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Abstract
In this paper, we prove some results of a common fixed point for two self-mappings
on partial metric spaces. Our results generalize some interesting results of Ilić et al.
(Appl. Math. Lett. 24:1326-1330, 2011). We conclude with a result of the existence of a
fixed point for set-valued mappings in the context of 0-complete partial metric
spaces.
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1 Introduction
In the mathematical field of domain theory, attempts were made to equip semantics do-
main with a notion of distance. In particular, Matthews [] introduced the notion of a
partial metric space as a part of the study of denotational semantics of data for networks,
showing that the contraction mapping principle can be generalized to the partial met-
ric context for applications in program verification. Moreover, the existence of several
connections between partial metrics and topological aspects of domain theory have been
lately pointed out by other authors such as O’Neill [], Bukatin and Scott [], Bukatin and
Shorina [], Romaguera and Schellekens [] and others.
After the definition of the concept of a partial metric space, Matthews [] obtained a Ba-

nach type fixed point theorem on complete partial metric spaces. This result was recently
generalized by Ilić et al. []. In this paper, we prove some results of a common fixed point
for two self-mappings on partial metric spaces. Our results generalize some interesting
results of Ilić et al. We conclude this paper with a new existence result of a fixed point for
set-valued mappings in a partial metric space.

2 Preliminaries
First, we recall some definitions and some properties of partial metric spaces that can be
found in [, –]. A partial metric on a nonempty set X is a function p : X×X → [, +∞[
such that for all x, y, z ∈ X,

(p) x = y ⇔ p(x,x) = p(x, y) = p(y, y),
(p) p(x,x)≤ p(x, y),
(p) p(x, y) = p(y,x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).
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It is clear that (p) implies the triangular inequality. A partial metric space is a pair (X,p)
such thatX is a nonempty set and p is a partialmetric onX. It is clear that if p(x, y) = , then
from (p) and (p), it follows that x = y. But if x = y, p(x, y) may not be . A basic example of
a partial metric space is the pair ([,+∞[,p), where p(x, y) =max{x, y} for all x, y ∈ [, +∞[.
Other examples of partial metric spaces, which are interesting from a computational point
of view, can be found in [].
Each partial metric p on X generates a T topology τp on X which has as a base the

family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where

Bp(x, ε) =
{
y ∈ X : p(x, y) < p(x,x) + ε

}

for all x ∈ X and ε > .
If p is a partial metric on X, then the function ps : X ×X → [, +∞[ given by

ps(x, y) = p(x, y) – p(x,x) – p(y, y)

is a metric on X.

Definition  Let (X,p) be a partial metric space.
(i) A sequence {xn} in (X,p) converges to a point x ∈ X if and only if

p(x,x) = limn→+∞ p(x,xn).
(ii) A sequence {xn} in (X,p) is called a Cauchy sequence if there exists (and is finite)

limn,m→+∞ p(xn,xm).
(iii) A partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in

X converges, with respect to τp, to a point x ∈ X such that
p(x,x) = limn,m→+∞ p(xn,xm).

(iv) A sequence {xn} in (X,p) is called -Cauchy if limn,m→+∞ p(xn,xm) = .

We say that (X,p) is -complete if every -Cauchy sequence inX converges, with respect
to τp, to a point x ∈ X such that p(x,x) = .
On the other hand, the partial metric space (Q ∩ [, +∞[,p), where Q denotes the set

of rational numbers and the partial metric p is given by p(x, y) = max{x, y}, provides an
example of a -complete partial metric space which is not complete.
It is easy to see that every closed subset of a complete partial metric space is complete.

Lemma  ([]) Let (X,p) be a partial metric space and {xn} ⊂ X. If xn → x ∈ X and
p(x,x) = , then limn→+∞ p(xn, z) = p(x, z) for all z ∈ X.

Define p(x,A) = inf{p(x,a) : a ∈ A}. Then a ∈ A⇔ p(a,A) = p(a,a), where A denotes the
closure of A (for details see [], Lemma ).
Let X be a non-empty set and T , f : X → X. The mappings T , f are said to be weakly

compatible if they commute at their coincidence point (i.e., Tfx = fTx whenever Tx = fx).
A point y ∈ X is called a point of coincidence of T and f if there exists a point x ∈ X such
that y = Tx = fx.

Lemma  (Proposition . of []) Let X be a non-empty set and the mappings T, f : X →
X have a unique point of coincidence v in X. If T and f are weakly compatible, then v is a
unique common fixed point of T and f .
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3 Main results
Let (X,p) be a partial metric space and T , f : X → X be such that TX ⊂ fX. For every
x ∈ X, we consider a sequence {xn} ⊂ X defined by fxn = Txn– for all n ∈ N and we say
that {Txn} is a T-f -sequence of the initial point x (see []). Set

ρf := inf
{
p(fx, fx) : x ∈ X

}
and Xf =

{
x ∈ X : p(fx, fx) = ρf

}
.

It is not always Xf 	= ∅. This is true if and only if ρf =min{p(fx, fx) : x ∈ X}. If X = [,+∞[,
p(x, y) =max{x, y}, fx = x, x 	=  and f  > , then ρf =  and Xf = ∅.
Let (X,p) be a partial metric space. We denote with F the family of pairs (T , f ) such

that:
(i) T and f are self-mappings on X with TX ⊂ fX ;
(ii) for each x, y ∈ X the following condition holds:

p(Tx,Ty) ≤ max
{
kp(fx, fy),p(fx, fx),p(fy, fy)

}
, (.)

where k ∈ [, [.

Remark  If (T , f ) ∈F , then for each x ∈ X, we have

ρf ≤ p(Tx,Tx) ≤ p(fx, fx).

Indeed, because TX ⊂ fX, we have that {p(Tx,Tx) : x ∈ X} = B ⊂ A = {p(fx, fx) : x ∈ X}
from which follows infA≤ infB, that is, ρf ≤ ρT ≤ p(Tx,Tx) ≤ p(fx, fx).

Lemma  Let (X,p) be a partial metric space with (T , f ) ∈ F and Xf 	= ∅. If u, v ∈ Xf are
coincidence points for T and f , then fu = fv.

Proof From

p(fu, fv) = p(Tu,Tv) ≤ max
{
kp(fu, fv),p(fu, fu),p(fv, fv)

}

it follows that either ( – k)p(fu, fv) =  or p(fu, fv) ≤ p(fu, fu) = p(fv, fv) = ρf . Now, from
(p), it follows p(fu, fv) = ρf =min{p(fx, fx) : x ∈ X}, that is, fu = fv. �

Lemma  Let (X,p) be a partial metric space and (T , f ) ∈F . If fX is a complete subspace
of X, then for each s ∈N, there is x ∈ X such that

p(fx, fx) = p(fx,Tx) < ρf +

s
.

Proof We fix x ∈ X and prove that each T-f -sequence {Txn} of the initial point x is a
Cauchy sequence in TX.
From Remark , we deduce that p(Txn+,Txn+) ≤ p(fxn+, fxn+) = p(Txn,Txn). Hence,

{p(Txn,Txn)} is a nonincreasing sequence. Set

r := inf
{
p(Txn,Txn)

}
= lim

n→+∞p(Txn,Txn) ≤ p(fx, fx)

http://www.fixedpointtheoryandapplications.com/content/2012/1/140
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and

M :=


 – k
p(fx,Tx) + p(fx, fx).

We prove that

p(fx,Txn) ≤ M, for all n ∈N. (.)

Obviously, (.) is true for n = , . Assume that (.) is true for some n ≥ , then

p(fx,Txn+) ≤ p(fx,Tx) + p(Tx,Txn+)

≤ p(fx,Tx) +max
{
kp(fx,Txn),p(fx, fx)

}

≤ p(fx,Tx) +
k

 – k
p(fx,Tx) + p(fx, fx)

=M.

We fix ε >  and choose n ∈ N such that p(Txn,Txn) < r + ε for all n ≥ n and knM <
r + ε. For eachm ≥ n≥ n, we have

p(Txn,Txm) ≤ max
{
kp(Txn–,Txm–),p(Txn–,Txn–)

}
≤ max

{
kp(Txn–,Txm–),p(Txn–,Txn–)

}
. . .

≤ max
{
knp(Txn–n ,Txm–n ),p(Txn–n ,Txn–n )

}
≤ max

{
kn

[
p(Txn–n , fx) + p(fx,Txm–n )

]
,

p(Txn–n ,Txn–n )
}

< r + ε.

Now, from

r ≤ p(Txn,Txn) ≤ p(Txn,Txm) < r + ε

for eachm ≥ n≥ n, we obtain that

lim
n,m→+∞p(Txn,Txm) = r = lim

n,m→+∞p(fxn, fxm).

Since fX is a complete subspace of X, there is z ∈ fX such that

p(z, z) = lim
n→+∞p(z,Txn) = lim

n,m→+∞p(Txn,Txm) = r.

Let x ∈ X such that fx = z. We show that p(fx, fx) = p(fx,Tx) = r.
Now, from (.), we deduce that there exist I, I, I ⊂N such that
(i) p(Txn,Tx) ≤ kp(fxn, fx) for all n ∈ I;
(ii) p(Txn,Tx) ≤ p(fxn, fxn) for all n ∈ I;

http://www.fixedpointtheoryandapplications.com/content/2012/1/140
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(iii) p(Txn,Tx) ≤ p(fx, fx) for all n ∈ I.
Clearly, at least one of the sets I, I, I is infinite.
Then, from

p(fx,Tx) ≤ p(fx,Txn) + p(Txn,Tx) – p(Txn,Txn),

if Ii (i = , , ) is infinite, taking the limit as n → +∞ and n ∈ Ii, it follows that p(fx,Tx) ≤
p(fx, fx) and so p(fx,Tx) = p(fx, fx).
Now, if we choose x ∈ X such that p(fx, fx) < ρf + /s, we deduce that p(fx, fx) ≤

p(fx, fx) < ρf + /s. If x ∈ Xf , also x ∈ Xf . �

Lemma  Let (X,p) be a partial metric space and (T , f ) ∈ F . If fX is a complete subspace
of X, then there exists u ∈ Xf such that fu = Tu.

Proof By Lemma , there exists a sequence {xn} ⊂ X such that

p(fxn, fxn) = p(fxn,Txn) < ρf +

n
, (.)

for all n ∈N. First, we prove that

lim
n,m→+∞p(fxn, fxm) = ρf . (.)

For ε >  fixed, we choose n > /ε( – k). From Remark , it follows

ρf ≤ p(Txn,Txn) ≤ p(fxn, fxn) = p(fxn,Txn) < ρf +

n
< ρf +

ε


( – k),

which implies

p(fxn,Txn) – p(Txn,Txn) <
ε


( – k).

Now, for all n,m > /ε( – k), we have

p(fxn, fxm) ≤ p(fxn,Txn) + p(Txn,Txm) + p(Txm, fxm)

– p(Txn,Txn) – p(Txm,Txm)

= p(fxn,Txn) – p(Txn,Txn) + p(Txm, fxm)

– p(Txm,Txm) + p(Txn,Txm)

<


ε( – k) +max

{
kp(fxn, fxm),p(fxn, fxn),p(fxm, fxm)

}
.

If max{kp(fxn, fxm),p(fxn, fxn),p(fxm, fxm)} = kp(fxn, fxm), then

p(fxn, fxm) <


ε( – k) + kp(fxn, fxm),

and so p(fxn, fxm) < 
ε. This implies that ρf ≤ limn,m→+∞ p(fxn, fxm) = .
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If

max
{
kp(fxn, fxm),p(fxn, fxn),p(fxm, fxm)

}

=max
{
p(fxn, fxn),p(fxm, fxm)

}
< ρf +



ε( – k),

then

ρf ≤ p(fxn, fxm) <


ε( – k) + ρf +



ε( – k).

This implies that

lim
n,m→+∞p(fxn, fxm) = ρf .

In both cases, (.) holds. Since fX is a complete subspace of X, there is z ∈ fX such that

p(z, z) = lim
n→+∞p(z, fxn) = lim

n,m→+∞p(fxn, fxm) = ρf .

Let u ∈ X such that fu = z. From p(fu, fu) = p(z, z) it follows that u ∈ Xf . We prove that
p(fu, fu) = p(fu,Tu). As p(fxn, fxn) = p(fxn,Txn) and ρf ≤ p(Txn,Txn) for all n ∈ N, we get
that

p(fu,Tu) ≤ p(fu, fxn) + p(fxn,Txn) + p(Txn,Tu)

– p(fxn, fxn) – p(Txn,Txn)

= p(fu, fxn) + p(Txn,Tu) – p(Txn,Txn)

≤ p(fu, fxn) – ρf + p(Txn,Tu)

≤ p(fu, fxn) – ρf +max
{
kp(fxn, fu),p(fxn, fxn),p(fu, fu)

}
.

As n→ +∞, we obtain p(fu,Tu) = p(fu, fu) = p(Tu,Tu) = ρf and so fu = Tu. �

The following theorem of a common fixed point in a partial metric space is one of our
main results.

Theorem Let (X,p) be a partialmetric space with (T , f ) ∈F . If fX is a complete subspace
of X, then T and f have a unique point of coincidence z = fu = Tu with u ∈ Xf . Moreover, if
T and f are weakly compatible and fXf ⊂ Xf , then T and f have a unique common fixed
point z ∈ Xf .

Proof By Lemma  and Lemma , there exists u ∈ Xf such that z = fu = Tu is a unique
point of coincidence for T and f with p(z, z) = ρf . If T and f are weakly compatible and
fXf ⊂ Xf , by Lemma , from Tz = Tfu = fTu = fz ∈ Xf , that is p(fz, fz) = ρf , it follows that
fz = fu. By Lemma , z is a unique common fixed point for T and f belonging to Xf . �

Theorem  Let (X,p) be a partial metric space and T , f : X → X. Suppose that the follow-
ing condition holds:

p(Tx,Ty) ≤ max

{
kp(fx, fy),

p(fx, fx) + p(fy, fy)


}
, (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/140
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for each x, y ∈ X, where k ∈ [, [. If fX is a complete subspace of X, and T and f are weakly
compatible, then T and f have a unique common fixed point z ∈ X.

Proof Clearly, (T , f ) ∈F , by Lemma , there exists u ∈ Xf such that z = fu = Tu. If v ∈ X is
such that fv = Tv and p(fv, fv) = p(fu, fu), then fu = fv by Lemma . If p(fv, fv) > p(fu, fu),
from (.) we obtain either p(fu, fv) = p(Tu,Tv) ≤ kp(fu, fv) or p(fu, fv) = p(Tu,Tv) <
p(fv, fv). In each of these cases, we deduce that fu = fv, and so T and f have a unique point
of coincidence. By Lemma , since T and f are weakly compatible, T and f have a unique
common fixed point z ∈ X. �

If in Theorems  and  we choose f (x) = x, we obtain Theorems . and . of Ilić et al.

Example  Let X = [, ] and p : X ×X → R be defined by p(x, y) =max{x, y}. Then (X,p)
is a complete partial metric space. Let T , f : X → X be defined by

Tx =

⎧⎨
⎩
x –  if x ∈ [, ],

 if x ∈], ]

and

fx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 if x = ,

 if x ∈], /[,
x if x ∈ [/, ],

 if x ∈], ],

respectively.
In order to show that T and f satisfy the contractive condition (.) in Theorem  with

k = /, we consider the following cases.
Case . x = y = . We have

p(T,T) =  =
p(f , f ) + p(f , f )



= max

{
kp(f , f ),

p(f , f ) + p(f , f )


}
.

Case . x, y ∈ [, /[ and x < y. We have

p(Tx,Ty) = y –  ≤ 

 ≤ max

{
kp(fx, fy),

p(fx, fx) + p(fy, fy)


}
.

Case . x ∈ [, ], y ∈ [/, ] and x < y. We have

p(Tx,Ty) = y –  ≤ 

y≤ max

{
kp(fx, fy),

p(fx, fx) + p(fy, fy)


}
.

Case . x ∈ [, ] and y ∈], ]. We have

p(Tx,Ty) =max{, x – } ≤ 

≤ max

{
kp(fx, fy),

p(fx, fx) + p(fy, fy)


}
.
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Case . x, y ∈ ], ]. We have

p(Tx,Ty) = ≤ 

 ≤ max

{
kp(fx, fy),

p(fx, fx) + p(fy, fy)


}
.

Since fX is a complete subspace of X, and T and f are weakly compatible, by Theorem ,
T and f have a unique common fixed point z = .

4 Fixed points for set-valuedmappings
Investigations of the existence of fixed points of set-valued contractions in metric spaces
were initiated by Nadler []. The following theorem is motivated by Nadler’s results and
also generalizes the well-known Banach contraction theorem in several ways.
Denote with � the family of nondecreasing functions ψ : [, +∞[→ [, +∞[ such that∑+∞
n= ψn(t) < +∞ for each t > , where ψn is the nth iterate of ψ .

Lemma  For every function ψ ∈ � , the following holds: ψ(t) < t for each t > .

Definition  Let (X,p) be a partial metric space and let T : X → C(X), where C(X) is the
family of nonempty closed subsets of X. T isψ-contractive if there existsψ ∈ � such that,
for any x,x ∈ X and y ∈ Tx, there is y ∈ Tx with

p(y, y) ≤ ψ
(
p(x,x)

)
.

Theorem  Let (X,p) be a -complete partial metric space and let T : X → C(X) be a ψ-
contractive mapping. Then there exists z ∈ X such that z ∈ Tz, i.e., z is a fixed point of T,
and p(z, z) = .

Proof Fix x ∈ X and let x ∈ Tx. If p(x,x) = , then x = x and x is a fixed point of T .
Assume, hence, p(x,x) > ; then there exists x ∈ Tx such that p(x,x) ≤ ψ(p(x,x)).
Proceeding in this way, we have a sequence {xn} in X such that xn+ ∈ Txn and p(xn,xn+) ≤
ψ(p(xn–,xn)) for every n ∈N. Consequently,

p(xn,xn+) ≤ ψn(p(x,x)), for all n ∈N.

Since, the series
∑+∞

n= ψn(p(x,x)) converges, we get that
∑+∞

n= p(xn,xn+) converges too.
It follows, form > n,

p(xm,xn) ≤
m–∑
k=n

p(xk ,xk+) ≤
+∞∑
k=n

p(xk ,xk+) → , as n→ +∞. (.)

Now, from (.), we deduce that limn,m→+∞ p(xn,xm) =  and hence {xn} is a -Cauchy
sequence in X. Since X is a -complete space, there exists z ∈ X such that xn → z and
p(z, z) = . For xn ∈ Txn– there is yn ∈ Tz such that p(xn, yn) ≤ ψ(p(xn–, z)). From

p(z,Tz) ≤ p(z, yn)≤ p(z,xn) + p(xn, yn)

≤ p(z,xn) +ψ
(
p(xn–, z)

)
≤ p(z,xn) + p(xn–, z)

as n→ +∞, we obtain that p(z,Tz) ≤ ; since Tz is closed, we have z ∈ Tz. �

http://www.fixedpointtheoryandapplications.com/content/2012/1/140
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Example  Let X = Q ∩ [, +∞[ and p : X × X → R be defined by p(x, y) = 
 |x – y| +


 max{x, y}. Then (X,p) is a -complete partial metric space. Let T : X → C(X) be defined
by

Tx =Q∩
[
x

,
x


]
.

Note that Tx is closed and bounded for all x ∈ X under the given partial metric p.
We show that T is a ψ-contractive mapping with respect to ψ : [, +∞[→ [, +∞[ de-

fined by ψ(t) = t/ for all t ∈ [, +∞[. In fact, for all x,x ∈ X and y ∈ Tx, if y = kx/,
k ∈Q∩ [/, ], then we choose y = kx/. It implies that

p(y, y) = k
[


|x – x| + 


|x – x|

]
= kψ

(
p(x,x)

) ≤ ψ
(
p(x,x)

)
.

By Theorem , T has a fixed point z = .
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