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Abstract

We establish coincidence and fixed point theorems for mappings satisfying
generalized weakly contractive conditions on the setting of ordered gauge spaces.
Presented theorems extend and generalize many existing studies in the literature.
We apply our obtained results to the study of existence and uniqueness of solutions
to some classes of nonlinear integral equations.

Keywords: Gauge spaceordered setcoincidence pointfixed pointaltering distance
function

1 Introduction
Fixed point theory is considered as one of the most important tools of nonlinear analy-

sis that widely applied to optimization, computational algorithms, physics, variational

inequalities, ordinary differential equations, integral equations, matrix equations and so

on (see, for example, [1-6]). The Banach contraction principle [7] is a fundamental

result in fixed point theory. It consists of the following theorem.

Theorem 1.1 (Banach [7]) Let (X, d) be a complete metric space and let T : X ® X

be a contraction, i.e., there exists k Î [0, 1) such that d(Tx, Ty) ≤ kd(x, y) for all x, y Î
X. Then T has a unique fixed point, that is, there exists a unique x* Î X such that

Tx* = x*. Moreover, for any x Î X, the sequence {Tnx} converges to x*.

Generalization of the above principle has been a heavily investigated branch of

research (see, for example, [8-10]). In particular, there has been a number of studies

involving altering distance functions. There are control functions which alter the dis-

tance between two points in a metric space. Such functions were introduced by Khan

et al. [11], where they present some fixed point theorems with the help of such

functions.

Definition 1.1 An altering distance function is a function ψ : [0, ∞) ® [0, ∞) which

satisfies

(a) ψ is continuous and nondecreasing;

(b) ψ(t) = 0 if and only if t = 0.

In [11], Khan et al. proved the following result.

Theorem 1.2 (Khan et al. [11]) Let (X, d) be a complete metric space, ψ be an alter-

ing distance function, c Î [0, 1) and T : X ® X satisfying

ψ(d(Tx,Ty)) ≤ cψ(d(x, y)),
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for all x, y Î X. Then T has an unique fixed point.

Altering distance has been used in metric fixed point theory in many studies (see, for

example, [2,3,12-19]). On the other hand, Alber and Guerre-Delabriere in [12] intro-

duced a new class of contractive mappings on closed convex sets of Hilbert spaces,

called weakly contractive maps.

Definition 1.2 (Alber and Guerre-Delabriere [12]) Let (E, ∥ · ∥) be a Banach space

and C ⊆ E a closed convex set. A map T : C ® C is called weakly contractive if there

exists an altering distance function ψ : [0, ∞) ® [0, ∞) with limt®∞ ψ(t) = ∞ such that
∥∥Tx − Ty

∥∥ ≤ ∥∥x − y
∥∥ − ψ(

∥∥x − y
∥∥),

for all x, y Î X.

In [12], Alber and Guerre-Delabriere proved the following result.

Theorem 1.3 (Alber and Guerre-Delabriere [12]) Let H be a Hilbert space and C ⊆
H a closed convex set. If T : C ® C is a weakly contractive map, then it has a unique

fixed point x* Î C.

Rhoades [18] proved that the previous result is also valid in complete metric spaces

without the condition limt®∞ ψ(t) = ∞.

Theorem 1.4 (Rhoades [18]) Let (X, d) be a complete metric space, ψ be an altering

distance function and T : X ® X satisfying

d(Tx,Ty) ≤ d(x, y) − ψ(d(x, y))

for all x, y Î X. Then T has a unique fixed point.

Dutta and Choudhury [20] present a generalization of Theorems 1.2 and 1.4 proving

the following result.

Theorem 1.5 (Dutta and Choudhury [20]) Let (X, d) be a complete metric space

and T : X ® X be a mapping satisfying

ψ(d(Tx,Ty)) ≤ ψ(d(x, y)) − ϕ(d(x, y)),

for all x, y Î X, where ψ and � are altering distance functions. Then T has an unique

fixed point.

An extension of Theorem 1.5 was considered by Dorić [13].

Theorem 1.6 (Dorić [13]) Let (X, d) be a complete metric space and T : X ® X be a

mapping satisfying

ψ(d(Tx,Ty)) ≤ ψ(M(x, y)) − ϕ(M(x, y)),

for all x, y Î X, where

M(x, y) = max
{
d(x, y), d(Tx, x), d(Ty, y),

1
2
[d(y,Tx) + d(x,Ty)]

}
,

ψ is an altering distance function and � is a lower semi-continuous function with

�(t) = 0 if and only if t = 0. Then T has a unique fixed point.

Very recently, Eslamian and Abkar [14] (see also, Choudhury and Kundu [2]) intro-

duced the concept of (ψ, a, b)-weak contraction and established the following result.

Theorem 1.7 (Eslamian and Abkar [14]) Let (X, d) be a complete metric space and

T : X ® X be a mapping satisfying
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ψ(d(Tx,Ty)) ≤ α(d(x, y)) − β(d(x, y)), (1)

for all x, y Î X, where ψ, a, b : [0, ∞) ® [0, ∞) are such that ψ is an altering dis-

tance function, a is continuous, b is lower semi-continuous,

α(0) = β(0) = 0 and ψ(t) − α(t) + β(t) > 0 for all t > 0.

Then T has a unique fixed point.

Note that Theorem 1.7 seems to be new and original. Unfortunately, it is not the

case. Indeed, the contractive condition (1) can be written as follows:

ψ(d(Tx,Ty)) ≤ ψ(d(x, y)) − ϕ(d(x, y)),

where � : [0, ∞) ® [0, ∞) is given by

ϕ(t) = ψ(t) − α(t) + β(t), t ≥ 0.

Clearly, from the hypotheses of Theorem 1.7, the function � is lower semi-continu-

ous with �(t) = 0 if and only if t = 0. So Theorem 1.7 is similar to Theorem 1.6 of

Dorić [13].

On the other hand, Ran and Reurings [6] proved the following Banach-Caccioppoli

type principle in ordered metric spaces.

Theorem 1.8 (Ran and Reurings [6]) Let (X, ≼) be a partially ordered set such that

every pair x, y Î X has a lower and an upper bound. Let d be a metric on X such that

the metric space (X, d) is complete. Let f : X ® X be a continuous and monotone (i.e.,

either decreasing or increasing with respect to ≼) operator. Suppose that the following

two assertions hold:

1. there exists k Î [0, 1) such that d(fx, fy) ≤ kd(x, y) for each x, y Î X with x ≼ y;

2. there exists x0 Î X such that x0 ≼ f x0 or x0 ≽ f x0.

Then f has an unique fixed point x* Î X.

Nieto and Rodŕiguez-López [4] extended the result of Ran and Reurings for non-con-

tinuous mappings.

Theorem 1.9 (Nieto and Rodŕiguez-López [4]) Let (X, ≼) be a partially ordered set

and suppose that there exists a metric d in X such that the metric space (X, d) is com-

plete. Let T : X ® X be a nondecreasing mapping. Suppose that the following assertions

hold:

1. there exists k Î [0, 1) such that d(Tx, Ty) ≤ kd(x, y) for all x, y Î X with x ≼ y;

2. there exists x0 Î X such that x0 ≼ Tx0;

3. if {xn} is a nondecreasing sequence in X such that xn ® x Î X as n ® ∞, then xn ≼ x

for all n.

Then T has a fixed point.

Since then, several authors considered the problem of existence (and uniqueness) of

a fixed point for contraction type operators on partially ordered metric spaces (see, for

example, [2,3,5,15-17,19,21-38]).

In [3], Harjani and Sadarangani extended Theorem 1.5 of Dutta and Choudhury [20]

to the setting of ordered metric spaces.

Theorem 1.10 (Harjani and Sadarangani [3]) Let (X, ≼) be a partially ordered set

and suppose that there exists a metric d in X such that (X, d) is a complete metric

space. Let T : X ® X be a nondecreasing mapping such that
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ψ(d(Tx,Ty)) ≤ ψ(d(x, y)) − ϕ(d(x, y)),

for all x, y Î X with x ≼ y, where ψ and � are altering distance functions. Also sup-

pose either

(I) T is continuous or

(II) If {xn} ⊂ X is a nondecreasing sequence with xn ® x Î X, then xn ≼ x for all n.

If there exists x0 Î X with x0 ≼ Tx0, then T has a fixed point.

In [16], Jachymski established a nice geometric lemma and proved that Theorem 1.10

of Harjani and Sadarangani can be deuced from an earlier result of O’Regan and Petru-

şel [33].
In this article, we present new coincidence and fixed point theorems in the setting of

ordered gauge spaces for mappings satisfying generalized weak contractions involving

two families of functions. Presented theorems extend and generalize many existing

results in the literature, in particular Harjani and Sadarangani [3, Theorem 1.10], Nieto

and Rodŕiguez-López [4, Theorem 1.9], Ran and Reurings [6, Theorem 1.8], and Dorić
[13, Theorem 1.6]. As an application, existence results for some integral equations on

the positive real axis are given.

Now, we shall recall some preliminaries on ordered gauge spaces and introduce some

definitions.

2 Preliminaries
Definition 2.1 Let X be a nonempty set. A map d : X × X ® [0, ∞) is called a pseudo-

metric in X whenever

(i) d(x, x) = 0 for all x Î X;

(ii) d(x, y) = d(y, x) for all x, y Î X;

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z Î X.

Definition 2.2 Let X be a nonempty set endowed with a pseudo-metric d. The d-ball

of radius ε > 0 centered at x Î X is the set

B(x; d, ε) = {y ∈ X|d(x, y) < ε}.

Definition 2.3 A family F = {dλ|λ ∈ A} of pseudo-metrics is called separating if for

each pair x ≠ y, there is a dλ ∈ F such that dl (x, y) ≠ 0.

Definition 2.4 Let X be a nonempty set and F = {dλ|λ ∈ A} be a separating family

of pseudo-metrics on X. The topology T (F) having for a subbasis the family

B(F) = {B(x; dλ, ε)|x ∈ X, dλ ∈ F , ε > 0}

of balls is called the topology in X induced by the family F . The pair (X,T (F)) is

called a gauge space. Note that (X,T (F)) is Hausdorff because we require F to be

separating.

Definition 2.5 Let (X,T (F)) be a gauge space with respect to the family

F = {dλ|λ ∈ A} of pseudo-metrics on X. Let {xn} be a sequence in X and x Î X.

(a) The sequence {xn} converges to x if and only if

∀λ ∈ A, ∀ε > 0, ∃N ∈ N|dλ(xn, x) < ε, ∀n ≥ N.

In this case, we denote xn
F−→ x .
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(b) The sequence {xn} is Cauchy if and only if

∀λ ∈ A, ∀ε > 0, ∃N ∈ N|dλ(xn+p, xn) < ε, ∀n ≥ N, p ∈ N.

(c) (X,T (F)) is complete if and only if any Cauchy sequence in (X,T (F)) is conver-

gent to an element of X.

(d) A subset of X is said to be closed if it contains the limit of any convergent

sequence of its elements.

Definition 2.6 Let F = {dλ|λ ∈ A} be a family of pseudo-metrics on X. (X,F ,�) is

called an ordered gauge space if (X,T (F)) is a gauge space and (X, ≼) is a partially

ordered set.

For more details on gauge spaces, we refer the reader to [39].

Now, we introduce the concept of compatibility of a pair of self mappings on a gauge

space.

Definition 2.7 Let (X,T (F)) be a gauge space and f, g : X ® X are giving map-

pings. We say that the pair {f, g} is compatible if for all λ ∈ A , dl(fgxn, gfxn) ® 0 as n

® ∞ whenever {xn} is a sequence in X such that f xn
F−→ t and gxn

F−→ t for some t Î X.

Definition 2.8 (Ćirić et al. [29]) Let (X, ≼) be a partially ordered set and f, g : X ®
X are two giving mappings. The mapping f is said to be g-nondecreasing if for all x, y Î
X, we have

gx � gy ⇒ fx � fy.

Definition 2.9 Let (X, ≼) be a partially ordered set. We say that (X, ≼) is directed if

every pair of elements has an upper bound, that is, for every a, b Î X, there exists c Î
X such that a ≼ c and b ≼ c.

3 Main results
Let (X,T (F)) be a gauge space.

We consider the class of functions {ψλ}λ∈A and {ϕλ}λ∈A such that for all λ ∈ A ,

ψl, �l,: [0, ∞) ® [0, ∞) satisfy the following conditions:

(C1) ψl is an altering distance function.

(C2) �l is a lower semi-continuous function with �l(t) = 0 if and only if t = 0.

Our first result is the following.

Theorem 3.1 Let (X,F ,�) be an ordered complete gauge space and let f, g : X ® X

be two continuous mappings such that f is g-nondecreasing, f(X) ⊆ g(X) and the pair {f,

g} is compatible. Suppose that

ψλ(dλ(fx, fy)) ≤ ψλ(dλ(gx, gy)) − ϕλ(dλ(gx, gy)) (2)

for all λ ∈ A , for all x, y Î X for which gx ≼ gy. If there exists x0 such that gx0 ≼ fx0,

then f and g have a coincidence point, that is, there exists a z Î X such that fz = gz.

Proof. Let x0 Î X such that gx0 ≼ fx0 (such a point exists by hypothesis). Since f(X)

⊆ g(X), we can choose x1 Î X such that fx0 = gx1. Then gx0 ≼ fx0 = gx1. As f is g-non-

decreasing, we get fx0 ≼ fx1. Continuing this process, we can construct a sequence {xn}

in X such that

gxn+1 = f xn, n = 0, 1, . . .
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for which

gx0 � f x0 = gx1 � f x1 = gx2 � · · · � f xn−1 = gxn � · · ·

Then from (2), for all p, q Î N, for all λ ∈ A , we have

ψλ(dλ(f xp, f xq)) ≤ ψλ(dλ(gxp, gxq)) − ϕλ(dλ(gxp, gxq)). (3)

We complete the proof in the following three steps.

Step 1. We will prove that

dλ(f xn, f xn+1) → 0 as n → +∞, for all λ ∈ A. (4)

Let λ ∈ A . We distinguish two cases.

• First case: We suppose that there exists m Î N such that dl(fxm, fxm+1) = 0. Apply-

ing (3), we get that

ψλ(dλ(f xm+1, f xm+2)) ≤ ψλ(dλ(gxm+1, gxm+2)) − ϕλ(dλ(gxm+1, gxm+2))

= ψλ(dλ(f xm, f xm+1)) − ϕλ(dλ(f xm, f xm+1))

= ψλ(0) − ϕλ(0)

(from (C1), (C2)) = 0.

Then it follows from (C1) that dl(fxm+1, fxm+2) = 0. Continuing this process, one can

show that dl(fxn, fxn+1) = 0 for all n ≥ m. Then our claim (4) holds.

• Second case: We suppose that

dλ(f xn, f xn+1) > 0, for all n ∈ N. (5)

Let, if possible, for some n0 Î N,

dλ(f xn0−1, f xn0 ) < dλ(f xn0 , f xn0+1).

By the monotone property of ψl, and using (3), we get

ψλ(dλ(f xn0−1, f xn0 )) ≤ ψλ(dλ(f xn0 , f xn0+1)) ≤ ψλ(dλ(gxn0 , gxn0+1)) − ϕλ(dλ(gxn0 , gxn0+1))

= ψλ(dλ(f xn0−1, f xn0)) − ϕλ(dλ(f xn0−1, f xn0)).

Then, by (C2), we have that dλ(f xn0−1, f xn0 ) = 0, which contradicts (5). Therefore, we

deduce that

dλ(f xn, f xn+1) ≤ dλ(f xn−1, f xn), for all n ≥ 1.

So, it follows that {dl(fxn, fxn+1)} is a decreasing sequence of non-negative real num-

bers. Hence, there is r ≥ 0 such that

dλ(f xn, f xn+1) → r as n → +∞. (6)

On the other hand, from (3), we have

ψλ(dλ(f xn, f xn+1)) ≤ ψλ(dλ(gxn, gxn+1)) − ϕλ(dλ(gxn, gxn+1))

= ψλ(dλ(f xn−1, f xn)) − ϕλ(dλ(f xn−1, f xn)).

This implies that

lim sup
n→∞

ψλ(dλ(f xn, f xn+1)) ≤ lim sup
n→∞

ψλ(dλ(f xn−1, f xn)) − lim inf
n→∞ ϕλ(dλ(f xn−1, f xn)).
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Then, using (6), the continuity hypothesis of ψl and the lower semi-continuity of �l,

we get that

ψλ(r) ≤ ψλ(r) − ϕλ(r),

which, by condition (C2) implies that r = 0. Thus, we proved (4).

Step 2. We will prove that {fxn} is a Cauchy sequence in the gauge space (X,T (F)) .

Suppose that {fxn} is not a Cauchy sequence. Then there exists (λ, ε) ∈ A × (0,∞) for

which we can find two sequences of positive integers {m(k)} and {n(k)} such that for all

positive integers k,

n(k) > m(k) > k, dλ(f xm(k), f xn(k)) ≥ ε, dλ(f xm(k), f xn(k)−1) < ε. (7)

Using (7) and the triangular inequality, we get that

ε ≤ dλ(f xn(k), f xm(k))

≤ dλ(f xm(k), f xn(k)−1) + dλ(f xn(k)−1, f xn(k))

< ε + dλ(f xn(k), f xn(k)−1).

Thus we have

ε ≤ dλ(f xn(k), f xm(k)) < ε + dλ(f xn(k), f xn(k)−1).

Letting k ® +∞ in the above inequality and using (4), we obtain

dλ(f xn(k), f xm(k)) → ε as k → +∞. (8)

On the other hand, we have

dλ(f xn(k), f xm(k)) ≤ dλ(f xn(k), f xn(k)−1) + dλ(f xn(k)−1, f xm(k)−1) + dλ(f xm(k)−1, f xm(k))

and

dλ(f xn(k)−1, f xm(k)−1) ≤ dλ(f xn(k)−1, f xn(k)) + dλ(f xn(k), f xm(k)) + dλ(f xm(k), f xm(k)−1).

Thus we have
{
dλ(f xn(k)−1, f xm(k)−1) ≥ dλ(f xn(k), f xm(k)) − dλ(f xn(k), f xn(k)−1) − dλ(f xm(k)−1, f xm(k))
dλ(f xn(k)−1, f xm(k)−1) ≤ dλ(f xn(k)−1, f xn(k)) + dλ(f xn(k), f xm(k)) + dλ(f xm(k)−1)

which implies that
∣∣dλ(f xn(k)−1, f xm(k)−1) − dλ(f xn(k), f xm(k))

∣∣ ≤ dλ(f xn(k)−1, f xn(k)) + dλ(f xm(k), f xm(k)−1).

Letting k ® ∞ in the above inequality, using (4) and (8), we get that

dλ(f xn(k)−1, f xm(k)−1) → ε as k → +∞. (9)

Applying inequality (3) with p = n(k) and q = m(k), we get that

ψλ(dλ(f xn(k), f xm(k))) ≤ ψλ(dλ(gxn(k), gxm(k))) − ϕλ(dλ(gxn(k), gxm(k))),

that is,

ψλ(dλ(f xn(k), f xm(k))) ≤ ψλ(dλ(f xn(k)−1, f xm(k)−1)) − ϕλ(dλ(f xn(k)−1, f xm(k)−1)).
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Letting k ® +∞ in the above inequality, using (8), (9), the continuity hypothesis of

ψl and the lower semi-continuity of �l, we obtain

ψλ(ε) ≤ ψλ(ε) − ϕλ(ε),

which implies from (C2) that ε = 0, which is a contradiction with ε > 0. Finally, we

deduce that {fxn} is a Cauchy sequence.

Step 3. Existence of a coincidence point.

Since {fxn} is a Cauchy sequence in the complete gauge space (X,T (F)) , then there

exists a z Î X such that f xn
F−→ z . Since f and g are continuous, we get that ff xn

F−→ fz

and gf xn
F−→ gz . On the other hand, from gxn+1 = fxn, we have also gxn

F−→ z . Thus, we

f xn
F−→ z, ff xn

F−→ fz, gf xn
F−→ gz, gxn

F−→ z. (10)

From the compatibility hypothesis of the pair {f, g}, we get that for all λ ∈ A ,

dλ(fgxn, gf xn) → 0 as n → ∞. (11)

Now, using the triangular inequality, for all λ ∈ A , we have

dλ(fz, gz) ≤ dλ(fz, ff xn) + dλ(fgxn+1, gf xn+1) + dλ(gf xn+1, gz).

Letting n ® ∞ in the above inequality, and using (10) and (11), we get that dl(fz, gz)

= 0 for all λ ∈ A . In the virtue of the separating structure of F , this implies that fz =

gz, that

is, z is a coincidence point of f and g.

Let (X,F ,�) be an ordered gauge space. We consider the following assumption:

(H): If {un} ⊂ X is a nondecreasing sequence with un
F−→ u ∈ X , then un ≼ u for all n.

Theorem 3.2 Let (X,F ,�) be an ordered complete gauge space satisfying the

assumption (H). Let f, g : X ® X be two mappings such that f is g-nondecreasing, f(X) ⊆
g(X) and g(X) is closed. Suppose that

ψλ(dλ(fx, fy)) ≤ ψλ(dλ(gx, gy)) − ϕλ(dλ(gx, gy)) (12)

for all λ ∈ A , for all x, y Î X for which gx ≼ gy. If there exists x0 such that gx0 ≼ fx0,

then f and g have a coincidence point.

Proof. Following the proof of Theorem 3.1, we know that {gxn} is a Cauchy sequence

in the ordered complete gauge space (X,F ,�) . Since g(X) is closed, there exists z Î X

such that gxn
F−→ gz . Then we have

f xn
F−→ gz and gxn

F−→ gz. (13)

Since {gxn} is a nondecreasing sequence, from (H), we have gxn ≼ gz for all n ≥ 1.

Then we can apply (12) with x = xn and y = z, we obtain

ψλ(dλ(f xn, fz)) ≤ ψλ(dλ(gxn, gz)) − ϕλ(dλ(gxn, gz))

for all λ ∈ A and n ≥ 1. Let λ ∈ A be fixed. Letting n ® ∞ in the above inequality,

using (C1), (C2) and (13), we obtain that ψl(dl(gz, fz)) = 0, which implies from (C1)

that dl(gz, fz) = 0. Thus, we proved that dl(gz, fz) = 0 for all λ ∈ A . Then gz = fz and

z is a coincidence point of g and f.
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Theorem 3.3 Let (X,F ,�) be an ordered complete gauge space and f : X ® X be a

nondecreasing mapping. Suppose that

ψλ(dλ(fx, fy)) ≤ ψλ(dλ(x, y)) − ϕλ(dλ(x, y)) (14)

for all (X,F ,�) , for all x, y Î X with x ≼ y. Also suppose either

(I) f is continuous or

(II) If {xn} ⊂ X is a nondecreasing sequence with xn
F−→ z ∈ X , then xn ≼ z for all n.

If there exists x0 such that x0 ≼ fx0, then f has a fixed point, that is, there exists z Î X

such that z = fz. Moreover, if(X, ≼) is directed, we obtain the uniqueness of the fixed

point of f.

Proof. The existence of a fixed point of f follows immediately from Theorems 3.1

and 3.2 by taking g = IX (the identity mapping on X). Now, suppose that z’ Î X is

another fixed point of f, that is, z’ = fz’. Since (X, ≼) is a directed set, there exists w Î
X such that z ≼ w and z’ ≼ w. Monotonicity of f implies that fn(z) ≼ fn(w) and fn(z’) ≼ fn

(w). Then we have

ψλ(dλ(z, f n(w))) ≤ ψλ(dλ(f n−1(z), f n−1(w))) − ϕλ(dλ(f n−1(z), f n−1(w)))

≤ ψλ(dλ(f n−1(z), f n−1(w)))

= ψλ(dλ(z, f n−1(w))).

(15)

Since ψl is a nondecreasing function, we get that

dλ(z, f n(w)) ≤ dλ(z, f n−1(w)), for all n ≥ 1, λ ∈ A.

Then there exists rl ≥ 0 such that dl(z, f
n(w)) ® rl as n ® ∞. Letting n ® ∞ in (15),

we get that

ψλ(rλ) ≤ ψλ(rλ) − ϕλ(rλ),

which implies that rl = 0. Then we have f n(w)
F−→ z . Similarly, one can show that

f n(w)
F−→ z′ . Since (X,T (F)) is Hausdorff, we obtain that z = z’.

Let (X,T (F)) be a gauge space and f, g : X ® X are two giving mappings. For all x,

y Î X and λ ∈ A , we denote

Mλ(gx, gy) = max
{
dλ(gx, gy), dλ(gx, fx), dλ(gy, fy),

dλ(gy, fy) + dλ(gy, fx)
2

}
.

We shall prove the following result.

Theorem 3.4 Let (X,F ,�) be an ordered complete gauge space and let f, g : X ® X

be two continuous mappings such that f is g-nondecreasing, f(X) ⊆ g(X) and the pair {f,

g} is compatible. Suppose that

ψλ(dλ(fx, fy)) ≤ ψλ(Mλ(gx, gy)) − ϕλ(Mλ(gx, gy)) (16)

for all λ ∈ A , for all x, y Î X for which gx ≼ gy. If there exists x0 such that gx0 ≼ fx0,

then f and g have a coincidence point.

Proof. Similarly to the proof of Theorem3.1, we can construct a sequence {xn} in X

such that
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gxn+1 = f xn, n = 0, 1, . . .

for which

gx0 � gx1 � gx2 � · · · � gxn � · · ·

Then from (16), for all p, q Î N, for all λ ∈ A , we have

ψλ(dλ(f xp, f xq)) ≤ ψλ(Mλ(gxp, gxq)) − ϕλ(Mλ(gxp, gxq)). (17)

We complete the proof in the following three steps.

Step 1. We will prove that

dλ(f xn, f xn+1) → 0 as n → +∞, for all λ ∈ A. (18)

Let λ ∈ A . We distinguish two cases.

• First case: We suppose that there exists m Î N such that dl(fxm, fxm+1) = 0. Apply-

ing (17), we get that

ψλ(dλ(f xm+1, f xm+2)) ≤ ψλ(Mλ(gxm+1, gxm+2)) − ϕλ(Mλ(gxm+1, gxm+2)).

A simple computation gives us that

Mλ(gxm+1, gxm+2)) = dλ(f xm+1, f xm+2).

Thus, we get that

ψλ(dλ(f xm+1, f xm+2)) ≤ ψλ(dλ(f xm+1, f xm+2)) − ϕλ(dλ(f xm+1, f xm+2)),

which implies from (C2) that dl(fxm+1, fxm+2) = 0. Continuing this process, one can

show that dl(fxn, fxn+1) = 0 for all n ≥ m. Then our claim (18) holds.

• Second case: We suppose that

dλ(f xn, f xn+1) > 0, for all n ∈ N. (19)

Applying (17), for all n ≥ 1, we have

ψλ(dλ(f xn, f xn+1)) ≤ ψλ(Mλ(gxn, gxn+1)) − ϕλ(Mλ(gxn, gxn+1)). (20)

A simple computation gives us that

Mλ(gxn, gxn+1) = max{dλ(f xn−1, f xn), dλ(f xn, f xn+1)}.

If Ml(gxn, gxn+1) = dl(fxn, fxn+1), we get that

ψλ(dλ(f xn, f xn+1)) ≤ ψλ(dλ(f xn, f xn+1)) − ϕλ(dλ(f xn, f xn+1)),

which implies from (C2) that dl(fxn, fxn+1) = 0, that is a contradiction with (19). We

deduce that Ml(gxn, gxn+1) = dl(fxn-1, fxn), that is, dl(fxn, fxn+1) ≤ dl(fxn-1, fxn). So, it

follows that {dl(fxn-1, fxn)} is a decreasing sequence of non-negative real numbers.

Hence, there is r ≥ 0 such that

dλ(f xn−1, f xn) → r as n → +∞. (21)

On the other hand, from (20), we have

ψλ(dλ(f xn, f xn+1)) ≤ ψλ(dλ(f xn−1, f xn)) − ϕλ(dλ(f xn−1, f xn)).
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Letting n ® ∞ in the above inequality and using the properties (C1) and (C2), we get

that

ψλ(r) ≤ ψλ(r) − ϕλ(r),

which implies from (C2) that r = 0. Then our claim (18) holds.

Step 2. We will prove that {fxn} is a Cauchy sequence in the gauge space (X,T (F)) .

Suppose that {fxn} is not a Cauchy sequence. Then there exists (λ, ε) ∈ A × (0,∞) for

which we can find two sequences of positive integers {m(k)} and {n(k)} such that for all

positive integers k,

n(k) > m(k) > k, dλ(f xm(k), f xn(k)) ≥ ε, dλ(f xm(k), f xn(k)−1) < ε.

As in the proof of Theorem 3.1, one can show that

lim
k→∞

dλ(f xn(k), f xm(k)) = lim
k→∞

dλ(f xn(k)−1, f xm(k)−1) = ε. (22)

Applying inequality (17) with p = n(k) and q = m(k), we get that

ψλ(dλ(f xn(k), f xm(k))) ≤ ψλ(Mλ(gxn(k), gxm(k))) − ϕλ(Mλ(gxn(k), gxm(k))). (23)

On the other hand, we have

Mλ(gxn(k), gxm(k)) = max
{
dλ(gxn(k), gxm(k)), dλ(gxn(k), f xn(k)), dλ(gxm(k), f xm(k)),

dλ(gxn(k), f xm(k)) + dλ(gxm(k), f xn(k))

2

}

= max
{
dλ(f xn(k)−1, f xm(k)−1), dλ(f xn(k)−1, f xn(k)), dλ(f xm(k)−1, f xm(k)),

dλ(f xn(k)−1, f xm(k)) + dλ(f xm(k)−1, f xn(k))

2

}
.

Using the triangular inequality, we get that
∣∣dλ(f xn(k)−1, f xm(k)) − dλ(f xn(k), f xm(k))

∣∣ ≤ d(f xn(k)−1, f xn(k))

and
∣∣dλ(f xm(k)−1, f xn(k)) − dλ(f xn(k)−1, f xm(k)−1)

∣∣ ≤ d(f xn(k)−1, f xn(k)).

Letting k ® ∞ in the above inequalities and using (18), (22), we get that

lim
k→∞

dλ(f xn(k)−1, f xm(k)) = lim
k→∞

dλ(f xm(k)−1, f xn(k)) = ε. (24)

Now, combining (18), (22), and (24), we obtain

Mλ(gxn(k), gxm(k)) → ε as k → ∞. (25)

Letting k ® ∞ in (23), using (22), (25) and the properties of functions ψl and �l, we

get that

ψλ(ε) ≤ ψλ(ε) − ϕλ(ε),

which implies that ε = 0, a contradiction. Finally, we deduce that {fxn} is a Cauchy

sequence.

Step 3. Existence of a coincidence point.
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Since {fxn} is a Cauchy sequence in the complete gauge space (X,T (F)) , then there

exists a z Î X such that f xn
F−→ z . The rest part of the proof is similar to that of Theo-

rem 3.1.

Theorem 3.5 Let (X,F ,�) be an ordered complete gauge space satisfying the

assumption (H). Let f, g : X ® X be two mappings such that f is g-nondecreasing, f(X) ⊆
g(X) and g(X) is closed. Suppose that

ψλ(dλ(fz, fy)) ≤ ψλ(Mλ(gx, gy)) − ϕλ(Mλ(gx, gy))

for all λ ∈ A , for all x, y Î X for which gx ≼ gy. If there exists x0 such that gx0 ≼ fx0,

then f and g have a coincidence point.

Proof. It is similar to the proof of Theorem 3.2.

Using the same technique of the proof of Theorem 3.3, we deduce from Theorems

3.4 and 3.5 the following fixed point result.

Theorem 3.6 Let (X,F ,�) be an ordered complete gauge space and f : X ® X be a

nondecreasing mapping. Suppose that

ψλ(dλ(fx, fy)) ≤ (ψλ − ϕλ)
(
max

{
dλ(x, y), dλ(x, fx), dλ(y, fy),

dλ(x, fy) + dλ(y, fx)
2

})

for all λ ∈ A , for all x, y Î X with x ≼ y. Also suppose either

(I) f is continuous or

(II) If {xn} ⊂ X is a nondecreasing sequence with xn
F−→ z ∈ X , then xn ≼ z for all n.

If there exists x0 such that x0 ≼ fx0, then f has a fixed point. Moreover, if (X, ≼) is
directed, we obtain the uniqueness of the fixed point of f.

4 Some consequences
In this section, we present some fixed point theorems of integral-type on ordered

gauge spaces, deduced from our previous obtained results.

Let Γ be the set of functions a : [0, ∞) ® [0, ∞) satisfying

(i) a is locally integrable on [0, ∞).

(ii) For all ε > 0, we have
∫ ε

0 a(t)dt > 0 .

Theorem 4.1 Let (X,F ,�) be an ordered complete gauge space and let f, g : X ® X

be two continuous mappings such that f is g-nondecreasing, f(X) ⊆ g(X) and the pair {f,

g} is compatible. Suppose that

dλ(fx,fy)∫
0

aλ(t)dt ≤
dλ(gx,gy)∫
0

aλ(t)dt −
dλ(gx,gy)∫
0

bλ(t)dt

for all λ ∈ A , for all x, y Î X for which gx ≼ gy, where al, bl Î Γ for all λ ∈ A . If

there exists x0 such that gx0 ≼ fx0, then f and g have a coincidence point.

Proof. It follows from Theorem 3.1, by taking for all λ ∈ A ,

ψλ(t) =

t∫
0

aλ(s)ds and ϕλ(t) =

t∫
0

bλ(s)ds, t ≥ 0.
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It is clear that for all λ ∈ A , the functions ψl and jl satisfy conditions (C1) and

(C2).

Theorem 4.2 Let (X,F ,�) be an ordered complete gauge space satisfying the

assumption (H). Let f, g : X ® X be two mappings such that f is g-nondecreasing, f(X) ⊆
g(X) and g(X) is closed. Suppose that

dλ(fx,fy)∫
0

aλ(t)dt ≤
dλ(gx,gy)∫
0

aλ(t)dt −
dλ(gx,gy)∫
0

bλ(t)dt

for all λ ∈ A , for all x, y Î X for which gx ≼ gy, where al, bl Î Γ for all λ ∈ A . If

there exists x0 such that gx0 ≼ fx0, then f and g have a coincidence point.

Proof. It follows from Theorem 3.2.

Theorem 4.3 Let (X,F ,�) be an ordered complete gauge space and f : X ® X be a

nondecreasing mapping. Suppose that

dλ(fx,fy)∫
0

aλ(t)dt ≤
dλ(x,y)∫
0

aλ(t)dt −
dλ(x,y)∫
0

bλ(t)dt

for all λ ∈ A , for all x, y Î X with x ≼ y, where al, bl Î Γ for all λ ∈ A . Also sup-

pose either

(I) f is continuous or

(II) If {xn} ⊂ X is a nondecreasing sequence with xn
F−→ z ∈ X , then xn ≼ z for all n.

If there exists x0 such that x0 ≼ fx0, then f has a fixed point. Moreover, if (X, ≼) is
directed, we obtain the uniqueness of the fixed point of f.

Proof. It follows from Theorem 3.3.

Theorem 4.4 Let (X,F ,�) be an ordered complete gauge space and let f, g : X ® X

be two continuous mappings such that f is g-nondecreasing, f(X) ⊆ g(X) and the pair {f,

g} is compatible. Suppose that

dλ(fx,fy)∫
0

aλ(t)dt ≤
Mλ(gx,gy)∫

0

aλ(t)dt −
Mλ(gx,gy)∫

0

bλ(t)dt

for all λ ∈ A , for all x, y Î X for which gx ≼ gy, where al, bl Î Γ for all λ ∈ A . If

there exists x0 such that gx0 ≼ fx0, then f and g have a coincidence point.

Proof. It follows from Theorem 3.4.

Theorem 4.5 Let (X,F ,�) be an ordered complete gauge space satisfying the

assumption (H). Let f, g : X ® X be two mappings such that f is g-nondecreasing, f(X) ⊆
g(X) and g(X) is closed. Suppose that

dλ(fx,fy)∫
0

aλ(t)dt ≤
Mλ(gx,gy)∫

0

aλ(t)dt −
Mλ(gx,gy)∫

0

bλ(t)dt

for all λ ∈ A , for all x, y Î X for which gx ≼ gy, where al, bl Î Γ for all λ ∈ A . If

there exists x0 such that gx0 ≼ fx0, then f and g have a coincidence point.

Proof. It follows from Theorem 3.5.
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Theorem 4.6 Let (X,F ,�) be an ordered complete gauge space and f : X ® X be a

nondecreasing mapping. Suppose that

dλ(fx,fy)∫
0

aλ(t)dt ≤
Mλ(x,y)∫
0

aλ(t)dt −
Mλ(x,y)∫
0

bλ(t)dt

for all λ ∈ A , for all x, y Î X with x ≼ y, where al, bl Î Γ for all λ ∈ A . Also sup-

pose either

(I) f is continuous or

(II) If {xn} ⊂ X is a nondecreasing sequence with xn
F−→ z ∈ X , then xn ≼ z for all n.

If there exists x0 such that x0 ≼ fx0, then f has a fixed point. Moreover, if (X, ≼) is
directed, we obtain the uniqueness of the fixed point of f.

Proof. It follows from Theorem 3.6.

5 Applications
In this section, we present some examples of nonlinear integral equations, where our

obtained results can be applied.

Consider the integral equation

x(t) =

t∫
0

k(t, s, x(s)) ds + h(t), t ≥ 0, (26)

where k : [0, ∞) × [0, ∞) × ℝ ® ℝ and h : [0, ∞) ® ℝ.

Previously, we consider the space X = C([0, ∞), ℝ) of real continuous functions defined

on [0, ∞). For each positive integer n ≥ 1, we define the map ∥ · ∥n : X ® [0, ∞) by

‖x‖n = max
0≤t≤n

∣∣x(t)∣∣ , for all x ∈ X.

This map is a semi-norm on X. Define now,

dn(x, y) =
∥∥x − y

∥∥
n, for all n ≥ 1, x, y ∈ X.

Then F = {dn}n≥1 is a separating family of pseudo-metrics on X. The gauge space

(X,T (F)) with respect to the family F is complete. Consider on X the partial order

≼ defined by

x, y ∈ X, x � y ⇔ x(t) ≤ y(t) for all t ≥ 0.

For any increasing sequence {xn} in X converging to some z Î X we have xn(t) ≤ z(t)

for any t ≥ 0. Also, for every x, y Î X, there exists c(x, y) Î X which is comparable to

x and y.

We shall prove the following result.

Theorem 5.1 Suppose that

(i) k : [0, ∞) × [0, ∞) × ℝ ® ℝ and h : [0, ∞) ® ℝ are continuous;

(ii) k(t, s, ·): ℝ ® ℝ is increasing for each t, s ≥ 0;

(iii) for each t, s ≥ 0, u, v Î ℝ, u ≤ v, we have

∣∣k(t, s, u) − k(t, s, v)
∣∣ ≤ γ (t, s)

√
ln[(v − u)2 + 1],
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where g : [0, ∞) × [0, ∞) ® [0, ∞) is continuous, the function t 
→ ∫ t
0 γ (t, s) ds is

bounded on [0, ∞) and

sup
t≥0

t∫
0

γ (t, s) ds ≤ 1;

(iv) there exists x0 Î C([0, ∞), ℝ) such that

x0(t) ≤
t∫

0

k(t, s, x0(s)) ds + h(t), for any t ≥ 0.

Then the integral equation (26) has a unique solution x* Î C([0, ∞), ℝ).

Proof. Consider the operator f : X ® X given by

fx(t) =

t∫
0

k(t, s, x(s)) ds + h(t), t ≥ 0, x ∈ X.

It is clear that f is well defined since k and h are continuous functions.

From condition (ii), for every x, y Î X with x ≼ y, we have

k(t, s, x(s)) ≤ k(t, s, y(s)), for all t, s ≥ 0,

which implies that

t∫
0

k(t, s, x(s)) ds + h(t) ≤
t∫

0

k(t, s, y(s)) ds + h(t), for all t ≥ 0,

that is, fx ≼ fy. This proves that f is a nondecreasing operator.

Taking into account (iii), for each x, y Î X with x ≼ y, for all t Î [0, n], n ≥ 1, we

have

∣∣fx(t) − fy(t)
∣∣ ≤

t∫
0

∣∣k(t, s, y(s)) − k(t, s, x(s))
∣∣ ds

≤
t∫

0

γ (t, s)
√
ln[(y(s) − x(s))2 + 1] ds

≤
√
ln[(dn(x, y))

2 + 1]

t∫
0

γ (t, s) ds

≤
√
ln[(dn(x, y))

2 + 1].

Then, for all n ≥ 1, we have

dn(fx, fy) ≤
√
ln[(dn(x, y))

2 + 1], for all x, y ∈ X, x � y.

Hence, for all n ≥ 1, we have

ψn(dn(fx, fy)) ≤ ψn(dn(fx, fy)) − ϕn(dn(fx, fy)), for all x, y ∈ X, x � y,
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where ψn(t) = t2 and �n(t) = t2 - ln(t2 + 1). Obviously, ψn, �n satisfy the conditions

(C1) and (C2). Moreover, from (iv), there exists x0 Î X such that x0 ≼ fx0.

Now, applying Theorem 3.3, we obtain that f has a unique fixed point x* Î X, that is,

x* Î C([0, ∞), ℝ) is the unique solution to (26).

Consider now the integral equation

x(t) =

t2∫
−t2

k(t, s, x(s)) ds + h(t), t ∈ R, (27)

where k : ℝ × ℝ × ℝ ® ℝ and h : ℝ ® ℝ.

We consider the space X = C(ℝ, ℝ) of real continuous functions defined on ℝ. For

each positive integer n ≥ 1, we define the map ∥ · ∥n : X ® [0, ∞) by

‖x‖n = max−n≤t≤n

∣∣x(t)∣∣ , for all x ∈ X.

This map is a semi-norm on X. Define now,

dn(x, y) =
∥∥x − y

∥∥
n, for all n ≥ 1, x, y ∈ X.

Then F = {dn}n≥1 is a separating family of pseudo-metrics on X. The gauge space

(X,T (F)) with respect to the family F is complete. As before, consider on X the par-

tial order ≼ defined by

x, y ∈ X, x � y ⇔ x(t) ≤ y(t) for all t ∈ R.

For any increasing sequence {xn} in X converging to some z Î X we have xn(t) ≤ z(t)

for any t Î ℝ. Also, for every x, y Î X, there exists c(x, y) Î X which is comparable to

x and y. We shall prove the following result.

Theorem 5.2 Suppose that

(i) k : ℝ × ℝ × ℝ ® ℝ and h : ℝ ® ℝ are continuous;

(ii) k(t, s, ·): ℝ ® ℝ is increasing for each t, s Î ℝ;

(iii) for each t, s Î ℝ, u, v Î ℝ, u ≤ v, we have

∣∣k(t, s, u) − k(t, s, v)
∣∣ ≤ γ (t, s)

√
ln[(v − u)2 + 1],

where g : ℝ × ℝ ® [0, ∞) is continuous, the function t 
→ ∫ t2

−t2 γ (t, s) ds is bounded

on ℝ and

sup
t∈R

t2∫
−t2

γ (t, s) ds ≤ 1;

(iv) there exists x0 Î C(ℝ, ℝ) such that

x0(t) ≤
t∫

0

k(t, s, x0(s)) ds + h(t), for any t ∈ R.

Then the integral equation (27) has a unique solution x* Î C(ℝ, ℝ).
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Proof. Consider the operator f : X ® X given by

fx(t) =

t2∫
−t2

k(t, s, x(s)) ds + h(t), t ∈ R, x ∈ X.

From condition (ii), for every x, y Î X with x ≼ y, we have

k(t, s, x(s)) ≤ k(t, s, y(s)), for all t, s ∈ R,

which implies that

t2∫
−t2

k(t, s, x(s)) ds + h(t) ≤
t2∫

−t2

k(t, s, y(s)) ds + h(t), for all t ∈ R,

that is, fx ≼ fy. This proves that f is a nondecreasing operator.

Taking into account (iii), for each x, y Î X with x ≼ y, for all t Î [-n, n], n ≥ 1, we

have

∣∣fx(t) − fy(t)
∣∣ ≤

t2∫
−t2

∣∣k(t, s, y(s)) − k(t, s, x(s))
∣∣ ds

≤
t2∫

−t2

γ (t, s)
√
ln[(y(s) − x(s))2 + 1] ds

≤
√
ln[(dn(x, y))

2 + 1]

t2∫
−t2

γ (t, s) ds

≤
√
ln[(dn(x, y))

2 + 1].

Then, for all n ≥ 1, we have

dn(fx, fy) ≤
√
ln[(dn(x, y))

2 + 1], for all x, y ∈ X, x � y.

Hence, for all n ≥ 1, we have

ψn(dn(fx, fy)) ≤ ψn(dn(fx, fy)) − ϕn(dn(fx, fy)), for all x, y ∈ X, x � y,

where ψn(t) = t2 and �n(t) = t2 - ln(t2 + 1). Moreover, from (iv), there exists x0 Î X

such that x0 ≼ fx0.

Now, applying Theorem 3.3, we obtain that f has a unique fixed point x* Î X that is,

x* Î C(ℝ, ℝ) is the unique solution to (27).

Author details
1FST Campus Universitaire, 2092, El Manar, Tunis, Tunisia 2Ecole Supérieure des Sciences et Techniques de Tunis, 5,
Avenue Taha Hussein-Tunis, B.P. 56, Bab Menara 1008, Tunisie

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Cherichi and Samet Fixed Point Theory and Applications 2012, 2012:13
http://www.fixedpointtheoryandapplications.com/content/2012/1/13

Page 17 of 19



Received: 29 November 2011 Accepted: 14 February 2012 Published: 14 February 2012

References
1. Chen, JW, Cho, YJ, Kim, JK, Li, J: Multiobjective optimization problems with modified objective functions and cone

constraints and applications. J Global Optim. 49, 137–147 (2011). doi:10.1007/s10898-010-9539-3
2. Choudhury, BS, Kundu, A: (ψ, α, β)-weak contractions in partially ordered metric spaces. Appl Math Lett. 25, 6–10 (2012).

doi:10.1016/j.aml.2011.06.028
3. Harjani, J, Sadarangani, K: Generalized contractions in partially ordered metric spaces and applications to ordinary

differential equations. Nonlinear Anal. 72, 1188–1197 (2010). doi:10.1016/j.na.2009.08.003
4. Nieto, JJ, Rodríguez-López, R: Contractive mapping theorems in partially ordered sets and applications to ordinary

differential equations. Order. 22, 223–239 (2005). doi:10.1007/s11083-005-9018-5
5. Nieto, JJ, Rodríguez-López, R: Existence and uniqueness of fixed point in partially ordered sets and applications to

ordinary differential equations. Acta Math Sin (Engl Ser). 23, 2205–2212 (2007). doi:10.1007/s10114-005-0769-0
6. Ran, ACM, Reurings, MCB: A fixed point theorem in partially orederd sets and some applications to matrix equations.

Proc Am Math Soc. 132, 1435–1443 (2004). doi:10.1090/S0002-9939-03-07220-4
7. Banach, S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund Math. 3,

133–181 (1922)
8. Agarwal, RP, Meehan, M, O’Regan, D: Fixed Point Theory and Applications. Cambridge University Press, Cambridge

(2001)
9. Ćirić, Lj: Non-self mappings satisfying nonlinear contractive condition with applications. Nonlinear Anal. 71, 2927–2935

(2009). doi:10.1016/j.na.2009.01.174
10. Zeidler, E: Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems. Springer-Verlag, Berlin (1986)
11. Khan, MS, Swaleh, M, Sessa, S: Fixed point theorems by altering distances between the points. Bull Austral Math Soc.

30(1):1–9 (1984). doi:10.1017/S0004972700001659
12. Albera, YaI, Guerre-Delabriere, S: Principles of weakly contractive maps in Hilbert spaces. In: Gohberg, I, Lyu-bich, Y (eds.)

New Results in Operator Theory and its Applications. pp. 7–22. Birkhäuser, Basel (1997). vol. 98 of Operator Theory:
Advances and Applications

13. Dorić, D: Common fixed point for generalized (ψ, ϕ)-weak contractions. Appl Math Lett. 22, 1896–1900 (2009).
doi:10.1016/j.aml.2009.08.001

14. Eslamian, M, Abkar, A: A fixed point theorems for generalized weakly contractive mappings in complete metric space.
Ital J Pure Appl Math. (in press)

15. Harjani, J, Sadarangani, K: Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear
Anal. 71, 3403–3410 (2008)

16. Jachymski, J: Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal. 74, 768–774
(2011). doi:10.1016/j.na.2010.09.025

17. Nashine, HK, Samet, B: Fixed point results for mappings satisfying (ψ, ϕ)-weak contractive condition in partially ordered
metric spaces. Nonlinear Anal. 74, 2201–2209 (2011). doi:10.1016/j.na.2010.11.024

18. Rhoades, BE: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001). doi:10.1016/S0362-
546X(01)00388-1

19. Samet, B, Vetro, C, Vetro, P: Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 75, 2154–2165
(2012). doi:10.1016/j.na.2011.10.014

20. Dutta, PN, Choudhury, BS: A generalization of contraction principle in metric spaces. Fixed Point Theory Appl 8 (2008).
vol. 2008, Article ID 406368

21. Agarwal, RP, El-Gebeily, MA, O’Regan, D: Generalized contractions in partially ordered metric spaces. Appl Anal. 87,
109–116 (2008). doi:10.1080/00036810701556151

22. Altun, I, Simsek, H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl 17
(2010). vol. 2010, Article ID 621492

23. Beg, I, Butt, AR: Fixed point for set-valued mappings satisfying an implicit relation in ordered metric spaces. Nonlinear
Anal. 71, 3699–3704 (2009). doi:10.1016/j.na.2009.02.027

24. Bhaskar, TG, Lakshmikantham, V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear
Anal. 65, 1379–1393 (2006). doi:10.1016/j.na.2005.10.017

25. Caballero, J, Harjani, J, Sadarangani, K: Contractive-like mapping principles in ordered metric spaces and application to
ordinary differential equations. Fixed Point Theory Appl 14 (2010). vol. 2010, Article ID 916064

26. Chifu, C, Petruşel, G: Fixed-point results for generalized contractions on ordered Gauge spaces with applications. Fixed
Point Theory Appl 10 (2011). vol. 2011, Article ID 979586

27. Choudhury, BS, Kundu, A: A coupled coincidence point result in partially ordered metric spaces for compatible
mappings. Nonlinear Anal. 73, 2524–2531 (2010). doi:10.1016/j.na.2010.06.025

28. Ćirić, Lj, Agarwal, RP, Samet, B: Mixed monotone-generalized contractions in partially ordered probabilistic metric
spaces. Fixed Point Theory Appl 56 (2011). vol. 2011

29. Ćirić, Lj, Cakić, N, Rajović, M, Ume, JS: Monotone generalized nonlinear contractions in partially ordered metric spaces.
Fixed Point Theory Appl 11 (2008). vol. 2008, Article ID 131294

30. Ćirić, Lj, Lakshmikantham, V: Coupled random fixed point theorems for nonlinear contractions in partially ordered
metric spaces. Stoch Anal Appl. 27, 1246–1259 (2009). doi:10.1080/07362990903259967

31. Du, W-S: Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi-Takahashi’s condition in
Quasiordered metric spaces. Fixed Point Theory Appl 9 (2010). vol. 2010, Article ID 876372

32. Lakshmikantham, V, Ćirić, Lj: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces.
Nonlinear Anal. 70, 4341–4349 (2009). doi:10.1016/j.na.2008.09.020

33. O’Regan, D, Petruşel, A: Fixed point theorems for generalized contractions in ordered metric spaces. J Math Anal Appl.
341, 1241–1252 (2008). doi:10.1016/j.jmaa.2007.11.026

34. Radenović, S, Kadelburg, Z: Generalized weak contractions in partially ordered metric spaces. Comput Math Appl. 60,
1776–1783 (2010). doi:10.1016/j.camwa.2010.07.008

Cherichi and Samet Fixed Point Theory and Applications 2012, 2012:13
http://www.fixedpointtheoryandapplications.com/content/2012/1/13

Page 18 of 19



35. Radenović, S, Kadelburg, Z, Jandrlić, D, Jandrlić, A: Some results on weakly contractive maps. Bull Iran Math Soc. (2011,
in press)

36. Samet, B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces.
Nonlinear Anal. 72, 4508–4517 (2010). doi:10.1016/j.na.2010.02.026

37. Samet, B, Vetro, C: Coupled fixed point, F-invariant set and fixed point of N-order. Ann Funct Anal. 1, 46–56 (2010)
38. Samet, B, Vetro, C: Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered

metric spaces. Nonlinear Anal. 74, 4260–4268 (2011). doi:10.1016/j.na.2011.04.007
39. Dugundji, J: Topology. Allyn and Bacon, Boston (1966)

doi:10.1186/1687-1812-2012-13
Cite this article as: Cherichi and Samet: Fixed point theorems on ordered gauge spaces with applications to
nonlinear integral equations. Fixed Point Theory and Applications 2012 2012:13.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Cherichi and Samet Fixed Point Theory and Applications 2012, 2012:13
http://www.fixedpointtheoryandapplications.com/content/2012/1/13

Page 19 of 19

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	4 Some consequences
	5 Applications
	Author details
	Authors' contributions
	Competing interests
	References

