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Abstract

In this paper, we develop a new perturbed iterative algorithm framework with errors
based on the variational graphical convergence of operator sequences with (A, h)-
accretive mappings in Banach space. By using the generalized resolvent operator
technique associated with (A, h)-accretive mappings, we also prove the existence of
solutions for a class of generalized nonlinear relaxed cocoercive operator equation
systems and the variational convergence of the sequence generated by the
perturbed iterative algorithm in q-uniformly smooth Banach spaces. The obtained
results improve and generalize some well-known results in recent literatures.
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1 Introduction
It is well known that standard Yosida regularizations/approximations have been tre-

mendously effective to approximation solvability of general variational inclusion pro-

blems in the context of resolvent operators that turned out to be nonexpansive. This

class of nonlinear Yosida approximations have been applied to approximation solvabil-

ity of nonlinear inhomogeneous evolution inclusions of the form

f (t) ∈ u′(t) +Mu(t) − ωu(t), u(0) = u0

for almost all t Î [0, T], where T Î (0,1) is fixed, ω Î R (see [1]). For more general

details on approximation solvability of general nonlinear inclusion problems, we refer

the reader to [2-18] and the references therein.

On the other hand, it is well known that variational inequalities and variational

inclusions provide mathematical models to some problems arising in economics,

mechanics, and engineering science and have been studied extensively. There are many

methods to find solutions of variational inequality and variational inclusion problems.

Among these methods, the resolvent operator technique is very important. For some

literature, we recommend to the following example, and the reader [2-15,17,18] and

the references therein.
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Example 1.1. ([19]) Let V : Rn ® R be a local Lipschitz continuous function, and let

K be a closed convex set in Rn. If x* is a solution to the following problem:

min
x∈K

V(x),

then

0 ∈ ∂V(x∗) +NK(x∗),

where ∂V(x*) denotes the subdifferential of V at x* and NK(x∗) the normal cone of

K at x*.

In 2006, Lan et al. [7] introduced a new concept of (A, h)-accretive mappings, which

provides a unifying framework for maximal monotone operators, m-accretive opera-

tors, h-subdifferential operators, maximal h-monotone operators, H-monotone opera-

tors, generalized m-accretive mappings, H-accretive operators, (H, h)-monotone

operators, and A-monotone mappings. Recently, by using the concept of (A, h)-accre-
tive mappings and the resolvent operator technique associated with (A, h)-accretive
mappings, Jin [5] introduced and studied a new class of nonlinear variational inclusion

systems with (A, h)-accretive mappings in q-uniformly smooth Banach spaces and

developed some new iterative algorithms to approximate the solutions of the men-

tioned nonlinear variational inclusion systems. Furthermore, by using the resolvent

operator technique, Petrot [14] studied the common solutions for a generalized system

of relaxed cocoercive mixed variational inequality problems and fixed point problems

for Lipschitz mappings in Hilbert spaces, and Agarwal and Verma [2] introduced and

studied a new system of nonlinear (set-valued) variational inclusions involving (A, h
)-maximal relaxed monotone and relative (A, h)-maximal monotone mappings in Hil-

bert spaces and proved its approximation solvability based on the variational graphical

convergence of operator sequences. For more literature, we recommend to the reader

[9,20] and the references therein.

Motivated and inspired by the above works, the purpose of this paper is to consider

and study the following generalized nonlinear operator equation system with (A, h
)-accretive mappings in real Banach space B1 × B2 :

Find (x, y) ∈ B1 × B2 and u ∈ S(x), v ∈ T(y) such that{
p(x) = R

ρλ1,A1

η1,M1(·,x)
[
(1 − λ1)A1(p(x)) + λ1(A1(f (y)) − ρN1(u, y) + a)

]
,

h(y) = R�λ2,A2

η2,M2(y,·)
[
(1 − λ2)A2(h(y)) + λ2(A2(g(x)) − �N2(x, v) + b)

]
,

(1:1)

where for all (x, y) ∈ B1 × B2,R
ρλ1,A1
η1,M1(·,x) = (A1 + ρλ1M1(·, x))−1 and

R�λ2,A2

η2,M2(y,·) = (A2 + �λ2M2(y, ·))−1 are two resolvent operators and two constants

ρ,� > 0,N1 : B1 × B2 → B1,N2 : B1 × B2 → B2, p : B1 → B1, h : B2 → B2, f :
B2 → B1, g : B1 → B2

are single-

valued operators, l1, l2 > 0 are two constants, (a, b) ∈ B1 × B2 is an any given ele-

ment, and S : B1 → 2B1 ,T : B2 → 2B2 ,Ai : Bi → Bi, ηi : Bi×Bi → Bi,Mi : Bi×Bi → 2Bi(i = 1, 2)

are any nonlinear operators such that for all x ∈ B1,M1(·, x) : B1 → 2B1 is an (A1,h1)-

accretive mapping and M2(y, ·) : B2 → 2B1 is an (A2, h2)-accretive mapping for all

y ∈ B2 , respectively.

Li et al. Fixed Point Theory and Applications 2012, 2012:14
http://www.fixedpointtheoryandapplications.com/content/2012/1/14

Page 2 of 14



Based on the definition of the resolvent operators associated with (A, h)-accretive
mappings, the Equation (1.1) can be written as{

a ∈ A1(p(x)) − A1(f (y)) + ρN1(u, y) + ρM1(p(x), x),
b ∈ A2(h(y)) − A2(g(x)) + �N2(x, v) + �M2(y, h(y))

(1:2)

Remark 1.1. For appropriate and suitable choices of

Bi,Ai, ηi,Ni,Mi(i = 1, 2), p, h, f , g, S,T , one can obtain a number (systems) of quasi-

variational inclusions, generalized (random) quasi- variational inclusions, quasi-varia-

tional inequalities, and implicit quasi-variational inequalities as special cases of the

Equation (1.1) (or problem (1.2)) include. Below are some special cases of problem.

Example 1.2. If Bi = B(i = 1, 2), p = f = h = g,N1(x, ·) = N2(·, y) = N(·) and M1(⋅,x) =
M1(⋅), M2(y,⋅), = M2(⋅) for all (x, y) ∈ B1 × B2 and a = b = 0, then the problem (1.2)

collapses to the following nonlinear variational inclusion system with (A, h)-accretive
mappings:{

0 ∈ A1(g(x)) − A1(g(y)) + ρN(y) + ρM1(g(x)),
0 ∈ A2(g(y)) − A2(g(x)) + �N(x) + �M2(g(y)).

(1:3)

The system (1.3) was introduced and studied by Jin [5]. Further, when Ai = A, Mi =

M(i = 1,2) and y = x, the system (1.3) reduces to a nonlinear variational inclusion of

find x ∈ B such that

0 ∈ N(x) +M(g(x)),

which contains the variational inclusions with H-monotone operator, H-accretive

mappings, or A-maximal (m)-relaxed monotone (AMRM) mappings in [2,3] as special

cases.

Example 1.3. If Bi = H(i = 1, 2) is a Hilbert space, a = b = 0, S : B1 → B1 and

T : B2 → B2 are two single-valued mappings, p = f = h = g = S = T = I is the identity

operator and M1(⋅,x) = M2(y,⋅) = M(⋅) for all (x, y) ∈ B1 × B2 , then the problem (1.2) is

equivalent to solve the following nonlinear variational inclusion system with (A, h)-
monotone mappings:{

0 ∈ A1(x) − A1(y) + ρN(y, x) + ρM(x),
0 ∈ A2(y) − A2(x) + �N(x, y) + �M(y),

(1:4)

The system (1.4) was introduced and studied by Wang and Wu [18] and contains the

generalized system for mixed variational inequalities with maximal monotone operators

in [14] as special cases. Moreover, taking y = x, then the system (1.4) reduces to find-

ing an element x ∈ H such that

0 ∈ N(x, x) +M(x),

which was considered by Verma [17].

Example 1.4. When

Bi = H,λi = 1(i = 1, 2), p = h,A1 = A2 = I,N1(x, ·) = N2(·, y) = N(·) and M1(⋅,x) = M1

(⋅),N2(y,⋅) = M2(⋅) for all (x, y) ∈ B1 × B2 , the system (1.1) becomes to the following

nonlinear operator equation systems: Finding (x, y) ∈ H × H such that
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{
h(x) = JρM1

[
f (y) − ρN(y)

]
,

h(y) = J�M2

[
g(x) − �N(x)

]
,

(1:5)

where JρM1
= (I + ρM1)−1 and J�M2

= (I + �M2)−1. Based on the definition of the resol-

vent operators, we know that the system (1.5) is equivalent to solve the following sys-

tem of general variational inclusions:{
0 ∈ h(x) − f (y) + ρN(y) + ρM1(h(x)),
0 ∈ h(y) − g(x) + �N(x) + �M2(h(y)),

(1:6)

which was studied by Noor et al. [12] when Mi = M is maximal monotone for i = 1,

2. Moreover, some special cases of the problem (1.6) can be found in [4,6] and the

references therein.

We also construct a new perturbed iterative algorithm framework with errors based

on the variational graphical convergence of operator sequences with (A, h)-accretive
mappings in Banach space for approximating the solutions of the nonlinear equation

system (1.1) in smooth Banach spaces and prove the existence of solutions and the var-

iational convergence of the sequence generated by the perturbed iterative algorithm in

q-uniformly smooth Banach spaces. The results present in this paper improve and gen-

eralize the corresponding results of [2,3,5,12,14,17,18] and many other recent works.

2 Preliminaries
Let B be a real Banach space with dual space B∗, 〈·, ·〉 be the dual pair between B
and B∗,CB(B) denote the family of all nonempty closed bounded subsets of B , and

2B denote the family of all the nonempty subsets of B . The generalized duality map-

ping Jq : B → 2B∗ is defined by

Jq(x) =
{
f ∗ ∈ B∗ : 〈x, f ∗〉 = ‖x‖q, ∥∥f ∗∥∥ = ‖x‖q−1} , ∀x ∈ B,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It

is known that, in general, Jq(x) = ||x||q-2 J2(x) for all x ≠ 0, and Jq is single-valued if B∗

is strictly convex. In the sequel, we always suppose that B is a real Banach space such

that Jq is single-valued and H is a Hilbert space. If B = H , then J2 becomes the iden-

tity mapping on H .

The modulus of smoothness of B is the function XB : [0,∞) → [0,∞) defined by

XB(t) = sup
{
1
2

(∥∥x + y
∥∥ +

∥∥x − y
∥∥) − 1 : ‖x‖ ≤ 1,

∥∥y∥∥ ≤ t
}
.

A Banach space B is called uniformly smooth if limt→0
XB(t)

t
= 0 .

B is called q-uniformly smooth if there exists a constant c > 0 such that

XB(t) ≤ ctq, q > 1 . Remark that Jq is single-valued if B is uniformly smooth. In the

study of characteristic inequalities in q-uniformly smooth Banach spaces, Xu [21]

proved the following result:

Lemma 2.1. Let B be a real uniformly smooth Banach space. Then, B is q-uni-

formly smooth if and only if there exists a constant cq > 0 such that for all x, y ∈ B ,
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∥∥x + y
∥∥q ≤ ‖x‖q + q〈y, Jq(x)〉 + cq

∥∥y∥∥q.
In the sequel, we give some concept and lemmas needed later.

Definition 2.1. Let B be a q-uniformly smooth Banach space and T,A : B → B be

two single-valued mappings. T is said to be

(i) accretive if

〈T(x) − T(y), Jq(x − y)〉 ≥ 0, ∀x, y ∈ B;

(ii) strictly accretive if T is accretive and

〈T(x) − T(y), Jq(x − y)〉 = 0

if and only if x = y;

(iii) r-strongly accretive if there exists a constant r > 0 such that

〈T(x) − T(y), Jq(x − y)〉 ≥ r
∥∥x − y

∥∥q, ∀x, y ∈ B;

(iv) g-strongly accretive with respect to A if there exists a constant g > 0 such that

〈T(x) − T(y), Jq(A(x) − A(y))〉 ≥ γ
∥∥x − y

∥∥q, ∀x, y ∈ B;

(v) m-relaxed cocoercive with respect to A if, there exists a constant m > 0 such

that

〈T(x) − T(y), Jq(A(x) − A(y))〉 ≥ −m
∥∥T(x) − T(y)

∥∥q, ∀x, y ∈ B;

(vi) (π, ι)-relaxed cocoercive with respect to A if, there exist constants π, ι > 0 such

that

〈T(x) − T(y), Jq(A(x) − A(y))〉 ≥ −π
∥∥x − y

∥∥q + ι
∥∥T(x) − T(y)

∥∥q, ∀x, y ∈ B;

(vii) s-Lipschitz continuous if there exists a constant s > 0 such that∥∥T(x) − T(y)
∥∥ ≤ s

∥∥x − y
∥∥ , ∀x, y ∈ B.

In a similar way, we can define (relaxed) cocoercivity and Lipschitz continuity of the

operator N(·, ·) : B × B → B in the first and second arguments.

Remark 2.1. (1) The notion of the cocoercivity is applied in several directions, espe-

cially to solving variational inequality problems using the auxiliary problem principle
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and projection methods [16], while the notion of the relaxed cocoercivity is more gen-

eral than the strong monotonicity as well as cocoercivity. Several classes of relaxed

cocoercive variational inequalities and variational inclusions have been studied in

[2,5,7-10,12,16-18].

(2) When B = H , (i)-(iv) of Definition 2.1 reduce to the definitions of monotonicity,

strict monotonicity, strong monotonicity, and strong monotonicity with respect to A,

respectively (see [3,18]).

Definition 2.2. A single-valued mapping η : B × B → B is said to be τ-Lipschitz

continuous if there exists a constant τ > 0 such that∥∥η(x, y)
∥∥ ≤ τ

∥∥x − y
∥∥ , ∀x, y ∈ B.

Definition 2.3. Let B be a q-uniformly smooth Banach space, η : B × B → B and

A,H : B → B be single-valued mappings. Then set-valued mapping M : B → 2B is

said to be

(i) h-accretive if

〈u − v, Jq(η(x, y))〉 ≥ 0, ∀x, y ∈ B, u ∈ M(x), v ∈ M(y);

(ii) r-strongly h-accretive if there exists a constant r > 0 such that

〈u − v, Jq(η(x, y))〉 ≥ r
∥∥x − y

∥∥q, ∀x, y ∈ B, u ∈ M(x), v ∈ M(y);

(iii) m-relaxed h-accretive if there exists a constant m > 0 such that

〈u − v, Jq(η(x, y))〉 ≥ −m
∥∥x − y

∥∥q, ∀x, y ∈ B, u ∈ M(x), v ∈ M(y);

(iv) ξ − Ĥ -Lipschitz continuous, if there exists a constant ξ > 0 such that

Ĥ(M(x),M(y)) ≤ ξ
∥∥x − y

∥∥ , ∀x, y ∈ B,

where Ĥ is the Hausdorff metric on CB(B) ;

(v) (A, h)-accretive if M is m-relaxed h-accretive and (A + ρM)(B) = B for every r
> 0.

Remark 2.2. The (A, h)-accretivity generalizes the general (H, h)-accretivity, (I, h)-
accretivity (so-called generalized m-accretivity), H-accretivity classical m-accretivity (A,

h)-monotonicity, A-monotonicity, (H, h)-monotonicity, H-monotonicity, maximal h-
monotonicity, and classical maximal monotonicity as special cases (see, for example,

[1,7,8,13] and the references therein.)
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Definition 2.4. Let A : B → B be a strictly h-accretive mapping and M : B → 2B

be an (A, h)-accretive mapping. The resolvent operator Rρ,A
η,M : B → B is defined by:

Rρ,A
η,M(u) = (A + ρM)−1(u), ∀u ∈ B.

Remark 2.3. The resolvent operators associated with (A, h)-accretive mappings

include as special cases the corresponding resolvent operators associated with (H, h)-
accretive mappings, (A, h)-monotone operators [8], (H, h)-monotone operators, H-

accretive operators, generalized m-accretive operators, maximal h-monotone operators,

H-monotone operators, A-monotone operators, h-subdifferential operators, the classi-

cal m-accretive, and maximal monotone operators. See, for example, [1,7,8,13] and the

references therein.

Lemma 2.2. ([7]) Let B be a q-uniformly smooth Banach space and η : B × B → B
be τ-Lipschitz continuous, A : B → B be a r-strongly h-accretive mapping and

M : B → 2B be an (A, h)-accretive mapping. Then, the resolvent operator

Rρ,A
η,M : B → B is

τ q−1

r − ρm
-Lipschitz continuous, i.e.,

∥∥∥Rρ,A

η,M(x) − Rρ,A
η,M(y)

∥∥∥ ≤ τ q−1

r − ρm

∥∥x − y
∥∥ , ∀x, y ∈ B,

where ρ ∈
(
0,

r
m

)
is a constant.

Definition 2.5. Let Mn,M : B → 2B be (A, h)-accretive mappings on B for n = 0,1,

2,.... Let A : B → B be r-strongly h-monotone and b-Lipschitz continuous. The

sequence Mn is graph-convergent to M, denoted MnA − G−−−→ M , if for every (x, y) Î

graph(M), there exists a sequence (xn,yn) Î graph(Mn) such that

xn → x, yn → y as n → ∞.

Based on Definition 2.6 and Theorem 2.1 in [20], we have the following lemma.

Lemma 2.3. Let Mn,M : B → 2B be (A, h)-accretive mappings on B for n = 0,1,

2,.... Then, the sequence MnA − G−−−→ M if and only if

Rρ,A
η,Mn(x) → Rρ,A

η,M(x),∀x ∈ B,

where Rρ,A
η,M = (A + ρMn)−1,Rρ,A

η,M = (A + ρM)−1,ρ > 0 is a constant, and A : B → B
is r-strongly h-monotone and b-Lipschitz continuous.

3 Algorithms and graphical convergence
In this section, by using resolvent operator technique associated with (A, h)-accretive
mappings, we shall develop a new perturbed iterative algorithm framework with errors

for solving the nonlinear operator equation system (1.1) with (A, h)-accretive mappings

and relaxed cocoercive operators and prove the existence of solutions and the varia-

tional convergence of the sequence generated by the perturbed iterative algorithm in

q-uniformly smooth Banach spaces.
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Above all, we note that the equalities (1.1) can be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p(x) = Rρλ1,A1

η1,M1(·,x)(s),
s = (1 − λ1)A1(p(x)) + λ1(A1(f (y)) − ρN1(u, y) + a),
h(y) = R�λ2,A2

η2,M2(y,·)(t),
t = (1 − λ2)A2(h(y)) + λ2(A2(g(x)) − �N2(x, v) + b),

where r, l > 0 are constants. This formulation allows us to construct the following

perturbed iterative algorithm framework with errors.

Algorithm 3.1. Step 1. For an arbitrary initial point (x0, y0) ∈ B1 × B2 , take u0 Î S

(x0) and v0 Î T(y0).

Step 2. Choose sequences {dn} ⊂ B1 and {en} ⊂ B2 are two error sequences to take

into account a possible inexact computation of the operator points, which satisfy the

following conditions:

lim
n→∞ dn = lim

n→∞ en = 0,
∞∑
n=1

(∥∥dn − dn−1
∥∥ +

∥∥en − en−1
∥∥)

< ∞.

Step 3. Let the sequence {(sn, tn, xn, yn)} ⊂ B1 × B2 × B1 × B2 satisfy⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sn = (1 − λ1)A1(p(xn)) + λ1(A1(f (yn)) − ρN1(un, yn) + a),

tn = (1 − λ2)A2(h(yn)) + λ2(A2(g(xn)) − �N2(xn, vn) + b),

xn+1 = (1 − k)xn + k{xn − p(xn) + Rρλ1,A1
η1,Mn

1(·,xn)(sn)} + dn,

yn+1 = (1 − κ)yn + κ{yn − h(yn) + Rρλ2,A2
η2,Mn

2(yn,·)(tn)} + en,

(3:1)

where Rρλ1,A1
η1,Mn

1(·,x) = (A1 + ρλ1Mn
1(·, x))−1,R�λ2,A2

η2,Mn
2(y,·) = (A2 + �λ2Mn

2(y, ·))−1,λ1,λ2,ρ,�

are nonnegative constants and k, � Î (0, 1] are size constants.

Step 4. Choose un+1 Î S(xn+1) and vn+1 Î T(yn+1) such that (see [22])

‖un − un+1‖ ≤
(
1 +

1
n + 1

)
Ĥ

(
S(xn), S(xn+1)

)
,

‖vn − vn+1‖ ≤
(
1 +

1
n + 1

)
Ĥ

(
T(yn),T(yn+1)

)
.

(3:2)

Step 5. If sn, tn, xn, yn, dn, and en satisfy (3.1) and (3.2) to sufficient accuracy, stop;

otherwise, set n: = n + 1 and return to Step 2.

Now, we prove the existence of a solution of problem (1.1) and the convergence of

Algorithm 3.1.

Theorem 3.1. For i = 1, 2, let Bi be a qi-uniformly smooth Banach space with qi > 1,

hi, Ai, Mi, Ni (i = 1, 2) and p, h, f, g be the same as in the Equation (1.1). Also suppose

that the following conditions hold:

(H1) hi is τi -Lipschitz continuous, and Ai is ri -strongly hi-accretive, and si-

Lipschitz continuous for i = 1, 2, respectively;

(H2) p is δ1-strongly accretive and lp-Lipschitz continuous, h is δ2-strongly accretive

and lh-Lipschitz continuous, f is lf-Lipschitz continuous and g is lg-Lipschitz
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continuous, S : B1 → CB(B1) is ξ − Ĥ -Lipschitz continuous and

T : B2 → CB(B2) is ζ − Ĥ-Lipschitz continuous;

(H3) N1 is (π1, ι1)-relaxed cocoercive with respect to f1 and ϖ2-Lipschitz continuous

in the second argument, and N2 is (π2, ι2)-relaxed cocoercive with respect to g2 and

ϖ1-Lipschitz continuous in the first argument, and N1 is b1-Lipschitz continuous in

the first variable, and N2 is b2-Lipschitz continuous in the second variable, where

f1 : B2 → B1 is defined by f1(y) = A1 ○ f(y) = A1(f(y)) for all y ∈ B2 and

g2 : B1 → B2 is defined by g2(x) = A2 ○ g(x) = A2(g(x)) for all x ∈ B1 ;

(H4) for n = 0, 1, 2, . . . ,Mn
i : Bi × Bi → 2Bi(i = 1, 2) are any nonlinear operators

such that for all x ∈ B1,Mn
1(·, x) : B1 → 2B1 is an (A1, h1)-accretive mapping with

Mn
1(·, x)A1 − G−−−−→M1(·, x), and Mn

2(y, ·) : B2 → 2B2 is an (A2, h2)-accretive mapping

with Mn
2(y, ·)A2 − G−−−−→M2(y, ·) for all y ∈ B2 , respectively;

(H5) there exist constants νi(i = 1,2), r Î (0, r1/m1) and � ∈ (0, r2/m2) such that∥∥∥∥∥R
ρλ1,A1
η1,M1(·,x)(z) − Rρλ1,A1

η1,M1(·,y)(z)
R�λ2,A2

η2,M2(x,·)(z) − Rρλ2,A2

η2,M2(y,·)(z)

∥∥∥∥∥ ≤ ν2
∥∥x − y

∥∥ , ∀x, y, z ∈ B1,
≤ ν1

∥∥x − y
∥∥ , ∀x, y, z ∈ B2,

(3:3)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν2 + q1

√
1 − q1δ1 + cq1 l

q1
p +

τ
q1−1
1 [(1 − λ1)σ1lp + ρλ1β1ξ]

r1 − ρλ1m1

+
κλ2τ

q2−1
2

q2

√
σ
q2
2 lq2g − q2�ι2�

q2
1 + q2�π2 + cq2�q2�

q2
1

k(r2 − �λ2m2)
< 1,

ν1 +
q2

√
1 − q2δ2 + cq2 l

q2
h +

τ
q2−1
2 [(1 − λ2)σ2lh + �λ2β2ζ ]

r2 − �λ2m2

+
kλ1τ

q1−1
1

q1

√
σ
q1
1 lq1f − q1ρι1�

q1
2 + q1ρπ1 + cq1ρq1�

q1
2

κ(r1 − ρλ1m1)
< 1

(3:4)

where cq1 , cq2 are the constants as in Lemma 2.1 and k, � Î (0,1] are size constants.

Then, there exist (x∗, y∗) ∈ B1 × B2 u∗ ∈ S(x∗), v∗ ∈ T(y∗) such that (x*,y*,u*,v*) is a

solution of the Equation (1.1) and

xn → x∗, yn → y∗, un → u∗, vn → v∗, as n → ∞,

where {xn}, {yn}, {un} and {vn} are iterative sequences generated by Algorithm 3.1.

Proof. Define ||⋅||* on B1 × B2 by∥∥(x, y)∥∥∗ = ‖x‖ +
∥∥y∥∥ , ∀(x, y) ∈ B1 × B2.

It is easy to see that (B1 × B2, ‖·‖∗) is a Banach space. By the assumptions for

relaxed cocoercivity and Lipschitz continuity of N with respect to both arguments,

strongly accretivity of p and h, and Lipschitz continuity of S, T, p, f, g and h, Lemmas

2.1 and 2.2, and (3.1)-(3.3), now we know that
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∥∥N1(un, yn−1) − N1(un−1, yn−1)
∥∥ ≤ β1 ‖un − un−1‖

≤ β1(1 + n−1)Ĥ(S(xn), S(xn−1)) ≤ β1ξ(1 + n−1) ‖xn − xn−1‖ ,∥∥A1(f (yn)) − A1(f (yn−1)) − ρ
[
N1(un, yn) − N1(un, yn)

]∥∥q1
≤ ∥∥A1(f (yn)) − A1(f (yn−1))

∥∥q1 + ρq1cq1
∥∥N1(un, yn) − N1(un, yn−1)

∥∥q1
− q1ρ〈N1(un, yn) − N1(un, yn−1), Jq1 (A1(f (yn)) − A1(f (yn−1)))〉

≤
(
σ
q1
1 lq1f − q1ρι1�

q1
2 + q1ρπ1 + cq1ρ

q1�
q1
2

) ∥∥yn − yn−1
∥∥q1 ,

∥∥xn − xn−1 − [
p(xn) − p(xn−1)

]∥∥ ≤ q1

√
1 − q1δ1 + cq1 l

q1
p ‖xn − xn−1‖ ,

and

‖sn − sn−1‖
=

∥∥(1 − λ1)A1(p(xn)) + λ1(A1(f (yn)) − ρN1(un, yn) + a)

−(1 − λ1)A1(p(xn−1)) − λ1(A1(f (yn−1)) − ρN1(un−1, yn−1) + a)
∥∥

≤ (1 − λ1)
∥∥A1(p(xn)) − A1(p(xn−1))

∥∥
+ ρλ1

∥∥N1(un, yn−1) − N1(un−1, yn−1)
∥∥

+ λ1
∥∥A1(f (yn)) − A1(f (yn−1)) − ρ[N1(un, yn) − N1(un, yn−1)]

∥∥
≤ [

(1 − λ1)σ1lp + ρλ1β1ξ(1 + n−1)
] ‖xn − xn−1‖

+ λ1
q1

√
σ
q1
1 lq1f − q1ρι1�

q1
2 + q1ρπ1 + cq1ρq1�

q1
2

∥∥yn − yn−1
∥∥ ,

‖xn+1 − xn‖
≤ (1 − k) ‖xn − xn−1‖ + k

∥∥xn − xn−1 − [
p(xn) − p(xn−1)

]∥∥
+ k

∥∥∥Rρλ1,A1
η1,Mn

1(·,xn)(sn) − Rρλ1,A1
η1,M1(·,xn)(sn)

∥∥∥ + ‖dn − dn−1‖

+ k
∥∥∥Rρλ1,A1

η1,M1(·,xn)(sn) − Rρλ1,A1
η1,M1(·,xn−1)

(Sn)
∥∥∥

+ k
∥∥∥Rρλ1,A1

η1,M1(·,xn−1)
(sn) − Rρλ1,A1

η1,M1(·,xn−1)
(sn−1)

∥∥∥
+ k

∥∥∥Rρλ1,A1

η1,Mn−1
1 (·,xn−1)

(sn−1) − Rρλ1,A1
η1,M1(·,xn−1)

(sn−1)
∥∥∥

≤ (1 − k) ‖xn − xn−1‖ + k
∥∥xn − xn−1 − [p(xn) − p(xn−1)]

∥∥
+ kν2 ‖xn − xn−1‖ +

kτ q1−1
1

r1 − ρλ1m1
‖sn − sn−1‖

+ k(εn + εn−1) + ‖dn − dn−1‖
≤ [1 − k(1 − θ1n)] ‖xn − xn−1‖ + kϑ1

∥∥yn − yn−1
∥∥

+ k(εn + εn−1) + ‖dn − dn−1‖ ,

(3:5)

where εl =
∥∥∥Rρλ1,A1

η1,Ml
1(·,xl)

(sl) − Rρλ1,A1
η1,M1(·,xl)(sl)

∥∥∥ for l = n - 1, n and

θ1,n = ν2 +
q1

√
1 − q1δ1 + cq1 l

q1
p +

τ
q1−1
1 (1 − λ1)σ1lp + ρλ1β1ξ(1 + n−1)

r1 − ρλ1m1
,

ϑ1 =
λ1τ

q1−1
1

q1

√
σ
q1
1 lq1f − q1ρι1�

q1
2 + q1ρπ1 + cq1ρq1�

q1
2

r1 − ρλ1m1
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Similarly, we get∥∥yn+1 − yn
∥∥ ≤ [

1 − κ(1 − θ2n)
] ∥∥yn − yn−1

∥∥ + κϑ2 ‖xn − xn−1‖
+ κ(εn + εn−1) + ‖en − en−1‖ ,

(3:6)

where εl =
∥∥∥R�λ2,A2

η2,Ml
2(yl,·)

(tl) − R�λ2,A2

η2,M2(yl,·)(tl)
∥∥∥ for l = n - 1, n and

θ2,n = ν + q2

√
1 − q2δ2 + cq2 l

q2
h +

τ
q2−1
2 [(1 − λ2)σ2lh + �λ2β2ζ (1 + n−1)]

r2 − �λ2m2
,

ϑ2 =
λ2τ

q2−1
2

q2

√
σ
q2
2 lq2g − q2�ι2�

q2
1 + q2�π2 + cq2�q2�

q2
1

r2 − �λ2m2
.

follows from (3.5) and (3.6) that

‖xn+1 − xn‖ +
∥∥yn+1 − yn

∥∥
≤ θn

(‖xn − xn−1‖ +
∥∥yn − yn−1

∥∥)
+ k(εn + εn−1) + κ(εn + εn−1) + (‖dn − dn−1‖ + ‖en − en−1‖) ,

(3:7)

where

θn = max{1 + κϑ2 − k(1 − θ1,n), 1 + kϑ1 − κ(1 − θ2,n)}.

Let

θ = max{1 + κϑ2 − k(1 − θ1), 1 + kϑ1 − κ(1 − θ2)},

where

θ1 = ν2 +
q1

√
1 − q1δ1 + cq1 l

q1
p +

τ
q1−1
1 [(1 − λ1)σ1lp + ρλ1β1ξ]

r1 − ρλ1m1
,

θ2 = ν1 +
q2

√
1 − q2δ2 + cq2 l

q2
h +

τ
q2−1
2 [(1 − λ2)σ2lh + �λ2β2ζ ]

r2 − �λ2m2
.

Then, we know that θn ↓ θ as n ® ∞.

From the condition (3.4), we know that 0 <θ < 1 and so there exist n0 > 0 and θ0 Î
(θ,1) such that θn ≤ θ0 for all n ≥ n0. Therefore, by (3.7), we have∥∥(xn+1, yn+1) − (xn, yn)

∥∥
∗

≤ θ0
∥∥(xn, yn) − (xn−1, yn−1)

∥∥
∗ + (‖dn − dn−1‖ + ‖en − en−1‖)

+k(εn + εn−1) + κ(εn + εn−1)

≤ θ
n−n0
0

∥∥(xn0+1, yn0+1) − (xn0 , yn0 )
∥∥

∗ +
n−n0∑
i=1

θ i−1
0 ςn−(i−1) (3:8)

where ςn = ||dn - dn-1|| + ||en - en-1|| + k(�n + �n-1) + �(εn + εn-1) for all n ≥ n0. By

(3.8), for any m ≥ n > n0, we have
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∥∥(xm, ym) − (xn, yn)
∥∥

∗

≤
m−1∑
j=n

(∥∥xj+1 − xj
∥∥ +

∥∥yj+1 − yj
∥∥)

≤
m−1∑
j=n

θ
j−n0
0

∥∥(xn0+1, yn0+1) − (xn0 , yn0 )
∥∥

∗ +
m−1∑
j=n

j−n0∑
i=1

θ i−1
0 ςj−(i−1).

(3:9)

It follows from the hypothesis of Algorithm 3.1, Lemma 2.3 and (3.9) that

lim
n→∞

∥∥(xm, ym) − (xn, yn)
∥∥

∗ = 0.

Hence, {(xn, yn)} is a Cauchy sequence, i.e., there exists (x∗, y∗) ∈ B1 × B2 such that

(xn, yn) ® (x*, y*) as n ® ∞.

Next, we prove that un ® u* Î S(x*) and vn ® v* Î T(y*). In fact, because

‖un − un−1‖ ≤ (1 + n−1)Ĥ
(
S(xn), S(xn−1)

) ≤ ξ(1 + n−1) ‖xn − xn−1‖ ,

it follows that {un} is also Cauchy sequence in B1 . Let un® u*. In the sequel, we will

show that u* Î S(x*). Noting un Î S(xn), from the results in [22], we have

d(u∗, S(x∗)) = inf
{∥∥un − y

∥∥ : y ∈ S(x∗)
} ≤ ∥∥u∗ − un

∥∥ + d(un, S(x∗))

≤ ∥∥u∗ − un
∥∥ + Ĥ

(
S(xn), S(x∗)

)
≤ ∥∥u∗ − un

∥∥ + ξ
∥∥xn − x∗∥∥ → 0.

Hence d(u*,S(x*)) = 0 and therefore u* Î S(x*). Similarly, we have vn ®v* Î T(y*). By

continuity and the hypothesis of Algorithm 3.1, we know that (x*, y*, u*, v*) satisfies

the Equation (1.1). This completes the proof.

Remark 3.1. We note that Hilbert space and Lp (or lp) (2 ≤ p < ∞) spaces are 2-uni-

formly smooth Banach spaces and if Bi(i = 1, 2) is 2-uniformly smooth Banach space,

we can choose constants νi, li(i = 1,2), r and � such that (3.4) hold. See, for example,

[2-18] and the references therein.

Remark 3.2. Condition (3.4) of Theorem 3.1 holds for some suitable value of con-

stants, for example, q1 = q2 = 2, c2 = 1, ν1 = ν2 = 0.02,δ1 = δ2 = 0.3, lp = lh = 0.6,τ1 =

τ2 = 0.05, l1 = l2 = 0.01, s1 = s2 = 0.5, ρ = � = 0.1 , b1 = b2 = 0.05, ξ = 0.7, ζ = 0.4, r1
= r2 = 0.3, m1 = m2 = 0.2, k = � = 0.5, lf = 0.2, lg = 0.4, ι1 = ι2 = 0.05, ϖ1 = ϖ2 = 0.05

and π1 = π2 = 0.2.

From Theorem 3.1, we have the following results as an application of Theorem 3.1.

Theorem 3.2. Assume that H is a real Hilbert space and the following conditions

hold:

(H1) h : H → H is δ-strongly monotone and lh-Lipschitz continuous, f : H → H
is lf-Lipschitz continuous and g : H → H is lg-Lipschitz continuous;

(H2) N : H → H is (π1, ι1)-relaxed cocoercive with respect to f and ϖ-Lipschitz

continuous, and (π2, ι2)-relaxed cocoercive with respect to g;

(H3) for i = 1,2 and n = 0, 1, 2, ...,Mn
i ,Mi : H → 2H are maximal monotone opera-

tors with Mn
i A1 − G−−−−→Mi; ;
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(H4) there exist positive constants r and � such that√
1 − 2δ + l2h < min

{
1 − κ

k

√
l2g − 2�ι2� 2 + 2�π2 + �2� 2 ,

1 − k
κ

√
l2f − 2ρι1� 2 + 2ρπ1 + ρ2� 2

}
.

Then, the iterative sequences {(xn, yn)} generated as follows converges strongly to the

common solution (x*, y*) of the system (1.5):

For any given (x0, y0) ∈ H × H , define an iterative sequence as follows:{
xn+1 = (1 − k)xn + k{xn − h(xn) + JρMn

1
[f (yn − ρN(yn)]} + dn,

yn+1 = (1 − κ)yn + κ{yn − h(yn) + J�Mn
2
[g(xn) − �N(xn)]} + en,

(3:10)

where JρMn
1
= (I + ρMn

1)
−1, J�Mn

2
= (I + �Mn

2)
−1,ρ,� > 0, k, κ ∈ (0, 1), {dn} ⊂ H and

{en} ⊂ H are two error sequences to take into account a possible inexact computation

of the operator points, which satisfy the following conditions:

lim
n→∞ dn = lim

n→∞ en = 0,
∞∑
n=1

(∥∥dn − dn−1
∥∥ +

∥∥en − en−1
∥∥)

< ∞.

Proof. By the nonexpansivity of the resolvent operators associated withmaximal

monotone operators and the proof of Theorem 3.1, one can derivethe result.

Remark 3.3. We note that one can obtain the corresponding results of Theorems

3.1-3.2 when there are problems (1.1), (1.3)-(1.5) with (H, h)-accretive mappings, (A,

h)-monotone operators, (H, h)-monotone operators, H-accretive operators, generalized

m-accretive operators, maximal h-monotone operators, H-monotone operators, A-

monotone operators, h-subdifferential operators or the classical m-accretive. The

results obtained in this paper improve and generalize the corresponding results of

[2,3,5,12,14,17,18] and many other recent works.
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