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1 Introduction
Let K be a nonempty subset of an arbitrary Banach space X and X∗ be its dual space. The
symbols D(T), R(T) and F(T) stand for the domain, the range and the set of fixed points
of T respectively (for a single-valued map T : X → X, x ∈ X is called a fixed point of T iff
T(x) = x). We denote by J the normalized duality mapping from E to E∗ defined by

J(x) =
{
f ∗ ∈ X∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥}.

Let T :D(T) ⊆ X → X be an operator. The following definitions can be found in [–]
for example.

Definition  T is called Lipshitzian if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖,

for all x, y ∈ K . If L = , then T is called nonexpansive, and if  < L < , T is called contrac-
tion.

Definition 
(i) T is said to be strongly pseudocontractive if there exists a t >  such that for each

x, y ∈D(T), there exists j(x – y) ∈ J(x – y) satisfying

Re
〈
Tx – Ty, j(x – y)

〉 ≤ 
t
‖x – y‖.
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(ii) T is said to be strictly hemicontractive if F(T) is nonempty and if there exists a t > 
such that for each x ∈D(T) and q ∈ F(T), there exists j(x – y) ∈ J(x – y) satisfying

Re
〈
Tx – q, j(x – q)

〉 ≤ 
t
‖x – q‖.

(iii) T is said to be φ-strongly pseudocontractive if there exists a strictly increasing
function φ : [,∞) → [,∞) with φ() =  such that for each x, y ∈D(T), there
exists j(x – y) ∈ J(x – y) satisfying

Re
〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – φ
(‖x – y‖)‖x – y‖.

(iv) T is said to be φ-hemicontractive if F(T) is nonempty and if there exists a strictly
increasing function φ : [,∞)→ [,∞) with φ() =  such that for each x ∈ D(T)
and q ∈ F(T), there exists j(x – y) ∈ J(x – y) satisfying

Re
〈
Tx – q, j(x – q)

〉 ≤ ‖x – q‖ – φ
(‖x – q‖)‖x – q‖.

Clearly, each strictly hemicontractive operator is φ-hemicontractive.

Definition 
(i) T is called accretive if the inequality

‖x – y‖ ≤ ∥∥x – y + s(Tx – Ty)
∥∥

holds for every x, y ∈D(T) and for all s > .
(ii) T is called strongly accretive if, for all x, y ∈D(T), there exists a constant k >  and

j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≥ k‖x – y‖.

(iii) T is called φ-strongly accretive if there exists j(x – y) ∈ J(x – y) and a strictly
increasing function φ : [,∞)→ [,∞) with φ() =  such that for each x, y ∈ X ,

〈
Tx – Ty, j(x – y)

〉 ≥ φ
(‖x – y‖)‖x – y‖.

Remark  It has been shown in [, ] that the class of strongly accretive operators is
a proper subclass of the class of φ-strongly accretive operators. If I denotes the identity
operator, then T is called strongly pseudocontractive (respectively, φ-strongly pseudocon-
tractive) if and only if (I – T) is strongly accretive (respectively, φ-strongly accretive).

Chidume [] showed that the Mann iterative method can be used to approximate fixed
points of Lipschitz strongly pseudocontractive operators in Lp (or lp) spaces for p ∈ [,∞).
Chidume and Osilike [] proved that each strongly pseudocontractive operator with a
fixed point is strictly hemicontractive, but the converse does not hold in general. They
also proved that the class of strongly pseudocontractive operators is a proper subclass of
the class of φ-strongly pseudocontractive operators and pointed out that the class of φ-
strongly pseudocontractive operators with a fixed point is a proper subclass of the class
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of φ-hemicontractive operators. These classes of nonlinear operators have been studied
by various researchers (see, for example, [–]). Liu et al. [] proved that, under cer-
tain conditions, a three-step iteration scheme with error terms converges strongly to the
unique fixed point of φ-hemicontractive mappings.
In this paper, we study a three-step iterative scheme with error terms for nonlinear φ-

strongly accretive operator equations in arbitrary real Banach spaces.

2 Preliminaries
We need the following results.

Lemma  [] Let {an}, {bn} and {cn} be three sequences of nonnegative real numbers with∑∞
n= bn < ∞ and

∑∞
n= cn < ∞. If

an+ ≤ ( + bn)an + cn, n≥ ,

then the limit limn→∞ an exists.

Lemma [] Let x, y ∈ X. Then ‖x‖ ≤ ‖x+ ry‖ for every r >  if and only if there is f ∈ J(x)
such that Re〈y, f 〉 ≥ .

Lemma  [] Suppose that X is an arbitrary Banach space and A : E → E is a continuous
φ-strongly accretive operator. Then the equation Ax = f has a unique solution for any f ∈ E.

3 Strong convergence of a three-step iterative scheme to a solution of the
system of nonlinear operator equations

For the rest of this section, L denotes the Lipschitz constant of T,T,T : X → X, L∗ =
( + L) and R(T), R(T) and R(T) denote the ranges of T, T and T respectively. We
now prove our main results.

Theorem  Let X be an arbitrary real Banach space and T,T,T : X → X Lipschitz
φ-strongly accretive operators. Let f ∈ R(T) ∩ R(T) ∩ R(T) and generate {xn} from an
arbitrary x ∈ X by

xn+ = anxn + bn
(
f + (I – T)yn

)
+ cnvn,

yn = a′
nxn + b′

n
(
f + (I – T)zn

)
+ c′nun,

zn = a′′
nxn + b′′

n
(
f + (I – T)xn

)
+ c′′nwn, n≥ ,

(.)

where {vn}∞n=, {un}∞n= and {wn}∞n= are bounded sequences in X and {an}, {cn}, {a′
n}, {b′

n},
{c′n}, {a′′

n}, {b′′
n}, {c′′n} are sequences in [, ] and {bn} in (, ) satisfying the following condi-

tions: (i) an + bn + cn =  = a′
n + b′

n + c′n = a′′
n + b′′

n + c′′n, (ii)
∑∞

n= bn = ∞, (iii)
∑∞

n= bn < ∞,∑∞
n= b′

n < ∞, (iv)
∑∞

n= cn < ∞,
∑∞

n= c′n < ∞ and
∑∞

n= c′′n < ∞. Then the sequence {xn}
converges strongly to the solution of the system Tix = f ; i = , , .

Proof By Lemma , the system Tix = f ; i = , ,  has the unique solution x∗ ∈ X. Following
the techniques of [, –, , ], define Si : X → X by Six = f + (I – Ti)x; i = , , ; then
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each Si is demicontinuous and x∗ is the unique fixed point of Si; i = , , , and for all
x, y ∈ X, we have

〈
(I – Si)x – (I – Si)y, j(x – y)

〉

≥ φi
(‖x – y‖)‖x – y‖

≥ φi(‖x – y‖)
( + φi(‖x – y‖) + ‖x – y‖)‖x – y‖

= θi(x, y)‖x – y‖,

where θi(x, y) = φi(‖x–y‖)
(+φi(‖x–y‖)+‖x–y‖) ∈ [, ) for all x, y ∈ X; i = , , . Let x∗ ∈ ⋂

i= F(Si) be the
fixed point set of Si, and let θ (x, y) = infmini{θi(x, y)} ∈ [, ]. Thus

〈
(I – Si)x – (I – Si)y, j(x – y)

〉 ≥ θ (x, y)‖x – y‖; i = , , . (.)

It follows from Lemma  and inequality (.) that

‖x – y‖ ≤ ∥∥x – y + λ
[
(I – Si)x – θ (x, y)x –

(
(I – Si)y – θ (x, y)y

)]∥∥, (.)

for all x, y ∈ X and for all λ > ; i = , , .
Set αn = bn + cn, βn = b′

n + c′n and γn = b′′
n + c′′n, then (.) becomes

xn+ = ( – αn)xn + αnSyn + cn(vn – Syn),

yn = ( – βn)xn + βnSzn + c′n(un – Szn),

zn = ( – γn)xn + γnSxn + c′′n(wn – Sxn), n≥ .

(.)

We have

xn = ( + αn)xn+ + αn
[
(I – S)xn+ – θ

(
xn+,x∗)xn+

]

–
(
 – θ

(
xn+,x∗))αnxn +

(
 – θ

(
xn+,x∗))α

n(xn – Syn)

+ αn(Sxn+ – Syn) –
[
 +

(
 – θ

(
xn+,x∗))αn

]
cn(vn – Syn).

Furthermore,

x∗ = ( + αn)x∗ + αn
[
(I – S)x∗ – θ

(
xn+,x∗)x∗] –

(
 – θ

(
xn+,x∗))αnx∗,

so that

xn – x∗ = ( + αn)
(
xn+ – x∗) + αn

[
(I – S)xn+ – θ

(
xn+,x∗)xn+

–
(
(I – S)x∗ – θ

(
xn+,x∗)x∗)]

–
(
 – θ

(
xn+,x∗))αn

(
xn – x∗) +

(
 – θ

(
xn+,x∗))α

n(xn – Syn)

+ αn(Sxn+ – Syn) –
[
 +

(
 – θ

(
xn+,x∗))αn

]
cn(vn – Syn).
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Hence,

∥∥xn – x∗∥∥ ≥ ( + αn)
∥∥∥∥xn+ – x∗ +

αn

( + αn)
[
(I – S)xn+ – θ

(
xn+,x∗)xn+

–
(
(I – S)x∗ – θ

(
xn+,x∗)x∗)]

∥∥∥∥

–
(
 – θ

(
xn+,x∗))αn

∥∥xn – x∗∥∥ –
(
 – θ

(
xn+,x∗))α

n‖xn – Syn‖
– αn‖Sxn+ – Syn‖ –

[
 +

(
 – θ

(
xn+,x∗))αn

]
cn‖vn – Syn‖

≥ ( + αn)
∥∥xn+ – x∗∥∥ –

(
 – θ

(
xn+,x∗))αn

∥∥xn – x∗∥∥

–
(
 – θ

(
xn+,x∗))α

n‖xn – Syn‖ – αn‖Sxn+ – Syn‖
–

[
 +

(
 – θ

(
xn+,x∗))αn

]
cn‖vn – Syn‖.

Hence,

∥∥xn+ – x∗∥∥ ≤ [ + ( – θ (xn+,x∗))αn]
( + αn)

∥∥xn – x∗∥∥ + α
n‖xn – Syn‖

+ αn‖Sxn+ – Syn‖ +
[
 +

(
 – θ

(
xn+,x∗))αn

]
cn‖vn – Syn‖

≤ [
 +

(
 – θ

(
xn+,x∗))αn

][
 – αn + α

n
]∥∥xn – x∗∥∥

+ α
n‖xn – Syn‖ + αn‖Sxn+ – Syn‖ + cn‖vn – Syn‖

≤ [
 – θ

(
xn+,x∗)αn + α

n
]∥∥xn – x∗∥∥ + α

n‖xn – Syn‖
+ αn‖Sxn+ – Syn‖ + cn‖vn – Syn‖. (.)

Furthermore, we have the following estimates:

∥∥zn – x∗∥∥ =
∥∥( – γn)

(
xn – x∗) + γn

(
Sxn – x∗) + c′′n(wn – Sxn)

∥∥

≤ ( – γn)
∥∥xn – x∗∥∥ + γn

∥∥Sxn – x∗∥∥ + c′′n‖wn – Sxn‖
≤ ( – γn)

∥∥xn – x∗∥∥ + L∗γn
∥∥xn – x∗∥∥

+ c′′n
(∥∥wn – x∗∥∥ +

∥∥Sxn – x∗∥∥)

≤ (
 + (L∗ – )γn + L∗c′′n

)∥∥xn – x∗∥∥ + c′′n
∥∥wn – x∗∥∥

≤ (L∗ – )
∥∥xn – x∗∥∥ + c′′n

∥∥wn – x∗∥∥, (.)
∥∥yn – x∗∥∥ =

∥∥( – βn)
(
xn – x∗) + βn

(
Szn – x∗) + c′n(un – Szn)

∥∥

≤ ( – βn)
∥∥xn – x∗∥∥ + βn

∥∥Szn – x∗∥∥ + c′n‖un – Szn‖
≤ ( – βn)

∥∥xn – x∗∥∥ + L∗βn
∥∥zn – x∗∥∥

+ c′n
(∥∥un – x∗∥∥ + L∗

∥∥zn – x∗∥∥)

≤ (
 – βn + L∗(L∗ – )βn + L∗(L∗ – )c′n

)∥∥xn – x∗∥∥

+
(
L∗βnc′′n + L∗c′nc

′′
n
)∥∥wn – x∗∥∥ + c′n

∥∥un – x∗∥∥

≤ [
L∗(L∗ – ) – 

]∥∥xn – x∗∥∥ + L∗c′′n
∥∥wn – x∗∥∥ + c′n

∥∥un – x∗∥∥, (.)
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‖xn – Syn‖ ≤ ∥∥xn – x∗∥∥ + L∗
∥∥yn – x∗∥∥

≤ [
 + L∗

[
L∗(L∗ – ) – 

]]∥∥xn – x∗∥∥

+ L∗c
′′
n
∥∥wn – x∗∥∥ + L∗c′n

∥∥un – x∗∥∥, (.)

‖Sxn+ – Syn‖ ≤ L∗‖xn+ – yn‖
= L∗

∥∥( – αn)(xn – yn) + αn(Syn – yn) + cn(vn – Syn)
∥∥

≤ L∗
[
( – αn)‖xn – yn‖ + αn‖Syn – yn‖ + cn‖vn – Syn‖

]

≤ L∗
[‖xn – yn‖ + αn‖Syn – yn‖ + cn‖vn – Syn‖

]
. (.)

Using (.) and (.),

‖xn – yn‖ =
∥∥βn(xn – Szn) – c′n(un – Szn)

∥∥

≤ βn‖xn – Szn‖ + c′n‖un – Szn‖
≤ [[

 + L∗(L∗ – )
]
βn + L∗(L∗ – )c′n

]∥∥xn – x∗∥∥

+ L∗
(
βn + c′n

)
c′′n

∥∥wn – x∗∥∥ + c′n
∥∥un – x∗∥∥

≤ [[
 + L∗(L∗ – )

]
βn + L∗(L∗ – )c′n

]∥∥xn – x∗∥∥

+ L∗c′′n
∥∥wn – x∗∥∥ + c′n

∥∥un – x∗∥∥. (.)

Using (.),

‖Syn – yn‖ ≤ ∥∥Syn – x∗∥∥ +
∥∥yn – x∗∥∥

≤ ( + L∗)
∥∥yn – x∗∥∥

≤ ( + L∗)[L∗(L∗ – ) – ]
∥∥xn – x∗∥∥

+ L∗( + L∗)c′′n
∥∥wn – x∗∥∥ + ( + L∗)c′n

∥∥un – x∗∥∥. (.)

Again, using (.),

‖vn – Syn‖ ≤ ∥∥vn – x∗∥∥ + L∗
∥∥yn – x∗∥∥

≤ L∗
[
L∗(L∗ – ) – 

]∥∥xn – x∗∥∥ +
∥∥vn – x∗∥∥

+ L∗c
′′
n
∥∥wn – x∗∥∥ + L∗c′n

∥∥un – x∗∥∥. (.)

Substituting (.)-(.) in (.), we obtain

‖Sxn+ – Syn‖ ≤ L∗
[
 + L∗(L∗ – )

]
βn + L∗(L∗ – )c′n

+
[
L∗(L∗ – ) – 

][
( + L∗)αn + L∗cn

]∥∥xn – x∗∥∥

+ L∗
[
L∗c′′n +

[
( + L∗)αn + L∗cn

]
c′′n

]∥∥wn – x∗∥∥

+ L∗
[
c′n +

[
( + L∗)αn + L∗cn

]
c′n

]∥∥un – x∗∥∥

+ L∗cn
∥∥vn – x∗∥∥. (.)
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Substituting (.), (.) and (.) in (.), we obtain

∥∥xn+ – x∗∥∥ ≤ [
 +

[
 + L∗( + L∗)L∗(L∗ – ) – 

]]
α
n

+ L∗
[
L∗(L∗ – ) – 

]
αnβn + L∗(L∗ – )αnc′n

+ L∗
[
L∗(L∗ – ) – 

]
αncn + L∗

[
L∗(L∗ – ) – 

]
cn

∥∥xn – x∗∥∥

– θ
(
xn+,x∗)αn

∥∥xn – x∗∥∥ +
[
L∗( + L∗)α

nc
′′
n + L∗αnc′′n + L∗αncnc′′n

+ L∗cnc
′′
n
]∥∥wn – x∗∥∥ +

[
L∗( + L∗)α

nc
′
n + L∗αnc′n

+ L∗αncnc′n + L∗cnc′n
]∥∥un – x∗∥∥ + (L∗ + )cn

∥∥vn – x∗∥∥. (.)

Since {vn}, {un} and {wn} are bounded, we set

M = sup
n≥

∥∥vn – x∗∥∥ + sup
n≥

∥∥un – x∗∥∥ + sup
n≥

∥∥wn – x∗∥∥ <∞.

Then it follows from (.) that

∥∥xn+ – x∗∥∥ ≤ [
 +

[
 + L∗( + L∗)

[
L∗(L∗ – ) – 

]]
α
n

+ L∗
[
L∗(L∗ – ) – 

]
αnβn + L∗(L∗ – )αnc′n

+ L∗
[
L∗(L∗ – ) – 

]
αncn + L∗

[
L∗(L∗ – ) – 

]
cn

]∥∥xn – x∗∥∥

– θ
(
xn+,x∗)αn

∥∥xn – x∗∥∥ +
[
L∗( + L∗)α

nc
′′
n + L∗αnc′′n + L∗αncnc′′n

+ L∗cnc
′′
n
]
M +

[
L∗( + L∗)α

nc
′
n + L∗αnc′n

+ L∗αncnc′n + L∗cnc′n
]
M + (L∗ + )cnM

= ( + δn)
∥∥xn – x∗∥∥ – θ

(
xn+,x∗)αn

∥∥xn – x∗∥∥ + σn

≤ ( + δn)
∥∥xn – x∗∥∥ + σn, (.)

where

δn =
[
 + L∗( + L∗)

[
L∗(L∗ – ) – 

]]
α
n

+ L∗
[
L∗(L∗ – ) – 

]
αnβn + L∗(L∗ – )αnc′n

+ L∗
[
L∗(L∗ – ) – 

]
αncn + L∗

[
L∗(L∗ – ) – 

]
cn,

σn =M
[
L∗( + L∗)α

nc
′′
n + L∗αnc′′n + L∗αncnc′′n + L∗cnc

′′
n

L∗( + L∗)α
nc

′
n + L∗αnc′n + L∗αncnc′n + L∗cnc′n

+ (L∗ + )cn
]
.

Since bn ∈ (, ), the conditions (iii) and (iv) imply that
∑∞

n= δn < ∞ and
∑∞

n= σn < ∞. It
then follows from Lemma  that limn→∞ ‖xn – x∗‖ exists. Let limn→∞ ‖xn – x∗‖ = δ ≥ .
We now prove that δ = . Assume that δ > . Then there exists a positive integer N such
that ‖xn – x∗‖ ≥ δ

 for all n≥ N. Since

θ
(
xn+,x∗)∥∥xn – x∗∥∥ =

φ(‖xn+ – x∗‖)
 + φ(‖xn+ – x∗‖) + ‖xn+ – x∗‖

∥∥xn – x∗∥∥ ≥ φ( δ
 )δ

( + φ(D) +D)
,
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for all n ≥ N, it follows from (.) that

∥∥xn+ – x∗∥∥ ≤ ∥∥xn – x∗∥∥ –
φ( δ

 )δ
( + φ(D) +D)

αn + λn for all n ≥ N.

Hence,

φ( δ
 )δ

( + φ(D) +D)
αn ≤ ∥∥xn – x∗∥∥ –

∥∥xn+ – x∗∥∥ + λn for all n ≥ N.

This implies that

φ( δ
 )δ

( + φ(D) +D)

n∑

j=N

αj ≤
∥∥xN – x∗∥∥ +

n∑

j=N

λj.

Since bn ≤ αn,

φ( δ
 )δ

( + φ(D) +D)

n∑

j=N

bj ≤
∥∥xN – x∗∥∥ +

n∑

j=N

λj

yields
∑∞

n= bn < ∞, contradicting the fact that
∑∞

n= bn = ∞. Hence, limn→∞ ‖xn –
x∗‖ = . �

Corollary  Let X be an arbitrary real Banach space and T,T,T : X → X be three
Lipschitz φ-strongly accretive operators, where φ is in addition continuous. Suppose
lim infr→∞ φ(r) >  or ‖Tix‖ → ∞ as ‖x‖ → ∞; i = , , . Let {an}, {bn}, {cn}, {a′

n}, {b′
n},

{c′n}, {a′′
n}, {b′′

n}, {c′′n}, {wn}, {un}, {vn}, {yn} and {xn} be as in Theorem . Then, for any given
f ∈ X, the sequence {xn} converges strongly to the solution of the system Tix = f ; i = , , .

Proof The existence of a unique solution to the system Tix = f ; i = , ,  follows from []
and the result follows from Theorem . �

Theorem  Let X be a real Banach space and K be a nonempty closed convex subset of X.
Let T,T,T : K → K be three Lipschitz φ-strong pseudocontractions with a nonempty
fixed point set. Let {an}, {bn}, {cn}, {a′

n}, {b′
n}, {c′n}, {a′′

n}, {b′′
n}, {c′′n}, {wn}, {un} and {vn} be as

in Theorem . Let {xn} be the sequence generated iteratively from an arbitrary x ∈ K by

xn+ = anxn + bnTyn + cnvn,

yn = a′
nxn + b′

nTzn + c′nun,

zn = a′′
nxn + b′′

nTxn + c′′nwn, n≥ .

Then {xn} converges strongly to the common fixed point of T, T, T.

Proof As in the proof of Theorem , set αn = bn + cn, βn = b′
n + c′n, γn = b′′

n + c′′n to obtain

xn+ = ( – αn)xn + αnTyn + cn(vn – Tyn),

yn = ( – βn)xn + βnTzn + cn(un – Tzn),
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zn = ( – γn)xn + γnTxn + cn(wn – Txn), n≥ .

Since each Ti; i = , ,  is a φ-strong pseudocontraction, (I – Ti) is φ-strongly accretive
so that for all x, y ∈ X, there exist j(x – y) ∈ J(x – y) and a strictly increasing function φ :
(,∞)→ (,∞) with φ() =  such that

〈
(I – Ti)x – (I – Ti)y, j(x – y)

〉 ≥ φ
(‖x – y‖)‖x – y‖ ≥ θ (x, y)‖x – y‖; i = , , .

The rest of the argument now follows as in the proof of Theorem . �

Remark  The example in [] shows that the class of φ-strongly pseudocontractive oper-
ators with nonempty fixed point sets is a proper subclass of the class of φ-hemicontractive
operators. It is easy to see that Theorem  easily extends to the class of φ-hemicontractive
operators.

Remark 
(i) If we set b′′

n =  = c′′n for all n≥  in our results, we obtain the corresponding results
for the Ishikawa iteration scheme with error terms in the sense of Xu [].

(ii) If we set b′′
n =  = c′′n = b′

n =  = c′n for all n ≥  in our results, we obtain the
corresponding results for the Mann iteration scheme with error terms in the sense
of Xu [].

Remark  Let {αn} and {βn} be real sequences satisfying the following conditions:
(i)  ≤ αn,βn ≤ , n≥ ,
(ii) limn→∞ αn = limn→∞ βn = ,
(iii)

∑∞
n= αn = ∞,

(iv)
∑∞

n= βn <∞, and
(v)

∑∞
n= α

n < ∞.
If we set a′

n = (–βn), b′
n = βn, c′n = , an = (–αn), bn = αn, cn = , b′′

n =  = c′′n for all n≥ 
in Theorems  and  respectively, we obtain the corresponding convergence theorems for
the original Ishikawa [] and Mann [] iteration schemes.

Remark 
(i) Gurudwan and Sharma [] studied a strong convergence of multi-step iterative

scheme to a common solution for a finite family of φ-strongly accretive operator
equations in a reflexive Banach space with weakly continuous duality mapping.
Some remarks on their work can be seen in [].

(ii) All the above results can be extended to a finite family of φ-strongly accretive
operators.
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