RESEARCH Open Access

Comment on 'Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory and Applications, doi:10.1186/1687-1812-2011-93, 20 pages'

H Dehghan¹, M Eshaghi Gordji^{2*} and A Ebadian^{3*}

*Correspondence: meshaghi@semnan.ac.ir; ebadian.ali@gmail.com 2Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran 3Department of Mathematics, Payame Noor University, Tehran, Iran Full list of author information is available at the end of the article

Abstract

In this paper, we provide an example to show that some results obtained in [Mongkolkeha *et al.* in Fixed Point Theory Appl. 2011, doi:10.1186/1687-1812-2011-93] are not valid.

MSC: 47H09; 47H10

Keywords: contraction mappings; modular metric spaces; metric space

We begin with the definition of a modular metric space.

Definition 1 [1] Let *X* be a nonempty set. A function $\omega : (0, \infty) \times X \times X \to [0, \infty]$ is said to be *metric modular* on *X* if for all $x, y, z \in X$, the following conditions hold:

- (i) $\omega_{\lambda}(x, y) = 0$ for all $\lambda > 0$ iff x = y;
- (ii) $\omega_{\lambda}(x, y) = \omega_{\lambda}(y, x)$ for all $\lambda > 0$;
- (iii) $\omega_{\lambda+\mu}(x,y) \leq \omega_{\lambda}(x,z) + \omega_{\mu}(z,y)$ for all $\lambda, \mu > 0$.

Given $x_{\star} \in X$, the set $X_{\omega}(x_{\star}) = \{x \in X : \lim_{\lambda \to \infty} \omega_{\lambda}(x, x_{\star}) = 0\}$ is called a *modular metric space* generated by x_{\star} and induced by ω . If its generator x_{\star} does not play any role in the situation, we will write X_{ω} instead of $X_{\omega}(x_{\star})$.

We need the following theorems in the proof of the main result of this paper.

Theorem 2 [1, Theorem 2.6] If ω is metric (pseudo) modular on X, then the modular set X_{ω} is a (pseudo) metric space with (pseudo) metric given by

$$d_{\omega}^{\circ}(x, y) = \inf\{\lambda > 0 : \omega_{\lambda}(x, y) \leq \lambda\}, \quad x, y \in X_{\omega}.$$

Theorem 3 [1, Theorem 2.13] Let ω be (pseudo) modular on a set X. Given a sequence $\{x_n\} \subset X_{\omega}$ and $x \in X_{\omega}$, we have $d_{\omega}^{\circ}(x_n, x) \to 0$ as $n \to \infty$ if and only if $\omega_{\lambda}(x_n, x) \to 0$ as $n \to \infty$ for all $\lambda > 0$. A similar assertion holds for Cauchy sequences.

Let ω be modular on a set X. A mapping $T: X_{\omega} \to X_{\omega}$ is said to be contraction [2, Definition 3.1] if there exists $k \in [0,1)$ such that

$$\omega_{\lambda}(Tx, Ty) \le k\omega_{\lambda}(x, y) \tag{1}$$

for all $\lambda > 0$ and $x, y \in X_{\omega}$.

Recently, Mongkolkeha et al. [2] proved the following theorems.

Theorem 4 [2, Theorem 3.2] Let ω be metric modular on X and X_{ω} be a modular metric space induced by ω . If X_{ω} is a complete modular metric space and $T: X_{\omega} \to X_{\omega}$ is a contraction mapping, then T has a unique fixed point in X_{ω} . Moreover, for any $x \in X_{\omega}$, iterative sequence $\{T^n(x)\}$ converges to the fixed point.

Theorem 5 [2, Theorem 3.4] Let ω be metric modular on X and X_{ω} be a modular metric space induced by ω . If X_{ω} is a complete modular metric space and $T: X_{\omega} \to X_{\omega}$ is a mapping, which T^N is a contraction mapping for some positive integer N. Then, T has a unique fixed point in X_{ω} .

We show that Theorems 4 and 5 are not correct. To this end, we give the following example.

Example 6 Let $X = \mathbb{R}$ and define modular ω by $\omega_{\lambda}(x,y) = \infty$ if $\lambda \leq |x-y|$, and $\omega_{\lambda}(x,y) = 0$ if $\lambda > |x-y|$. It is easy to verify that (see also [1, Example 2.7]) $X_{\omega} = \mathbb{R}$ and $d_{\omega}^{\circ}(x,y) = |x-y|$. It follows from Theorem 3 that \mathbb{R} is a complete modular metric space. Now, define $T: \mathbb{R} \to \mathbb{R}$ by Tx = x + 1. We show that T is a contraction while it has no fixed point. Let $k \in [0,1)$ (for example, k = 1/2) and $x,y \in \mathbb{R}$. If $\lambda \leq |x-y|$, then $\omega_{\lambda}(x,y) = \infty$ and (1) holds. If $|x-y| < \lambda$, then $|Tx - Ty| = |x-y| < \lambda$. Therefore, $\omega_{\lambda}(Tx, Ty) = \omega_{\lambda}(x,y) = 0$. Hence T is a contraction. On the other hand, by definition of T, it is easy to see that T has no fixed point. So, Theorems 4 and 5 are not correct.

Remark 7 In [2, Example 3.7], the authors mentioned that 'Thus, T is not a contraction mapping and then the Banach contraction mapping cannot be applied to this example.' It is true that T is not contraction with the Euclidean metric, but one can easily verify that

$$d_{\omega}^{\circ}(Tx,Ty) \leq \frac{\sqrt{3}}{2}d_{\omega}^{\circ}(x,y).$$

Thus, the Banach contraction guarantees the existence of a fixed point. Note that

$$d_{\omega}^{\circ}\big((a_1,0),(a_2,0)\big)=\sqrt{\frac{4|a_1-a_2|}{3}}, \qquad d_{\omega}^{\circ}\big((0,b_1),(0,b_2)\big)=\sqrt{|b_1-b_2|}$$

and

$$d_{\omega}^{\circ}((a,0),(0,b)) = \sqrt{\frac{4a}{3}+b}.$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Author details

¹Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan, 45137-66731, Iran. ²Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran. ³Department of Mathematics, Payame Noor University, Tehran, Iran.

Received: 8 January 2012 Accepted: 22 August 2012 Published: 7 September 2012

References

- 1. Chistyakov, W: Modular metric spaces, I: basic concepts. Nonlinear Anal. 72, 1-14 (2010)
- Mongkolkeha, C, Sintunavarat, W, Kumam, P: Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. (2011). doi:10.1186/1687-1812-2011-93

doi:10.1186/1687-1812-2012-144

Cite this article as: Dehghan et al.: Comment on 'Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory and Applications, doi:10.1186/1687-1812-2011-93, 20 pages'. Fixed Point Theory and Applications 2012 2012:144.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com