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1 Introduction
Fixed point theory as an important branch of nonlinear analysis theory has been applied
in the study of nonlinear phenomena. The theory itself is a beautiful mixture of analysis,
topology, and geometry. Lots of problems arising in economics, engineering, and physics
can be studied by fixed point techniques. The study of fixed point approximation algo-
rithms for computing fixed points is now a topic of intensive research efforts. Many well-
known problems can be studied by using algorithms which are iterative in their nature. As
an example, in computer tomography with limited data, each piece of information implies
the existence of a convex setCm in which the required solution lies. The problemof finding
a point in the intersection

⋂N
m=Cm, whereN ≥  is some positive integer, is then of crucial

interest, and it cannot be usually solved directly. Therefore, an iterative algorithmmust be
used to approximate such point. The well-known convex feasibility problem, which cap-
tures applications in various disciplines such as image restoration and radiation therapy
treatment planning, is to find a point in the intersection of common fixed point sets of a
family of nonlinear mappings, see, for example, [–].
For iterative algorithms, the oldest and simplest one is the Picard iterative algorithm. It is

known that T , where T stands for a contractive mapping, enjoys a unique fixed point, and
the sequence generated by the Picard iterative algorithm can converge to the unique fixed
point. However, for more general nonexpansive mappings, the Picard iterative algorithm
fails to converge to fixed points of nonexpansive mappings even when they enjoy fixed
points. The Krasnoselskii-Mann iterative algorithm (one-step iterative algorithm) and the
Ishikawa iterative algorithms (two-step iterative algorithm) have been studied for approx-
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imating fixed points of nonexpansive mappings and their extensions. However, both the
Krasnoselskii-Mann iterative algorithm and the Ishikawa iterative algorithms are weak
convergence for nonexpansive mappings only; see [] and [] for the classic weak con-
vergence theorems. In many disciplines, including economics [], image recovery [],
quantumphysics [], and control theory [], problems arise in infinite dimension spaces.
In such problems, strong convergence (norm convergence) is often much more desirable
than weak convergence, for it translates the physically tangible property so that the en-
ergy ‖xn – x‖ of the error between the iterate xn and the solution x eventually becomes
arbitrarily small. The importance of strong convergence is also underlined in [], where
a convex function f is minimized via the proximal-point algorithm: it is shown that the
rate of convergence of the value sequence {f (xn)} is better when {xn} converges strongly
than when it converges weakly. Such properties have a direct impact when the process is
executed directly in the underlying infinite dimensional space. Projectionmethods, which
were first introduced by Haugazeau [], have been considered for the approximation of
fixed points of nonexpansive mappings and their extensions. The advantage of projection
methods is that strong convergence of iterative sequences can be guaranteed without any
compact assumptions.
In this paper, a new class of new nonlinear mappings is introduced and studied. Based

on a simple hybrid projection algorithm, a theorem of strong convergence for common
fixed points is obtained. The results presented in this paper mainly improve the known
corresponding results announced in the literature sources listed in this work.
The organization of this paper is as follows. In Section , we provide some necessary pre-

liminaries. In Section , the hybrid projection algorithm is proposed and analyzed. With
the help of the generalized projections, theorems of strong convergence are established.
Some subresults of the main results are discussed.

2 Preliminaries
Let H be a real Hilbert space, C a nonempty subset of H , and T : C → C a nonlinear
mapping. The symbol F(T) stands for the fixed point set of T . Recall the following. T is
said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

T is said to be quasi-nonexpansive if F(T) �= ∅ and

‖p – Ty‖ ≤ ‖p – y‖, ∀p ∈ F(T),∀y ∈ C.

T is said to be asymptotically nonexpansive if there exists a sequence {μn} ⊂ [,∞) with
μn →  as n→ ∞ such that

∥∥Tnx – Tny
∥∥ ≤ ( +μn)‖x – y‖, ∀x, y ∈ C,∀n≥ .

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[]. Since , a host of authors have studied the convergence of iterative algorithms for
such a class of mappings.
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T is said to be asymptotically quasi-nonexpansive if F(T) �= ∅ and there exists a sequence
{μn} ⊂ [,∞) with μn →  as n→ ∞ such that

∥∥p – Tny
∥∥ ≤ ( +μn)‖p – y‖, ∀p ∈ F(T),∀y ∈ C,∀n≥ .

T is said to be asymptotically nonexpansive in the intermediate sense if it is continuous
and the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(∥∥Tnx – Tny
∥∥ – ‖x – y‖) ≤ . (.)

If we define

ξn =max
{
, sup

x,y∈C

(∥∥Tnx – Tny
∥∥ – ‖x – y‖)},

then ξn →  as n→ ∞. It follows that (.) is reduced to

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ + ξn, ∀x, y ∈ C,∀n≥ .

The class of mappings which are asymptotically nonexpansive in the intermediate sense
was considered by Bruck, Kuczumow, and Reich []. It is worth mentioning that the class
of mappings which are asymptotically nonexpansive in the intermediate sense may not be
Lipschitz continuous; see [–].
T is said to be asymptotically quasi-nonexpansive in the intermediate sense if F(T) �= ∅

and the following inequality holds:

lim sup
n→∞

sup
p∈F(T),y∈C

(∥∥p – Tny
∥∥ – ‖p – y‖) ≤ . (.)

If we define

ξn =max
{
, sup

p∈F(T),y∈C

(∥∥p – Tny
∥∥ – ‖p – y‖)},

then ξn →  as n→ ∞. It follows that (.) is reduced to

∥∥p – Tny
∥∥ ≤ ‖p – y‖ + ξn, ∀p ∈ F(T),∀y ∈ C,∀n≥ .

T is said to be strictly pseudocontractive if there exists a constant κ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

The class of strictly pseudocontractive mappings was introduced by Browder and
Petryshyn []. It is easy to see that the class of strictly pseudocontractive mappings in-
cludes the class of nonexpansive mappings as a special case. In , Marino and Xu []
proved that the fixed point set of strict pseudocontractions is closed and convex. They also
obtained a strong convergence theorem for fixed points of the class of mappings based on
hybrid projection algorithms; see [] for more details.

http://www.fixedpointtheoryandapplications.com/content/2012/1/143


Qin et al. Fixed Point Theory and Applications 2012, 2012:143 Page 4 of 18
http://www.fixedpointtheoryandapplications.com/content/2012/1/143

T is said to be strictly quasi-pseudocontractive if F(T) �= ∅ and there exists a constant
κ ∈ [, ) such that

‖p – Ty‖ ≤ ‖p – y‖ + κ‖y – Ty‖, ∀p ∈ F(T),∀y ∈ C.

T is said to be an asymptotically strict pseudocontraction if there exist a constant κ ∈
[, ) and a sequence {μn} ⊂ [,∞) with μn →  as n → ∞ such that

∥∥Tnx – Tny
∥∥ ≤ ( +μn)‖x – y‖ + κ

∥∥(
I – Tn)x – (

I – Tn)y∥∥, ∀x, y ∈ C,∀n≥ .

The class of asymptotically strict pseudocontractions was introduced by Qihou [] in
. Kim and Xu [] proved that the fixed point set of asymptotically strict pseudo-
contractions is closed and convex. They also obtained a strong convergence theorem for
fixed points of the class of asymptotically strict pseudocontractions based on projection
algorithms; see [] for more details.
T is said to be an asymptotically strict quasi-pseudocontraction if there exist a constant

κ ∈ [, ), F(T) �= ∅ and a sequence {μn} ⊂ [,∞) with μn →  as n→ ∞ such that

∥∥p – Tny
∥∥ ≤ ( +μn)‖p – y‖ + κ

∥∥y – Tny
∥∥, ∀p ∈ F(T), y ∈ C,∀n≥ .

T is said to be an asymptotically strict pseudocontraction in the intermediate sense if
there exist a constant κ ∈ [, ) and a sequence {μn} ⊂ [,∞) with μn →  as n→ ∞ such
that

lim sup
n→∞

sup
x,y∈C

(∥∥Tnx – Tny
∥∥ – ( +μn)‖x – y‖ – κ

∥∥(
I – Tn)x – (

I – Tn)y∥∥) ≤ . (.)

Put

ξn =max
{
, sup

x,y∈C

(∥∥Tnx – Tny
∥∥ – ( +μn)‖x – y‖ – κ

∥∥(
I – Tn)x – (

I – Tn)y∥∥)}.
It follows that ξn →  as n→ ∞. Then, (.) is reduced to the following:

∥∥Tnx – Tny
∥∥ ≤ ( +μn)‖x – y‖

+ κ
∥∥(
I – Tn)x – (

I – Tn)y∥∥ + ξn, ∀x ∈ F(T),∀y ∈ C,∀n≥ .

The class of mappings was introduced by Sahu, Xu, and Yao []. They proved that the
fixed point set of asymptotically strict pseudocontractions in the intermediate sense is
closed and convex. They also obtained a strong convergence theorem for fixed points of
the class of mappings based on projection algorithms; see [] for more details.
T is said to be an asymptotically strict quasi-pseudocontraction in the intermediate sense

if there exist a constant κ ∈ [, ), F(T) �= ∅ and a sequence {μn} ⊂ [,∞) with μn →  as
n→ ∞ such that

lim sup
n→∞

sup
p∈F(T),y∈C

(∥∥p – Tny
∥∥ – ( +μn)‖p – y‖ – κ

∥∥y – Tny
∥∥) ≤ . (.)
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Put

ξn =max
{
, sup

p∈F(T),y∈C

(∥∥p – Tny
∥∥ – ( +μn)‖p – y‖ – κ

∥∥y – Tny
∥∥)}.

It follows that ξn →  as n→ ∞. Then, (.) is reduced to the following:

∥∥p – Tny
∥∥ ≤ ( +μn)‖p – y‖ + κ

∥∥y – Tny
∥∥ + ξn, ∀p ∈ F(T),∀y ∈ C,∀n≥ .

In what follows, we always assume that E is a Banach space with the dual space E*. The
symbol J stands for the normalized duality mapping from E to E* defined by

Jx =
{
f * ∈ E* :

〈
x, f *

〉
= ‖x‖ = ∥∥f *∥∥}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing of elements between E and E*. It is well
known that if E* is strictly convex, then J is single valued; if E* is uniformly convex, then
J is uniformly continuous on bounded subsets of E; if E* is reflexive and smooth, then J is
single valued and demicontinuous.
It is also well known that if C is a nonempty closed convex subset of a Hilbert space

H and PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This
fact actually characterizes Hilbert spaces, and consequently, it is not available in more
general Banach spaces. In this connection, Alber [] introduced a generalized projection
operator �C in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.
Recall that a Banach space E is said to be strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ E with
‖x‖ = ‖y‖ =  and x �= y. It is said to be uniformly convex if limn→∞ ‖xn – yn‖ =  for any
two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ =  and limn→∞ ‖ xn+yn

 ‖ = . Let
UE = {x ∈ E : ‖x‖ = } be the unit sphere of E. Then the Banach space E is said to be smooth
provided limt→

‖x+ty‖–‖x‖
t exists for all x, y ∈ UE . It is also said to be uniformly smooth if

the limit is attained uniformly for all x, y ∈UE .
Recall that a Banach space E has the Kadec-Klee property if for any sequence {xn} ⊂ E

and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn – x‖ →  as n→ ∞. For more details on
the Kadec-Klee property, the readers can refer to [–] and the references therein. It is
well known that if E is a uniformly convex Banach space, then E satisfies the Kadec-Klee
property.
Let E be a smooth Banach space. Consider the functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. (.)

Notice that, in a Hilbert space H , (.) is reduced to φ(x, y) = ‖x – y‖ for all x, y ∈ H . The
generalized projection �C : E → C is a mapping that assigns to an arbitrary point x ∈ E,
the minimum point of the functional φ(x, y); that is, �Cx = x̄, where x̄ is the solution to
the following minimization problem:

φ(x̄,x) =min
y∈C φ(y,x).
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The existence and uniqueness of the operator �C follow from the properties of the func-
tional φ(x, y) and the strict monotonicity of the mapping J ; see, for example, [–]. In
Hilbert spaces, �C = PC . It is obvious from the definition of the function φ that

(‖y‖ – ‖x‖) ≤ φ(y,x)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E, (.)

and

φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉, ∀x, y, z ∈ E. (.)

Remark . If E is a reflexive, strictly convex, and smooth Banach space, then for all x, y ∈
E, φ(x, y) =  if and only if x = y. It is sufficient to show that if φ(x, y) = , then x = y. From
(.), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖ = ‖Jy‖. From the definition of J ,
we see that Jx = Jy. It follows that x = y; see [, ] for more details.

Next, we recall the following.
() A point p inC is said to be an asymptotic fixed point ofT [] ifC contains a sequence

{xn} which converges weakly to p such that limn→∞ ‖xn –Txn‖ = . The set of asymptotic
fixed points of T will be denoted by F̃(T).
() T is said to be relatively nonexpansive if

F̃(T) = F(T) �= ∅, φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

The asymptotic behavior of relatively nonexpansive mappings was studied in [–].
() T is said to be relatively asymptotically nonexpansive if

F̃(T) = F(T) �= ∅, φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ ,

where {μn} ⊂ [,∞) is a sequence such that μn →  as n→ ∞.

Remark . The class of relatively asymptotically nonexpansive mappings was first con-
sidered in Su and Qin []; see also, Agarwal, Cho, and Qin [], and Qin et al. [].

() T is said to be quasi-φ-nonexpansive if

F(T) �= ∅, φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

() T is said to be asymptotically quasi-φ-nonexpansive if there exists a sequence {μn} ⊂
[,∞) with μn →  as n→ ∞ such that

F(T) �= ∅, φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ .

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings were considered in Qin, Cho, and Kang [], and Zhou,
Gao, and Tan []; see also [–].
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Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are more general than the class of relatively nonexpan-
sive mappings and the class of relatively asymptotically nonexpansive mappings. Quasi-
φ-nonexpansivemappings and asymptotically quasi-φ-nonexpansivemappings do not re-
quire F(T) = F̃(T).

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are generalizations of the class of quasi-nonexpansive
mappings and the class of asymptotically quasi-nonexpansivemappings in Banach spaces.

() T is said to be a strict quasi-φ-pseudocontraction if F(T) �= ∅ and there exists a con-
stant κ ∈ [, ) such that

φ(p,Tx) ≤ φ(p,x) + κφ(x,Tx), ∀x ∈ C,p ∈ F(T).

() T is said to be an asymptotically strict quasi-φ-pseudocontraction if F(T) �= ∅ and
there exists a sequence {μn} ⊂ [,∞) with μn →  as n → ∞ and a constant κ ∈ [, )
such that

φ
(
p,Tnx

) ≤ ( +μn)φ(p,x) + κφ
(
x,Tnx

)
, ∀x ∈ C,∀p ∈ F(T),∀n≥ .

Remark . It is clear that strict quasi-φ-pseudocontractions are asymptotically strict
quasi-φ-pseudocontractions with the sequence μn ≡ . The class of asymptotically strict
quasi-φ-pseudocontractions was first considered in Qin et al. []; see [] for more de-
tails on asymptotically strict quasi-φ-pseudocontractions and see [] for more details on
quasi-strict pseudocontractions and the references therein.

Remark . If κ = , then the class of asymptotically strict quasi-φ-pseudocontractions
is reduced to asymptotically quasi-φ-nonexpansive mappings.

Remark . The class of strict quasi-φ-pseudocontraction and the class of asymptot-
ically strict quasi-φ-pseudocontractions are generalizations of the class of strict quasi-
pseudocontraction and the class of asymptotically strict quasi-pseudocontractions in Ba-
nach spaces.

() The mapping T is said to be asymptotically regular on C if, for any bounded subset
K of C,

lim
n→∞ sup

x∈K

{∥∥Tn+x – Tnx
∥∥}

= .

In this paper, based on the class of asymptotically strict pseudocontractions in the in-
termediate sense which was introduced by Sahu, Xu, and Yao [] in Hilbert spaces, we
introduce and consider the following new nonlinear mapping: asymptotically strict quasi-
φ-pseudocontraction in the intermediate sense.
()T is said to be an asymptotically strict quasi-φ-pseudocontraction in the intermediate

sense if F(T) �= ∅ and there exists a sequence {μn} ⊂ [,∞) with μn →  as n → ∞ and a

http://www.fixedpointtheoryandapplications.com/content/2012/1/143
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constant κ ∈ [, ) such that

lim sup
n→∞

sup
p∈F(T),x∈C

(
φ
(
p,Tnx

)
– ( +μn)φ(p,x) – κφ

(
x,Tnx

)) ≤ . (.)

Put

ξn =max
{
, sup

p∈F(T),x∈C

(
φ
(
p,Tnx

)
– ( +μn)φ(p,x) – κφ

(
x,Tnx

))}
.

It follows that ξn →  as n→ ∞. Then, (.) is reduced to the following:

φ
(
p,Tnx

) ≤ ( +μn)φ(p,x) + κφ
(
x,Tnx

)
+ ξn, ∀p ∈ F(T),∀x ∈ C,∀n≥ .

Remark . The class of asymptotically strict quasi-φ-pseudocontractions in the inter-
mediate sense is a generalization of the class of asymptotically strict quasi-pseudocontrac-
tions in the intermediate sense in the framework of Banach spaces. For examples of the
mapping in R

, we refer the readers to Sahu, Xu, and Yao [].

Remark . If κ =  andμn ≡ , then we callT an asymptotically quasi-φ-nonexpansive
mapping in the intermediate sense.

Remark. The class of asymptotically quasi-φ-nonexpansivemappings in the interme-
diate sense is a generalization of the class of asymptotically quasi-nonexpansive mappings
in the intermediate sense in the framework of Banach spaces.

In order to prove our main results, we also need the following lemmas:

Lemma. [] Let E be a uniformly convex and smooth Banach space. Let {xn} and {yn}
be two sequences in E. If φ(xn, yn) →  and either {xn} or {yn} is bounded, then xn – yn → 
as n→ ∞.

Lemma . [] Let C be a nonempty, closed, and convex subset of a smooth Banach
space E, and x ∈ E. Then x = �Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . [] Let E be a reflexive, strictly convex, and smooth Banach space, C a
nonempty, closed, and convex subset of E, and x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀y ∈ C.

3 Main results
Now, we are in a position to give the main results in this paper.

Theorem. Let E be a uniformly convex and smooth Banach space. Let C be a nonempty
closed and convex subset of E. Let � be an index set and Ti : C → C, where i ∈ �, be an
asymptotically strict quasi-φ-pseudocontraction in the intermediate sense with a sequence

http://www.fixedpointtheoryandapplications.com/content/2012/1/143
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{μ(n,i)} ⊂ [,∞) such that μ(n,i) →  as n → ∞. Assume that
⋂

i∈� F(Ti) �= ∅. For each
i ∈ �, assume that Ti is closed and uniformly asymptotically regular on C, and F(Ti) is
bounded. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C(,i) = C,

C =
⋂

i∈� C(,i),

x = �Cx,

C(n+,i) = {u ∈ C(n,i) :

φ(xn,Tn
i xn)≤ 

–κi
〈xn – u, Jxn – JTn

i xn〉 +μ(n,i)
M(n,i)
–κi

+ ξ(n,i)
–κi

},
Cn+ =

⋂
i∈� C(n+,i),

xn+ = �Cn+x, ∀n≥ ,

where M(n,i) = sup{φ(p,xn) : p ∈ F(Ti)} and

ξ(n,i) =max
{
, sup

p∈F(Ti),x∈C

(
φ
(
p,Tn

i x
)
– ( +μ(n,i))φ(p,x) – κiφ

(
x,Tn

i x
))}

.

Then the sequence {xn} converges strongly to x̄ = �⋂
i∈� F(Ti)x.

Proof First, we show, for every i ∈ �, that F(Ti) is closed and convex. This proves that
�⋂

i∈� F(Ti)x is well defined for all x ∈ E. On the closedness of F(Ti), we can easily draw
the desired conclusion from the closedness of Ti. Now, we are in a position to show the
convexness of F(Ti), ∀i ∈ �. Let p(,i),p(,i) ∈ F(Ti) and pi = tip(,i) + ( – ti)p(,i), where ti ∈
(, ), for every i ∈ �. We see that pi = Tipi. Indeed, we see from the definition of Ti that

φ
(
p(,i),Tn

i pi
) ≤ ( +μ(n,i))φ(p(,i),pi) + κiφ

(
pi,Tn

i pi
)
+ ξ(n,i),

and

φ
(
p(,i),Tn

i pi
) ≤ ( +μ(n,i))φ(p(,i),pi) + κiφ

(
pi,Tn

i pi
)
+ ξ(n,i).

It follows from (.) that

φ
(
pi,Tn

i pi
) ≤ μ(n,i)

 – κi
φ(p(,i),pi) +


 – κi

〈
pi – p(,i), Jpi – JTn

i pi
〉
+

ξ(n,i)

 – κi
, (.)

and

φ
(
pi,Tn

i pi
) ≤ μ(n,i)

 – κi
φ(p(,i),pi) +


 – κi

〈
pi – p(,i), Jpi – JTn

i pi
〉
+

ξ(n,i)

 – κi
. (.)

Multiplying ti and ( – ti) on both sides of (.) and (.) respectively yields that

φ
(
pi,Tn

i pi
) ≤ tiμ(n,i)

 – κi
φ(p(,i),pi) +

( – ti)μ(n,i)

 – κi
φ(p(,i),pi) +

ξ(n,i)

 – κi
.
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It follows that

lim
n→∞φ

(
pi,Tn

i pi
)
= .

In view of Lemma ., we see that Tn
i pi → pi as n → ∞ for each i ∈ �. This implies

TiTn
i pi = Tn+

i pi → pi as n → ∞ for each i ∈ �. From the closedness of Ti, we obtain
pi ∈ F(Ti). This proves that F(Ti) is convex. This completes the proof that F(Ti) is closed
and convex.
Next, we prove that Cn is closed and convex for each n ≥ . It suffices to show that, for

each fixed but arbitrary i ∈ �,C(n,i) is closed and convex for each n ≥ . This can be proved
by induction on n. It is obvious that C(,i) = C is closed and convex. Assume that C(h,i) is
closed and convex for some h≥ . Let a,b ∈ C(h+,i) and c = ta + ( – t)b, where t ∈ (, ). It
follows that

φ
(
xh,Th

i xh
) ≤ 

 – κi

〈
xh – a, Jxh – JTh

i xh
〉
+μ(h,i)

M(h,i)

 – κh
+

ξ(h,i)

 – κi
,

and

φ
(
xh,Th

i xh
) ≤ 

 – κi

〈
xh – b, Jxh – JTh

i xh
〉
+μ(h,i)

M(h,i)

 – κi
+

ξ(h,i)

 – κi
,

where a,b ∈ C(h,i). From the above two inequalities, we find that

φ
(
xh,Th

i xh
) ≤ 

 – κi

〈
xh – c, Jxh – JTh

i xh
〉
+μ(h,i)

M(h,i)

 – κi
+

ξ(h,i)

 – κi
,

where c ∈ C(h,i). It follows that C(h+,i) is closed, and convex. This, in turn, implies that
Cn =

⋂
i∈� C(n,i) is closed and convex.

Now, we are in a position to show, for each i ∈ �, that F(Ti) ⊂ Cn. It is obvious that
F(Ti) ⊂ C = C. Suppose that F(Ti) ⊂ Ch for some h ∈ N. For any z ∈ F(Ti) ⊂ Ch, we see
that

φ
(
z,Th

i xh
) ≤ ( +μ(h,i))φ(z,xh) + κiφ

(
xh,Th

i xh
)
+ ξ(h,i). (.)

On the other hand, we obtain from (.) that

φ
(
z,Th

i xh
)
= φ(z,xh) + φ

(
xh,Th

i xh
)
+ 

〈
z – xh, Jxh – JTh

i xh
〉
. (.)

Combining (.) with (.), we arrive at

φ
(
xh,Th

i xh
) ≤ μ(h,i)

 – κi
φ(z,xh) +


 – κi

〈
xh – z, Jxh – JTh

i xh
〉
+

ξ(h,i)

 – κi

≤ μ(h,i)
M(h,i)

 – κi
+


 – κi

〈
xh – z, Jxh – JTh

i xh
〉
+

ξ(h,i)

 – κi
,

which implies that z ∈ C(h+,i). This proves, for each i ∈ �, that F(Ti) ⊂ Cn. This implies
that

⋂
i∈� F(Ti) ⊂ Cn.

http://www.fixedpointtheoryandapplications.com/content/2012/1/143
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In view of xn = �Cnx, we see from Lemma . that

〈xn – z, Jx – Jxn〉 ≥ , ∀z ∈ Cn. (.)

This implies that

〈xn –w, Jx – Jxn〉 ≥ , ∀w ∈
⋂
i∈�

F(Ti) ⊂ Cn. (.)

It follows from Lemma . that

φ(xn,x) = φ(�Cnx,x)

≤ φ(�⋂
i∈� F(Ti)x,x) – φ(�⋂

i∈� F(Ti)x,xn)

≤ φ(�⋂
i∈� F(Ti)x,x).

This implies that the sequence {φ(xn,x)} is bounded. It follows from (.) that the se-
quence {xn} is also bounded. Since {xn} is bounded and the space is uniformly convex, we
may assume that xn → x̄ weakly. Since Cn is closed and convex, we see that x̄ ∈ Cn. On the
other hand, we see from the weakly lower semicontinuity of the norm

φ(x̄,x) = ‖x̄‖ – 〈x̄, Jx〉 + ‖x‖

≤ lim inf
n→∞

(‖xn‖ – 〈xn, Jx〉 + ‖x‖
)

= lim inf
n→∞ φ(xn,x)

≤ lim sup
n→∞

φ(xn,x)

≤ φ(x̄,x),

that φ(xn,x) → φ(x̄,x) as n → ∞. Hence, ‖xn‖ → ‖x̄‖ as n → ∞. In view of the Kadec-
Klee property of E, we obtain xn → x̄ as n → ∞. On the other hand, we see from xn+ =
�Cn+x ∈ Cn+ ⊂ Cn that

φ
(
xn,Tn

i xn
) ≤ 

 – κi

〈
xn – xn+, Jxn – JTn

i xn
〉
+μ(n,i)

M(n,i)

 – κi
+

ξ(n,i)

 – κi
,

from which it follows that φ(xn,Tn
i xn)→  as n→ ∞. In view of Lemma ., we arrive at

lim
n→∞

∥∥Tn
i xn – xn

∥∥ = . (.)

Note that xn → x̄ as n → ∞. From

∥∥Tn
i xn – x̄

∥∥ ≤ ∥∥Tn
i xn – xn

∥∥ + ‖xn – x̄‖,

we obtain from (.) that

lim
n→∞

∥∥Tn
i xn – x̄

∥∥ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/143
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On the other hand, we have

∥∥Tn+
i xn – x̄

∥∥ ≤ ∥∥Tn+
i xn – Tn

i xn
∥∥ +

∥∥Tn
i xn – x̄

∥∥.
It follows from the uniformly asymptotic regularity of Ti and (.) that

lim
n→∞

∥∥Tn+
i xn – x̄

∥∥ = . (.)

That is, TiTn
i xn → x̄. From the closedness of Ti, we find x̄ = Tix̄ for each i ∈ �. This proves

x̄ ∈ ⋂
i∈� F(Ti).

Finally, we show that x̄ = �⋂
i∈� F(Ti)x which completes the proof. In view of xn = �Cnx

and �⋂
i∈� F(Ti)x ∈ ⋂

i∈� F(Ti) ⊂ Cn, we obtain that

φ(xn,x) ≤ φ(�⋂
i∈� F(Ti)x,x).

This implies that

φ(x̄,x) = lim
n→∞φ(xn,x) ≤ φ(�⋂

i∈� F(Ti)x,x).

This shows x̄ = �⋂
i∈� F(Ti)x. This completes the proof. �

Remark . In view of spaces, algorithms, andmappings, Theorem . is a generalization
of Theorem . of Sahu, Xu, and Yao []; see [] for more details.

Based on Theorem ., we have the following.

Corollary . Let E be a uniformly convex and smooth Banach space. Let C be a nonempty
closed and convex subset of E. Let � be an index set and Ti : C → C, where i ∈ �, be
an asymptotically quasi-φ-nonexpansive mapping in the intermediate sense. Assume that⋂

i∈� F(Ti) �= ∅. For each i ∈ �, assume that Ti is closed and uniformly asymptotically reg-
ular on C. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C(,i) = C,

C =
⋂

i∈� C(,i),

x = �Cx,

C(n+,i) = {u ∈ C(n,i) : φ(xn,Tn
i xn) ≤ 〈xn – u, Jxn – JTn

i xn〉 + ξ(n,i)},
Cn+ =

⋂
i∈� C(n+,i),

xn+ = �Cn+x, ∀n≥ ,

where

ξ(n,i) =max
{
, sup

p∈F(Ti),x∈C

(
φ
(
p,Tn

i x
)
– φ(p,x)

)}
.

Then the sequence {xn} converges strongly to x̄ = �⋂
i∈� F(Ti)x.
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Proof Putting μn,i ≡  and κi ≡ , we can conclude from Theorem . the desired conclu-
sion immediately. �

Remark . In view of algorithms andmappings, Corollary . is a generalization of The-
orem . of Qin, Huang, and Wang []; see [] for more details.

In the framework of Hilbert spaces, we have the following results for an uncountable
family of asymptotically strict quasi-pseudocontractions in the intermediate sense and an
uncountable family of asymptotically quasi-nonexpansive mappings in the intermediate
sense.

Corollary . Let H be a Hilbert space and C a nonempty closed and convex subset of H.
Let � be an index set and Ti : C → C, where i ∈ �, be an asymptotically strict quasi-
pseudocontraction in the intermediate sense with a sequence {μ(n,i)} ⊂ [,∞) such that
μ(n,i) →  as n→ ∞. Assume that

⋂
i∈� F(Ti) �= ∅. For each i ∈ �, assume that Ti is closed

and uniformly asymptotically regular on C, and F(Ti) is bounded. Let {xn} be a sequence
generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈H , chosen arbitrarily,

C(,i) = C,

C =
⋂

i∈� C(,i),

x = PCx,

C(n+,i) = {u ∈ C(n,i) :

‖xn – Tn
i xn‖ ≤ 〈xn – u,xn – Tn

i xn〉 +μ(n,i)M(n,i) + ξ(n,i)},
Cn+ =

⋂
i∈� C(n+,i),

xn+ = PCn+x, ∀n≥ ,

where M(n,i) = sup{φ(p,xn) : p ∈ F(Ti)} and

ξ(n,i) =max
{
, sup

p∈F(Ti),x∈C

(∥∥p – Tn
i x

∥∥ – ( +μ(n,i))‖p – x‖ – κi
∥∥x – Tn

i x
∥∥)}.

Then the sequence {xn} converges strongly to x̄ = P⋂
i∈� F(Ti)x.

Corollary . Let H be a Hilbert space and C a nonempty closed and convex subset
of H. Let � be an index set and Ti : C → C, where i ∈ �, be an asymptotically quasi-
nonexpansive mapping in the intermediate sense. Assume that

⋂
i∈� F(Ti) �= ∅. For each

i ∈ �, assume that Ti is closed and uniformly asymptotically regular on C. Let {xn} be a

http://www.fixedpointtheoryandapplications.com/content/2012/1/143
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sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈H , chosen arbitrarily,

C(,i) = C,

C =
⋂

i∈� C(,i),

x = PCx,

C(n+,i) = {u ∈ C(n,i) : ‖xn – Tn
i xn‖ ≤ 〈xn – u,xn – Tn

i xn〉 + ξ(n,i)},
Cn+ =

⋂
i∈� C(n+,i),

xn+ = PCn+x, ∀n≥ ,

where

ξ(n,i) =max
{
, sup

p∈F(Ti),x∈C

(∥∥p – Tn
i x

∥∥ – ‖p – x‖)}.
Then the sequence {xn} converges strongly to x̄ = P⋂

i∈� F(Ti)x.

4 Applications
In this section, we considerminimizers of proper, lower semicontinuous, and convex func-
tionals, and solutions of variational inequalities.
Let E be a Banach space with the dual E*. For a proper lower semicontinuous convex

function f : E → (–∞,∞], the subdifferential mapping ∂f ⊂ E × E* of f is defined by

∂f (x) =
{
x* ∈ E* : f (x) +

〈
y – x,x*

〉 ≤ f (y),∀y ∈ E
}
, ∀x ∈ E.

Rockafellar [] proved that ∂f is a maximal monotone operator. It is easy to verify that
 ∈ ∂f (v) if and only if f (v) =minx∈E f (x).

Theorem. Let E be a uniformly convex and smooth Banach space. Let C be a nonempty,
closed, and convex subset of E. Let � be an index set, and fi : C → C be a proper, lower
semicontinuous, and convex functionals, for every i ∈ �. Assume that

⋂
i∈�(∂fi)–() is

nonempty. Let {xn} be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C(,i) = C,

C =
⋂

i∈� C(,i),

x = �Cx,

y(n,i) = argminz∈E{fi(z) + ‖z‖
ri

+ 〈z,Jxn〉
ri

},
C(n+,i) = {u ∈ C(n,i) : φ(xn, y(n,i)) ≤ 〈xn – u, Jxn – Jy(n,i)〉},
Cn+ =

⋂
i∈� C(n+,i),

xn+ = �Cn+x, ∀n≥ ,

where ri > , ∀i ∈ �. Then {xn} converges strongly to �⋂
i∈�(∂fi)–()x, where �⋂

i∈�(∂fi)–()

stands for the generalized projection from E onto
⋂

i∈�(∂fi)–().
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Proof For each ri > , and x ∈ E, we see that there exists a unique xri ∈ D(∂fi) such that
Jx ∈ Jxri + ri∂fi(xri ), where xri = (J + ri∂fi)–Jx. Notice that

y(n,i) = argmin
z∈E

{
fi(z) +

‖z‖
ri

+
〈z, Jxn〉

ri

}
,

is equivalent to

 ∈ ∂

(
fi +

‖ · ‖
ri

+
Jxn
ri

)
y(n,i) = ∂fi(y(n,i)) +

Jy(n,i)
ri

+
Jxn
ri

.

This shows that yn,i = (J + ri∂fi)–Jxn. In view of Example . in Qin, Cho, and Kang [],
we find that (J + ri∂fi)–J is closed quasi-φ-nonexpansive with F((J + ri∂fi)–J) = (∂fi)–().
Notice that every quasi-φ-nonexpansive mapping is an asymptotically strict quasi-φ-
pseudocontraction in the intermediate sense. Following the proof of Theorem ., we can
immediately conclude the desired conclusion. This completes the proof. �

Let C be a nonempty, closed, and convex subset of a Banach space E. Let A : C → E*

be a single valued monotone operator which is hemicontinuous; that is, continuous along
each line segment in C with respect to the weak* topology of E*. Consider the following
variational inequality problem of finding a point x ∈ C such that

〈y – x,Ax〉 ≥ , ∀y ∈ C.

In this chapter, we use VI(C,A) to denote the solution set of the variational inequality
involving A. The symbol NC(x) stands for the normal cone for C at a point x ∈ C; that is,

NC(x) =
{
x* ∈ E* :

〈
y – x,x*

〉 ≤ ,∀y ∈ C
}
.

Theorem. Let E be a uniformly convex and smooth Banach space. Let C be a nonempty,
closed, and convex subset of E. Let � be an index set, and Ai : C → E* a single valued,
monotone, and hemicontinuous operator. Assume that

⋂
i∈� VI(C,Ai) is not empty. Let {xn}

be a sequence generated in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C(,i) = C,

C =
⋂

i∈� C(,i),

x = �Cx,

y(n,i) = VI(C,Ai + 
ri
(J – Jxn)),

C(n+,i) = {u ∈ C(n,i) : φ(xn, y(n,i)) ≤ 〈xn – u, Jxn – Jy(n,i)〉},
Cn+ =

⋂
i∈� C(n+,i),

xn+ = �Cn+x, ∀n≥ ,

where ri > , ∀i ∈ �. Then {xn} converges strongly to �⋂
i∈� VI(C,Ai)x, where �⋂

i∈� VI(C,Ai)

stands for the generalized projection from E onto
⋂

i∈� VI(C,Ai).
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Proof Define a mapping Ti ⊂ E × E* by

Tix =

⎧⎨
⎩Aix +NCx, x ∈ C,

∅, x /∈ C.

By Rockafellar [], we know that Ti is maximal monotone, and T–
i () = VI(C,Ai). For

each ri > , and x ∈ E, we see that there exists a unique xri ∈ D(Ti) such that Jx ∈ Jxri +
riTi(xri ), where xri = (J + riTi)–Jx. Notice that

y(n,i) = VI
(
C,Ai +


ri
(J – Jxn)

)
,

which is equivalent to

〈
y – yn,i,Aiy(n,i) +


ri
(Jy(n,i) – Jxn)

〉
≥ , ∀y ∈ C,

that is,

–Aiy(n,i) +

ri
(Jxn – Jy(n,i)) ∈NC(y(n,i)).

This implies that y(n,i) = (J + riTi)–Jxn. In view of Example . in Qin, Cho, and Kang [],
we find that (J + ri∂fi)–J is closed quasi-φ-nonexpansive with F((J + ri∂fi)–J) = T–

i ().
Notice that every quasi-φ-nonexpansive mapping is an asymptotically strict quasi-φ-
pseudocontraction in the intermediate sense. Following the proof of Theorem ., we can
immediately conclude the desired conclusion. �
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