on C, then⋂

t≥ F(T(t)) �= ∅.

Motivated by the above works and related results, we study the following iteration pro-
cesses for some families of one-parameter continuous semigroups of nonexpansive map-
pings on a nonempty compact convex subset C of a complete CAT() space X.
Let {T(t) : t ≥ } and {Q(q) : q ≥ } be one-parameter continuous semigroups of nonex-

pansivemappings on a nonempty compact convex subsetC of a complete CAT() spaceX.
We consider the following iteration processes (.), (.), and (.):

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C chosen arbitrary,

yn := ( – βn)xn ⊕ βnT(tn)xn,

xn+ := ( – αn)xn ⊕ αnQ(qn)yn,

(.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/155
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⎧⎪⎪⎨
⎪⎪⎩
x ∈ C chosen arbitrary,

yn := ( – βn)xn ⊕ βnT(tn)xn,

xn+ := ( – αn)yn ⊕ αnQ(qn)yn,

(.)

where {αn} and {βn} are sequences in (, ), {tn} and {qn} are sequences in [,∞). We
prove that the proposed sequences converge to a common fixed point of these families of
mappings. Note that our results generalize Theorem . (i.e., Theorem . in []).
Besides, Thong [] considered an implicit iteration for nonexpansive semigroups

{T(t) : t ≥ } on a nonempty compact convex subset C of a real Banach space E as fol-
lows:

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn := αn–xn + ( – αn)T(tn)xn,
(.)

where {αn} is a sequence in (, ), and {tn} is a sequence in [,∞).
In this paper, motivated by [], we also consider the following implicit iteration process

for some families of one-parameter continuous semigroups of nonexpansive mappings on
a nonempty compact convex subset C of a complete CAT() space X:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C chosen arbitrary,

yn := ( – βn)xn ⊕ βnT(tn)xn,

xn+ := ( – αn+)Q(qn+)xn+ ⊕ αn+yn,

(.)

where {αn} and {βn} are sequences in (, ), {tn} and {qn} are sequences in [,∞).
For a special case of the iteration process (.), we have the following types:

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn+ = ( – αn+)Q(qn+)xn+ ⊕ αn+xn,
(.)

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn+ := ( – βn)xn ⊕ βnT(tn)xn.
(.)

We prove the proposed sequences converge to a common fixed point of three families of
mappings. Our result for the iteration process (.) is similar to (.) on complete CAT()
spaces. Our results for the iteration processes (.) and (.) generalize Theorem .. Note
that the iteration process (.) is also a special case of the iteration processes (.) and (.).

2 Preliminaries
In , Suzuki [] gave the following result, and it is an important tool in this paper.

Lemma . [] Let {tn} be a real sequence and τ be a real number satisfying
lim infn→∞ tn ≤ τ ≤ lim supn→∞ tn. Suppose that either of the following holds:

(i) lim supn→∞(tn+ – tn) ≤  or
(ii) lim infn→∞(tn+ – tn)≥ .

http://www.fixedpointtheoryandapplications.com/content/2012/1/155
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Then τ is a cluster point of {tn}.Moreover, for any ε >  and k,m ∈ N, there exists m ≥ m
such that |tj – τ | < ε for all j ∈N with m ≤ j ≤ m + k.

Lemma . [] Let X be a CAT() space. Then

d
(
( – t)x⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z) – t( – t)d(x, y)

for all t ∈ [, ] and x, y, z ∈ X.

Definition . Let {xn} be a bounded sequence in a CAT() space X, and let C be a subset
of X. Now, we use the following notations:

(i) r(x, {xn}) := lim supn→∞ d(x,xn).
(ii) r({xn}) := infx∈X r(x, {xn}).
(iii) rC({xn}) := infx∈C r(x, {xn}).
(iv) A({xn}) := {x ∈ X : r(x, {xn}) = r({xn})}.
(v) AC({xn}) := {x ∈ C : r(x, {xn}) = rC({xn})}.

Note that x ∈ X is called an asymptotic center of {xn} if x ∈ A({xn}). It is known that in a
CAT() space, A({xn}) consists of exactly one point [].

Definition . [] Let (X,d) be a CAT() space. A sequence {xn} in X is said to be �-
convergent to x ∈ X if x is the unique asymptotic center of {un} for every subsequence
{un} of {xn}. That is, A({un}) = {x} for every subsequence {un} of {xn}. In this case, we
write �-limn xn = x and call x the �-limit of {xn}.

Lemma . [] Let (X,d) be a CAT() space. Then every bounded sequence in X has a
�-convergent subsequence.

Lemma . [] Let C be a nonempty closed convex subset of a CAT() space X. If {xn} is
a bounded sequence in C, then the asymptotic center A({xn}) of {xn} is in C.

Lemma . [] Let C be a nonempty closed convex subset of a complete CAT() space X,
and let T : C → C be a nonexpansive mapping. Let {xn} be a bounded sequence in C with
�-limn xn = x and limn→∞ d(xn,Txn) = . Then x ∈ C and Tx = x.

Lemma . [] Let X be a CAT() space. Let {xn} and {yn} be two bounded sequences in
X with limn→∞ d(xn, yn) = . If �-limn xn = x, then �-limn yn = x.

Next, we give the following results and these results show that the intersection of the
fixed point sets for a continuous semigroup of nonexpansive mappings is nonempty. Note
that Theorem . is different from Theorem ..

A: Common fixed point for a strongly nonexpansive semigroup
Lemma. Let C be a nonempty bounded closed convex subset of a complete CAT() space
X. Let {T(t) : t ∈R} be a continuous semigroup of nonexpansive mappings on C. Let {tn} be
a sequence in R+. Let {αn} be a sequence in (, ), and let {xn} be defined as

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn = αnxn– ⊕ ( – αn)T(tn)xn, n≥ .

http://www.fixedpointtheoryandapplications.com/content/2012/1/155
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Assume that limn→∞ tn = limn→∞ αn
tn = . Then

⋂
t≥ F(T(t)) �= ∅ if and only if

limn→∞ d(T()xn,xn) = .

Proof Suppose that limn→∞ d(T()xn,xn) = . Since C is bounded, there exist a subse-
quence {un} of {xn} and x̄ ∈ C such that �-limn→∞ un = x̄. By Lemma ., T()x̄ = x̄.
Take any t >  and let t be fixed. For n >  with [ t

tn ] > , we have

d
(
xn,T(t)x̄

)

≤ d
(
xn,T()xn

)
+

[ t
tn ]–∑
k=

d
(
T

(
(k + )tn

)
xn,T(ktn)xn

)

+ d
(
T

([
t
tn

]
tn

)
xn,T

([
t
tn

]
tn

)
x̄
)
+ d

(
T

([
t
tn

]
tn

)
x̄,T(t)x̄

)

≤ d
(
xn,T()xn

)
+

[
t
tn

]
d
(
T(tn)xn,xn

)
+ d(xn, x̄) + d

(
T

(
t –

[
t
tn

]
tn

)
x̄,T()x̄

)

≤ d
(
xn,T()xn

)
+
tαn

tn
d
(
T(tn)xn,xn–

)
+ d(xn, x̄)

+max
{
d
(
T(s)x̄,T()x̄

)
:  ≤ s ≤ tn

}

≤ d
(
xn,T()xn

)
+
tαn

tn
M + d(xn, x̄) +max

{
d
(
T(s)x̄,T()x̄

)
:  ≤ s≤ tn

}

for someM >  (note that C is bounded). Hence, we know that

lim sup
n→∞

d
(
un,T(t)x̄

) ≤ lim sup
n→∞

d(un, x̄)

for each t > . Since �-limn→∞ un = x̄, T(t)x̄ = x̄ for each t > . Therefore,
x̄ ∈ ⋂

t≥ F(T(t)) �= ∅.
Conversely, suppose that

⋂
t≥ F(T(t)) �= ∅. Now, take any w ∈ ⋂

t≥ F(T(t)), and let w
be fixed. Then we have

d(xn,w)

≤ αnd(xn–,w) + ( – αn)d
(
T(tn)xn,w

) – αn( – αn)d
(
xn–,T(tn)xn

)
≤ αnd(xn–,w) + ( – αn)d(xn,w) – αn( – αn)d

(
xn–,T(tn)xn

)
≤ αnd(xn–,w) + ( – αn)d(xn,w).

And this implies that d(xn,w) ≤ d(xn–,w) and limn→∞ d(xn,w) exists. Hence,

d
(
xn–,T(tn)xn

) ≤ d(xn–,w) – d(xn,w) + αnd
(
xn–,T(tn)xn

)
.

By assumption, limn→∞ d(xn–,T(tn)xn) = . Next, we get

d(xn,xn–) = d
(
αnxn– ⊕ ( – αn)T(tn)xn,xn–

)
= ( – αn)d

(
T(tn)xn,xn–

)
.

http://www.fixedpointtheoryandapplications.com/content/2012/1/155
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This implies that limn→∞ d(xn,xn+) =  and limn→∞ d(xn,T(tn)xn) = . Furthermore, it
follows that

lim sup
n→∞

d
(
T()xn,xn

)

≤ lim sup
n→∞

(
d
(
T()xn,T( + tn)xn

)
+ d

(
T(tn)xn,xn

))

≤ lim sup
n→∞

(
d
(
T()xn,T() ◦ T(tn)xn

)
+ d

(
T(tn)xn,xn

))

≤ lim sup
n→∞

d
(
xn,T(tn)xn

)
= .

Therefore, the proof is completed. �

By Lemma ., we get the following theorem, and it is different from Theorem ..

Theorem . Let C be a nonempty bounded closed convex subset of a complete CAT()
space X. Let {T(t) : t ∈ R} be a strongly continuous semigroup of nonexpansive mappings
on C. Let {tn} be a sequence in R+, and {αn} be a sequence in (, ) with limn→∞ tn =
limn→∞ αn

tn = . Let {xn} be defined as

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn = αnxn– ⊕ ( – αn)T(tn)xn, n≥ .

Then
⋂

t≥ F(T(t)) �= ∅. Furthermore, if C is a compact set, then limn→∞ d(xn, x̄) =  for
some x̄ ∈ 	.

Proof Since {T(t) : t ∈ R} is a strongly continuous semigroup of nonexpansive mappings
on C, it is easy to see that limn→∞ d(T()xn,xn) = . By Lemma .,

⋂
t≥ F(T(t)) �= ∅, and

the proof is completed. �

B: Common fixed point for a nonexpansive semigroup
Lemma. Let C be a nonempty bounded closed convex subset of a complete CAT() space
X, and {T(t) : t ≥ } be a one-parameter continuous semigroup of nonexpansive mappings
on C. Let {tn} be a sequence in [,∞) satisfying

lim inf
n→∞ tn < lim sup

n→∞
tn, and lim

n→∞(tn+ – tn) = .

For any λ ∈ (, ), define a sequence {xn} in C by

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn+ := λT(tn)xn ⊕ ( – λ)xn.

Then
⋂

t≥ F(T(t)) �= ∅ if and only if limn→∞ d(xn,T()xn) = .

Proof Suppose that limn→∞ d(xn,T()xn) = . Following the same argument as in the
proof of Theorem  in [], we get

⋂
t≥ F(T(t)) �= ∅. Conversely, if ⋂

t≥ F(T(t)) �= ∅, it
is easy to see that limn→∞ d(xn,T()xn) = . �

http://www.fixedpointtheoryandapplications.com/content/2012/1/155
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By Lemma ., we get the following theorem. Notice also that it is a consequence of
Theorem ..

Theorem . Let C be a nonempty compact convex subset of a complete CAT() space
X, and {T(t) : t ≥ } be a one-parameter continuous semigroup of nonexpansive mappings
on C. Let {tn} be a sequence in [,∞) satisfying

lim inf
n→∞ tn < lim sup

n→∞
tn, and lim

n→∞(tn+ – tn) = .

For any λ ∈ (, ), define a sequence {xn} in C by

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn+ := λT(tn)xn ⊕ ( – λ)xn.

Then
⋂

t≥ F(T(t)) �= ∅.

Proof Following the same argument as in the proof of Theorem . in [], we can prove
that limn→∞ d(xn,T()xn) = . By Lemma .,

⋂
t≥ F(T(t)) �= ∅. �

3 Main results
Theorem . Let C be a nonempty compact convex subset of a complete CAT() space X.
Let {T(t) : t ∈R+} and {Q(q) : q ∈R+} be continuous semigroups of nonexpansivemappings
on C. Let {tn} and {qn} be sequences inR+. Let {αn} and {βn} be sequences in [, ]. Suppose
that

	 :=
(⋂

t≥

F
(
T(t)

)) ∩
(⋂
q≥

F
(
Q(q)

)) �= ∅.

Let {xn} be defined as

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C chosen arbitrary,

yn := ( – βn)xn ⊕ βnT(tn)xn,

xn+ := ( – αn)xn ⊕ αnQ(qn)yn.

Assume that
(i)  < a ≤ αn ≤ b < , lim infn→∞ βn( – βn) > ;
(ii) max{lim infn→∞ tn, lim infn→∞ qn} <min{lim supn→∞ tn, lim supn→∞ qn};
(iii) either lim supn→∞(tn+ – tn) ≤  or lim infn→∞(tn+ – tn) ≥  holds;
(iv) either lim supn→∞(qn+ – qn) ≤  or lim infn→∞(qn+ – qn)≥  holds.

Then limn→∞ xn = x̄ for some x̄ ∈ 	.

Proof Take any w ∈ 	, and let w be fixed. Then for each n ∈ N,

d(yn,w)

= d
(
( – βn)xn ⊕ βnT(tn)xn,w

)
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≤ ( – βn)d(xn,w) + βnd
(
T(tn)xn,w

) – βn( – βn)d
(
xn,T(tn)xn

)
≤ ( – βn)d(xn,w) + βnd(xn,w) – βn( – βn)d

(
xn,T(tn)xn

)
≤ d(xn,w), (.)

and

d(xn+,w)

= d
(
( – αn)xn ⊕ αnQ(qn)yn,w

)
≤ ( – αn)d(xn,w) + αnd

(
Q(qn)yn,w

) – αn( – αn)d
(
xn,Q(qn)yn

)
≤ ( – αn)d(xn,w) + αnd

(
Q(qn)yn,w

)
≤ ( – αn)d(xn,w) + αnd(yn,w)

≤ d(xn,w). (.)

Hence, limn→∞ d(xn,w) exists, and {xn} and {yn} are bounded sequences. By (.), we get

d(xn,w) +
d(xn+,w) – d(xn,w)

a

≤ d(xn,w) +
d(xn+,w) – d(xn,w)

αn

=
d(xn+,w) – ( – αn)d(xn,w)

αn

≤ d
(
Q(qn)yn,w

)
≤ d(yn,w)

≤ d(xn,w). (.)

And this implies that

lim
n→∞d(xn,w) = lim

n→∞d(yn,w) = lim
n→∞d

(
Q(qn)yn,w

)
. (.)

By (.) and (.), we have

lim
n→∞βn( – βn)d

(
xn,T(tn)xn

) = . (.)

By assumption and (.),

lim
n→∞d

(
xn,T(tn)xn

)
= . (.)

By (.), we also have

αn( – αn)d
(
xn,Q(qn)yn

) ≤ d(xn,w) – d(xn+,w),

and this inequality and assumption imply that

lim
n→∞d

(
xn,Q(qn)yn

)
= . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/155
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By (.), we have

lim sup
n→∞

d(xn, yn) = lim sup
n→∞

d
(
( – βn)xn ⊕ βnT(tn)xn,xn

)

≤ lim sup
n→∞

d
(
xn,T(tn)xn

)
= . (.)

By (.), it is easy to see that

lim
n→∞d(xn+,xn) = . (.)

By (.), (.), and (.), it is easy to see that

lim
n→∞d

(
yn,Q(qn)yn

)
= lim

n→∞d
(
xn+,Q(qn)yn

)
= . (.)

Furthermore, by (.), it follows that

lim sup
n→∞

d
(
T()xn,xn

)

≤ lim sup
n→∞

(
d
(
T()xn,T( + tn)xn

)
+ d

(
T(tn)xn,xn

))

≤ lim sup
n→∞

(
d
(
T()xn,T() ◦ T(tn)xn

)
+ d

(
T(tn)xn,xn

))

≤ lim sup
n→∞

d
(
xn,T(tn)xn

)
= . (.)

By (.), it follows that

lim sup
n→∞

d
(
Q()yn, yn

)
= . (.)

Next, fix τ , δ ∈R with

max
{
lim inf
n→∞ tn, lim inf

n→∞ qn
}
< τ < τ + δ <min

{
lim sup
n→∞

tn, lim sup
n→∞

qn
}
.

Following the same argument as in the proof of Theorem  in [], we choose a subse-
quence {ni} of {n} such that

lim
n→∞

d(T(tni )xni ,xni )
tni – τ

= lim
n→∞

d(Q(qni )yni , yni )
qni – τ

= ,

lim
i→∞ tni = lim

i→∞qni = τ .
(.)

For completeness, we give the following proof. By (.) and (.), there existsm ∈N such
that

d
(
xn,T(tn)xn

)
<




, and d
(
yn,Q(qn)yn

)
<




for all n≥ m. By Lemma ., we note that τ + δ
 is a cluster point of {tn} and {qn}. Hence,

there exists n >m such that

τ +
δ


< tn ,qn < τ + δ.

http://www.fixedpointtheoryandapplications.com/content/2012/1/155
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By (.) and (.) again, there exists m > n such that

d
(
xn,T(tn)xn

)
<




, and d
(
yn,Q(qn)yn

)
<




for all n ≥ m. By Lemma . again, we note that τ + δ
 is a cluster point of {tn} and {qn}.

Hence, there exists n >m such that

τ +
δ


< tn ,qn < τ +

δ


.

Continuing this argument, we can define a subsequence {ni} of {n} satisfying

max
{
d
(
xni ,T(tni )xni

)
,d

(
yni ,Q(qni )yni

)}
<


(i + )

, and

τ +
δ

i + 
< tni ,qni < τ +

δ

i

for all i ∈N. Then it is obvious that τ <min{tni ,qni} for all i ∈N,

lim
i→∞ tni = lim

i→∞qni = τ ,

and

lim
i→∞d

(
T(tni )xni ,xni

)
= lim

i→∞d
(
Q(qni )yni , yni

)
= .

We also have

 ≤ lim sup
i→∞

d(T(tni )xni ,xni )
tni – τ

≤ lim sup
i→∞

/(i + )

δ/(i + )

= lim sup
i→∞


δ(i + )

= .

Similarly,

lim
i→∞

d(Q(qni )yni , yni )
qni – τ

= .

Since {xn} is a bounded sequence, there exist a subsequence {xnik } of {xni} and x̄ ∈ C
such that �-limk→∞ xnik = x̄. Let uk = xnik , vk = ynik , ak = tnik , and bk = snik . Then we get

lim sup
k→∞

d
(
uk ,T(τ )x̄

)

≤ lim sup
k→∞

(
d
(
uk ,T(ak)uk

)
+ d

(
T(ak)uk ,T(ak)x̄

)
+ d

(
T(ak)x̄,T(τ )x̄

))

≤ lim sup
k→∞

d
(
uk ,T(ak)uk

)
+ lim sup

k→∞
d(uk , x̄) + lim sup

k→∞
d
(
T(ak – τ )x̄,T()x̄

)

≤ lim sup
k→∞

d(uk , x̄),
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and

lim sup
k→∞

d
(
vk ,Q(τ )x̄

)

≤ lim sup
k→∞

(
d
(
vk ,Q(bk)vk

)
+ d

(
Q(bk)vk ,Q(bk)x̄

)
+ d

(
Q(bk)x̄,Q(τ )x̄

))

≤ lim sup
k→∞

d
(
vk ,Q(bk)vk

)
+ lim sup

k→∞
d(vk , x̄) + lim sup

k→∞
d
(
Q(bk – τ )x̄,Q()x̄

)

≤ lim sup
k→∞

d(vk , x̄).

Since �-limk→∞ uk = x̄, we know that T(τ )x̄ = x̄. By (.), �-limk→∞ uk = x̄, and Lem-
ma ., we know that �-limk→∞ vk = x̄, and this implies that Q(τ )x̄ = x̄. Also, we have

T()x̄ = T() ◦ T(τ )x̄ = T(τ + )x̄ = T(τ )x̄ = x̄.

Similarly, Q()x̄ = x̄.
Take any t > , and let t be fixed. Then for k ∈N with ak – τ < t, we have

d
(
uk ,T(t)x̄

)
= d

(
uk ,T(t) ◦ T(τ )[t/(ak–τ )]x̄

)
= d

(
uk ,T

([
t/(ak – τ )

]
τ + t

)
x̄
)

≤ d
(
uk ,T()uk

)
+

[t/(ak–τ )]–∑
m=

d
(
T

(
(m + )ak

)
uk ,T(mak)uk

)

+ d
(
T

([
t/(ak – τ )

]
ak

)
uk ,T

([
t/(ak – τ )

]
ak

)
x̄
)

+ d
(
T

([
t/(ak – τ )

]
ak

)
x̄,T

([
t/(ak – τ )

]
τ + t

)
x̄
)

≤ d
(
uk ,T()uk

)
+

[
t/(ak – τ )

] · d(
T(ak)uk ,uk

)
+ d(uk , x̄)

+ d
(
T

(
t –

[
t/(ak – τ )

]
(ak – τ )

)
x̄,T()x̄

)

≤ d
(
uk ,T()uk

)
+
t · d(T(ak)uk ,uk)

ak – τ
+ d(uk , x̄)

+max
{
d
(
T(s)x̄,T()x̄

)
:  ≤ s ≤ ak – τ

}
.

By (.) and (.), we get

lim sup
k→∞

d
(
uk ,T(t)x̄

) ≤ lim sup
k→∞

d(uk , x̄).

Since �-limk→∞ uk = x̄, we get T(t)x̄ = x̄ for each t ≥ . Therefore, x̄ is a common fixed
point of {T(t) : t ≥ }. Furthermore, we know that x̄ ∈ 	 by following the same argument.
In fact, since C is a compact set, we may assume that limk→∞ d(xnik , x̄) = . So, x̄ is a

cluster point of {xn} and lim infn→∞ d(xn, x̄) = . Since limn→∞ d(xn,w) exists for each w ∈
	, limn→∞ d(xn, x̄) = . Therefore, the proof is completed. �

Remark . Theorem . generalizes Theorem ..
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Theorem . Let C be a nonempty compact convex subset of a complete CAT() space X.
Let {T(t) : t ∈R+} and {Q(q) : q ∈R+} be continuous semigroups of nonexpansivemappings
on C. Let {tn} and {qn} be sequences inR+. Let {αn} and {βn} be sequences in [, ]. Suppose
that

	 :=
(⋂

t≥

F
(
T(t)

)) ∩
(⋂
q≥

F
(
Q(q)

)) �= ∅.

Let {xn} be defined as

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C chosen arbitrary,

yn := ( – βn)xn ⊕ βnT(tn)xn,

xn+ := ( – αn)yn ⊕ αnQ(qn)yn.

Assume that
(i) lim infn→∞ αn( – αn) > , lim infn→∞ βn( – βn) > ;
(ii) max{lim infn→∞ tn, lim infn→∞ qn} <min{lim supn→∞ tn, lim supn→∞ qn};
(iii) either lim supn→∞(tn+ – tn) ≤  or lim infn→∞(tn+ – tn) ≥  holds;
(iv) either lim supn→∞(qn+ – qn) ≤  or lim infn→∞(qn+ – qn)≥  holds.

Then limn→∞ xn = x̄ for some x̄ ∈ 	.

Proof Take any w ∈ 	, and let w be fixed. Then for each n ∈ N,

d(yn,w)

= d
(
( – βn)xn ⊕ βnT(tn)xn,w

)
= ( – βn)d(xn,w) + βnd

(
T(tn)xn,w

) – βn( – βn)d
(
xn,T(tn)xn

)
≤ ( – βn)d(xn,w) + βnd(xn,w) – βn( – βn)d

(
xn,T(tn)xn

)
≤ d(xn,w), (.)

and

d(xn+,w)

= d
(
( – αn)yn ⊕ αnQ(qn)yn,w

)
= ( – αn)d(yn,w) + αnd

(
Q(qn)yn,w

) – αn( – αn)d
(
yn,Q(qn)yn

)
≤ d(yn,w) – αn( – αn)d

(
yn,Q(qn)yn

)
≤ d(xn,w) – αn( – αn)d

(
yn,Q(qn)yn

). (.)

Hence, limn→∞ d(xn,w) exists, limn→∞ d(xn,w) = limn→∞ d(yn,w), and {xn} and {yn} are
bounded sequences. By (.) and limn→∞ d(xn,w) = limn→∞ d(yn,w), we have

lim
n→∞βn( – βn)d

(
xn,T(tn)xn

) = . (.)

By assumption and (.),

lim
n→∞d

(
xn,T(tn)xn

)
= . (.)
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By (.) and limn→∞ d(xn,w) exists,

lim
n→∞d

(
yn,Q(qn)yn

)
= . (.)

By (.), we have

lim sup
n→∞

d(xn, yn) = lim sup
n→∞

d
(
xn, ( – βn)xn ⊕ βnT(tn)xn

)

≤ lim sup
n→∞

d
(
xn,T(tn)xn

)
= . (.)

Next, following the same argument as in the proof of Theorem ., we get the proof of
Theorem .. �

Remark . Theorem . is also a special case of Theorem ..

Theorem . Let C be a nonempty compact convex subset of a complete CAT() space X.
Let {T(t) : t ∈ R} and {Q(q) : q ∈ R} be continuous semigroups of nonexpansive mappings
on C. Let {tn} and {qn} be sequences in R+. Let {αn} and {βn} be sequences in [, ] with  <
αn < , lim infn→∞ βn( – βn) > . Suppose that 	 := (

⋂
t≥ F(T(t))) ∩ (

⋂
q≥ F(Q(q))) �= ∅.

Let {xn} be defined as

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C chosen arbitrary,

yn = ( – βn)xn ⊕ βnT(tn)xn,

xn+ = ( – αn+)Q(qn+)xn+ ⊕ αn+yn.

Assume that
(i) lim infn→∞ tn < lim supn→∞ tn;
(ii) either lim supn→∞(tn+ – tn) ≤  or lim infn→∞(tn+ – tn) ≥  holds;
(iii) limn→∞ qn = limn→∞ αn

qn = .
Then limn→∞ xn = x̄ for some x̄ ∈ 	.

Proof Take any w ∈ 	 and let w be fixed. Then for each n ∈N,

d(yn,w)

= d
(
( – βn)xn ⊕ βnT(tn)xn,w

)
≤ ( – βn)d(xn,w) + βnd

(
T(tn)xn,w

) – βn( – βn)d
(
xn,T(tn)xn

)
≤ ( – βn)d(xn,w) + βnd(xn,w) – βn( – βn)d

(
xn,T(tn)xn

)
≤ d(xn,w), (.)

and

d(xn+,w)

= d
(
( – αn+)Q(qn+)xn+ ⊕ αn+yn,w

)
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≤ ( – αn+)d
(
Q(qn+)xn+,w

) + αn+d(yn,w) – αn+( – αn+)d
(
Q(qn+)xn+, yn

)
≤ ( – αn+)d(xn+,w) + αn+d(yn,w). (.)

By (.) and (.),

d(xn+,w) ≤ d(yn,w) ≤ d(xn,w). (.)

Hence, limn→∞ d(xn,w) exists, limn→∞ d(xn,w) = limn→∞ d(yn,w), {xn} and {yn} are
bounded sequences. By (.) and assumptions,

lim
n→∞d

(
xn,T(tn)xn

)
= . (.)

By (.) and assumptions,

lim
n→∞d

(
Q(qn+)xn+, yn

)
= . (.)

By (.) and (.), we have

lim
n→∞d(xn, yn) =  and lim

n→∞d
(
Q(qn+)xn+,xn+

)
= . (.)

Furthermore, by (.) and (.), it follows that

lim
n→∞d

(
T()xn,xn

)
=  and lim

n→∞d
(
Q()xn,xn

)
= . (.)

Following the same argument as in the proof of Theorem ., there exist a subsequence
{un} of {xn} and x̄ ∈ C such that limn→∞ d(un, x̄) = , and x̄ is a common fixed point of
{T(t) : t ≥ }. Hence, lim infn→∞ d(xn, x̄) = .
For q = , by (.), we get limn→∞ d(Q()un,un) = , and it is easy to see thatQ()x̄ = x̄.
Next, for each q > ,

d
(
xn,Q(q)x̄

)

≤ d
(
xn,Q()xn

)
+

[ q
qn ]–∑
k=

d
(
Q

(
(k + )qn

)
xn,Q(kqn)xn

)

+ d
(
Q

([
q
qn

]
qn

)
xn,Q

([
q
qn

]
qn

)
x̄
)
+ d

(
Q

([
q
qn

]
qn

)
x̄,Q(q)x̄

)

≤ d
(
xn,Q()xn

)
+

[
q
qn

]
d
(
Q(qn)xn,xn

)
+ d(xn, x̄) + d

(
Q

(
q –

[
q
qn

]
qn

)
x̄,Q()x̄

)

≤ d
(
xn,Q()xn

)
+
qαn

qn
d
(
Q(qn)xn, yn

)
+ d(xn, x̄) +max

{
d
(
Q(s)x̄,Q()x̄

)
:  ≤ s≤ qn

}

≤ d
(
xn,Q()xn

)
+
qαn

qn
M + d(xn, x̄) +max

{
d
(
Q(s)x̄,Q()x̄

)
: ≤ s ≤ qn

}

for someM > .
By assumptions and (.), we know that

lim sup
n→∞

d
(
un,Q(q)x̄

)
= 
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for each q > , and this implies that x̄ is also a common fixed point of {Q(q) : q ≥ }. Now,
x̄ ∈ 	 and this implies that limn→∞ d(xn, x̄) exists. Since lim infn→∞ d(xn, x̄) = , we know
that limn→∞ d(xn, x̄) = , and the proof is completed. �

Remark . Theorem . is also a generalization of Theorem ..

The following result is similar to Theorem . in [].

Corollary . Let C be a nonempty compact convex subset of a complete CAT() space X.
Let {Q(q) : q ∈ R} be a continuous semigroup of nonexpansive mappings on C. Let {qn} be
a sequence in R+. Let {αn} be a sequence in [, ] with  < αn < . Let {xn} be defined as

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn+ = ( – αn+)Q(qn+)xn+ ⊕ αn+xn.

Assume that limn→∞ qn = limn→∞ αn
qn = . Then limn→∞ xn = x̄ for some x̄ ∈ 	.

Proof For each t ≥ , let T(t) : C → C be defined by T(t)x := x for each x ∈ C. Clearly,
{T(t) : t ≥ } is a continuous semigroup of nonexpansive mappings on C. Since C is a
compact set, 	 :=

⋂
q≥ F(Q(q)) �= ∅. By Theorem ., we get the conclusion. �
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