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Abstract
This paper discusses three contractive conditions for two 2-cyclic self-mappings
defined on the union of two nonempty subsets of a metric space to itself. Such
self-mappings are not assumed to commute. The properties of convergence of
distances to the distance between such sets are investigated. The presence and
uniqueness of common fixed points for the two self-mappings and the composite
mapping are discussed for the case when such sets are nonempty and intersect. If the
space is uniformly convex and the subsets are nonempty, closed and convex, then
the iterates of points obtained through the self-mapping converge to unique best
proximity points in each of the subsets. Those best proximity points coincide with the
fixed point if such sets intersect.

1 Introduction
General rational contractive relations for self-mappings from certain sets into themselves
have received important interest in the last years. The related background literature is very
rich and, in particular, a very general rational contractive condition has been discussed
in [, ]. Relevant results about the existence of fixed points and their uniqueness under
supplementary conditions have also been investigated in those papers. On the other hand,
the rational contractive condition proposed in [] is proved to include as particular cases
several of the previously proposed ones [, –], including Banach’s principle [] and
Kannan’s fixed point theorems [, , , ]. Fixed point theory is also useful to investigate
the stability of iterative sequences and discrete dynamic systems [, , ]. The rational
contractive conditions of [, ] are applicable only on distinct points of the considered
metric spaces. In particular, the fixed point theory for Kannan’s mappings is extended in
[] by the use of a non-increasing function affecting the contractive condition and the
best constant to ensure a fixed point is also obtained. Three fixed point theorems which
extended the fixed point theory for Kannan’s mappings have been stated and proved in
[]. Also, significant attention has been paid to the investigation of standard contractive
and Meir-Keeler-type contractive -cyclic self-mappings T : A ∪ B → A ∪ B defined on
subsets A,B ⊆ X and, in general, p-cyclic self-mappings T :

⋃
i∈p̄ Ai → ⋃

i∈p̄ Ai defined
on any number of subsets Ai ⊂ X, i ∈ p̄ := {, , . . . ,p}, where (X,d) is a metric space (see,
for instance, [–] and [–]). More recent investigation of cyclic self-mappings has
been devoted to its characterisation in partially ordered spaces and also to the formal
extension of the contractive condition through the use of more general strictly increasing
functions of the distance between adjacent subsets. In particular, the uniqueness of the
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best proximity points, to which all the sequences of iterates of composite self-mappings
T : A∪B → A∪B converge, is proved in [] for the extension of the contractive principle
for cyclic self-mappings in uniformly convex Banach spaces (then being strictly convex
and reflexive, []) if the subsets A,B ⊂ X in the metric space (X,d), or in the Banach
space (X,‖ ‖), where the -cyclic self-mappings are defined are both nonempty, convex
and closed. The research in [] is centred on the case of the cyclic self-mapping being
defined on the union of two subsets of the metric space. Those results have been extended
in [] for Meir-Keeler cyclic contraction maps and, in general, for the self-mapping T :⋃

i∈p̄ Ai → ⋃
i∈p̄ Ai be a p(≥ )-cyclic self-mapping being defined on any number of subsets

of the metric space with p̄ := {, , . . . ,p}.
A relevant problem is when self-mappings from a metric space into itself or from a set

into itself have common fixed points, [, –]. A related problem is when compos-
ite self-maps built with those self-mappings have common fixed points with such self-
mappings. There are some classical results available concerning the case when one of the
self-mappings is continuous or when both self-mappings commute []. Some later ex-
tensions have removed the need for the continuity of one of the self-mappings [, ].
Some recent papers have investigated the existence of common fixed points in cone met-
ric spaces [, ] and in fuzzy metric spaces and under contractive conditions of integral
type [, ]. This paper is concerned with the investigation of convergence properties of
distances and the existence/uniqueness of common fixed points/common best proximity
points of two -cyclic self-mappings (refereed to simply as cyclic self-mappings) on the
union of two subsets A and B of a metric space under three contractive conditions. Sec-
tion  is devoted to the convergence properties of distances for such contractive condi-
tions which involve both cyclic self-mappings. Further results obtained in this section are
concerned with the existence and uniqueness of common fixed points for the two cyclic
self-mappings and their composite self-mapping if the involved subsets intersect and are
closed and convex. Section  gives some direct extensions of the results in Section  when
the most restrictive assumption in the section is removed. Finally, Section  extends the
relevant results of the former sections to the case that A and B intersect in the sense that
the role of common fixed points is played instead by common best proximity points under
the assumption that the subsets A and B belong to a uniformly convex Banach space.

2 Convergence properties and common fixed points under three contractive
conditions if A and B intersect

Let (X,d) be ametric space and consider two nonempty subsetsA and B ofX. It is assumed
through the manuscript that S,T : A∪ B → A∪ B are cyclic self-mappings, i.e. T(A) ⊆ B,
S(A) ⊆ B, T(B) ⊆ A and S(B) ⊆ A. Suppose, in addition, that T : A ∪ B → A ∪ B satisfies
the constraint

d(Sx,TSy)≤ αd(x,Sy) + β
(
d(x,Sx) + d(Sy,TSy)

)
+ γ

(
d(x,Sy) + d(Sx,TSy)

)
+ωD;

∀x, y(�= x) ∈ A∪ B, (.)

where

D := dist(A,B) := inf
{
d(x, y) : x ∈ A, y ∈ B

} ≥ , (.)
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where α ≥ , β ≥ , γ ≥ , ω ≥ . Note that if x ∈ A and y ∈ B or conversely, then the
various point-to-point distances in (.) are not less than D so that the parametrical con-
straint α + (β + γ ) +ω ≥  has to be fulfilled from (.) if D �= . The following result can
be stated:

Lemma . Assume that d(x,Sx) ≤ d(x,Tx); ∀x ∈ A ∪ B and that the constraints  ≤  –
ω ≤ α +(β +γ ) <  if D �=  and  ≤ α +(β +γ ) <  if D =  both hold. Then, the following
properties hold:

(i)

D≤ lim sup
n→∞

d
(
Snx,Sn+x

) ≤ ωD
 – α – (β + γ )

; ∀x ∈ A∪ B. (.)

If ω =  – α – (β + γ ) then

∃ lim
n→∞d

(
Snx,Sn+x

)
=D. (.)

(ii) d(Snx,Sn+m+x)≤ ωD +Gm(n) for any x ∈ A∪ B, ∀n ∈ N, ∀m ∈ N = N ∪ {}, where
{Gm(n)}m∈N is a nonnegative strictly decreasing real sequence for any n ∈ N, then
being convergent to zero as m → ∞, and

lim sup
m→∞

d
(
Snx,Sn+m+x

) ≤ ωD.

Proof Take y = x ∈ A∪ B and replace x → Sn–x in (.) to yield

d
(
Snx,Sn+x

)
≤ d

(
Snx,TSnx

) ≤ αd
(
Sn–x,Snx

)
+ β

(
d
(
Sn–x,Snx

)
+ d

(
Snx,TSnx

))
+ γ

(
d
(
Sn–x,Snx

)
+ d

(
TSnx,Snx

))
+ωD

≤ αd
(
Sn–x,Snx

)
+ β

(
d
(
Sn–x,Snx

)
+ d

(
Snx,TSnx

))
+ γ

(
d
(
Sn–x,Snx

)
+ d

(
TSnx,Snx

))
+ωD; ∀x ∈ A∪ B,∀n ∈ N (.)

since d(x,Sx) ≤ d(x,Tx), Snx ∈ A ⇒ (TSnx ∈ B ∧ Sn+x ∈ B) and Snx ∈ B ⇒ (TSnx ∈ A ∧
Sn+x ∈ A) for any x ∈ A∪ B and, equivalently,

d
(
Snx,Sn+x

) ≤ d
(
Snx,TSnx

)
≤ α + β + γ

 – β – γ
d
(
Sn–x,Snx

)
+

ωD
 – β – γ

; ∀x ∈ A∪ B,∀n ∈ N (.)

so that

D ≤ lim sup
n→∞

d
(
Snx,Sn+x

)

≤ lim
n→∞

[(
α + β + γ

 – β – γ

)n

d
(
Sn–x,Snx

)
+

(
ωD

 – β – γ

)( n∑
i=

(
α + β + γ

 – β – γ

)n–i
)]

≤ ωD
 – α – (β + γ )

(.)
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since  ≤ β + γ < ,  ≥ ω ≥  – α – (β + γ ), and ≤  –ω ≤ α + (β + γ ) <  if D �=  and
 ≤ α+(β +γ ) <  ifD =  imply that the contraction constant k := α+β+γ

–β–γ
< . Hence, (.)

holds and the limit (.) exists for ω =  – α – (β + γ ). Hence, Property (i) is proved. To
prove Property (ii), note that for any natural numbers m and n, one gets from (.) and
the above definition of the contraction constant k <  that

d
(
Snx,Sn+m+x

) ≤ d
(
Snx,TSn+mx

) ≤ kmd
(
Sn+x,Snx

)
+ωD

(
 – km

)
≤ kmd

(
Snx,TSnx

)
+ωD

(
 – km

)
≤ d

(
Snx,TSnx

)
+ωD; ∀x ∈ A∪ B,∀n ∈ N,∀m ∈ N, (.a)

lim sup
m→∞

d
(
Snx,Sn+m+x

) ≤ ωD; ∀x ∈ A∪ B,∀n ∈ N. (.b)

Hence, Property (ii) has been proved. �

Note that the contractive condition

d(Sx,TSy)≤ αd(x,Sy) + β
(
d(x,Sx) + d(Sy,TSy)

)
+ γd(x,Sy) +ωD (.)

is distinct from (.), while it modifies Lemma ., resulting in the subsequent result.

Lemma . Assume that d(x,Sx) ≤ d(x,Tx); ∀x ∈ A ∪ B and that the constraint ω ≥  –
(α + γ + β) >  holds. Then, the following properties hold:

(i)

D≤ lim sup
n→∞

d
(
Snx,Sn+x

) ≤ ωD
 – (α + β + γ )

; ∀x ∈ A∪ B. (.)

If ω =  – (α + β + γ ) then

∃ lim
n→∞d

(
Snx,Sn+x

)
=D. (.)

(ii) d(Snx,Sn+m+x)≤ ωD + Fm(n) for any x ∈ A∪ B, ∀n ∈ N, ∀m ∈ N = N ∪ {}, where
{Fm(n)}m∈N is a nonnegative strictly decreasing real sequence for any n ∈ N, then
being convergent to zero as m → ∞, and

lim sup
m→∞

d
(
Snx,Sn+m+x

) ≤ ωD.

Proof The contractive condition (.) removes the additive term d(Sx,TSy) from (.)
so that d(TSnx,Snx) is correspondingly removed in the resulting modified counterpart
of (.) by taking y = x ∈ A∪ B and performing the replacement x → Sn–x. The resulting
contractive constant now becomes k := α+β

–β–γ
< , subject to ωD

–β–γ
≥  – α+β

–β–γ
, which, on

the other hand, results in the needed constraint  –ω ≤ α + γ + β <  to reformulate the
results of Lemma . leading to the modified Properties (i), with (.)-(.), and (ii). �

The following two results are concerned with the existence and eventual uniqueness
of fixed points of the self-mappings S,T ,S,T ◦ S : A ∪ B → A ∪ B (with (T ◦ S)x = TSx,
∀x ∈ A∪B) if A and B intersect, are nonempty and closed. If they are also convex then the
fixed point is unique, fulfilling the property Fix(S)≡ Fix(T)≡ Fix(T ◦ S) = {z} ⊂ A∩ B.
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Theorem . Let (X,d) be a complete metric space and assume that S,T : A∪B → A∪B
are cyclic self-mappings, where A and B intersect, are nonempty and closed, and that the
contractive condition (.) holds subject to  ≤ α + (β + γ ) < . Then, there exists a fixed
point of S : A∪B→ A∪B in A∩B which is also a fixed point of the composite self-mapping
T ◦ S : A ∪ B → A ∪ B and a fixed point of T : A ∪ B → A ∪ B. If, in addition, A and B are
convex, then Fix(S)≡ Fix(T ◦ S)≡ Fix(T) consists of a single point.

Proof From Lemma . and D =  (since A∩ B �= ∅), it follows that

lim
n→∞d

(
Snx,Sn+x

)
= lim

n→∞d
(
Snx,TSnx

)
= ; ∀x ∈ A∪ B.

Thus, limn,m→∞ d(Sn+mx,Sn+m+x) = limn,m→∞ d(Sn+mx,TSn+mx) = ; ∀x ∈ A ∪ B so that
{Snx}n∈N is a Cauchy sequence; ∀x ∈ A∪ B, then it is convergent to some z ∈ A ∩ B
since A ∩ B is nonempty and closed. Also, since S : A ∪ B → A ∪ B is contractive
from Lemma ., then it is globally Lipschitz-continuous for any pair (x,Sx) with x ∈
A ∪ B and then {Snx}n∈N is in A ∩ B. Thus, Sn+x = S(Snx) → z = Sz; ∀x ∈ A ∪ B and
z ∈ Fix(S) ⊂ A ∩ B. Since Snx → z and limn→∞ d(Snx,TSnx) = ; ∀x ∈ A ∪ B then
TSn+x→ TSnx→ z ⇒ (TS)(Snx)→ TSz = z. Thus, z ∈ Fix(S) ∩ Fix(T ◦ S) ⊂ A ∩ B and
TSz = Sz = z ⇒ TSz = T(TSz) = TSz = z = Tz. Then, z ∈ Fix(S) ∩ Fix(T) ∩ Fix(T ◦ S) ⊂
A∩ B.
Finally assume, in addition, that A and B are also convex and z, z(�= z) ∈ Fix(S ◦ T) ∩

Fix(S)∩ Fix(T) so that

z, z, Snz = z, TSnz = z ∈ Fix(T ◦ S)∩ Fix(S)⊂ A∩ B

sinceA∩B is convex. Using (.) with x = z, y = z andD = , the following contradictions
lead to z �= z from the contractive assumption in Lemma . since ≤ α < –(β +γ ) < :

 < d(z, z) ≤ αnd(z, z) < d(z, z); ∀n ∈ N,

 < d(z, z) ≤ lim
n→∞

(
αn)d(z, z) = 

so that z = z and Fix(S) ≡ Fix(T) ≡ Fix(T ◦ S) = {z} ⊂ A ∩ B. Hence, the proof is com-
plete. �

Theorem. Theorem . applies “mutatis-mutandis” for the contractive constraint (.)
subject to ω ≥  – (α + γ + β) > .

The proof of Theorem . is omitted since it is similar to that of Theorem ..
Assume now that the contractive condition (.) is modified as follows to give relevance

to the composite self-mapping S ◦ T : A∪ B→ A∪ B:

max
(
μ–d

(
Tx,Tx

)
,ν–d

(
Sx,Sx

))
≤ d(Sx,STx)

≤ αd(x,Tx) + βd
(
Tx,Tx

)
+ δd(x,Sx) + γd

(
Sx,Sx

)
+ωD; ∀x ∈ A∪ B (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/136
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for some real constants α,β , δ,γ ≥  and μ,ν ≥  so that by using the lower-bound of
(.) to build a further upper-bounding condition of it, one gets

d(Sx,STx) ≤ αd(x,Tx) + βd
(
Tx,Tx

)
+ δd(x,Sx) + γd

(
Sx,Sx

)
+ωD

≤ αd(x,Tx) + βμd(Sx,STx) + δνd(x,Tx)

+ γ νd(Sx,STx) +ωD; ∀x ∈ A∪ B, (.)

which is identical to

d(Sx,STx)≤ α + δ

 – βμ – γ ν
d(x,Tx) +

ωD
 – βμ – γ ν

; ∀x ∈ A∪ B (.)

if α + δ + βμ + γ ν < . The following two results hold under the contractive condition
(.).

Lemma. Assume that the contractive condition (.) holds subject toα+δ+βμ+γ ν < 
and ω ≥  – α – (β + γ ). Then

d
(
Snx,SnTx

) ≤ knd(x,Tx) +
ωD

 – βμ – γ ν

(
 – kn

)

≤ d(x,Tx) +
ωD

 – βμ – γ ν
; ∀x ∈ A∪ B,∀n ∈ N, (.)

lim sup
n→∞

d
(
Snx,SnTx

) ≤ ωD
 – βμ – γ ν

; ∀x ∈ A∪ B (.)

and

∃ lim
n→∞d

(
Snx,SnTx

)
=D; ∀x ∈ A∪ B. (.)

Proof Redefine the contractive constant as k := α+δ
–βμ–γ ν

<  so that ωD
–βμ–γ ν

≥  – k if ω ≥
 – βμ – γ ν – α – δ. One gets (.)-(.) directly from (.). �

Theorem . Let (X,‖ ‖) be a Banach space and assume that S,T : A ∪ B → A ∪ B are
cyclic self-mappings satisfying the contractive condition (.) subject to α+δ+βμ+γ ν < ,
where A and B intersect and are nonempty and closed. Then, there exists a fixed point
of S : A ∪ B → A ∪ B in A ∩ B which is also a fixed point of the composite self-mapping
T ◦ S : A∪B → A∪B. If, in addition, A and B are convex then Fix(S)≡ Fix(T ◦ S) consists
of a single point.

Outline of proof Let (X,d) be the complete metric space where d : X × X → R+ is the
norm-induced metric by the norm on the Banach space (X,‖ ‖). If A and B intersect, then
limn→∞ d(Snx,SnTx) = ; ∀x ∈ A ∪ B from Lemma . with S : A ∪ B → A ∪ B satisfying
a contractive condition and then being globally Lipschitz continuous for any pair (x,Tx)
with x ∈ A ∪ B. Thus, the following general terms of Cauchy sequences converge to a
fixed point; i.e. Sn+x = S(Snx), Snx,SnTx → z so that z ∈ Fix(S) ≡ Fix(S ◦ T) ⊂ A∩ B. The
uniqueness of the fixed point is proved by using the convexity of A∩B as follows. Assume

http://www.fixedpointtheoryandapplications.com/content/2012/1/136
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that z, z ( �= z) are fixed points of S,S ◦ T : A ∪ B → A ∪ B in A ∩ B. Then, the following
contradictions lead to z �= z in terms that either

 <
∥∥∥∥S

(
z + z


)
– ST

(
z + z


)∥∥∥∥ = d
(
S
z + z


,ST
z + z


)
=

∥∥∥∥STz – Sz


–
STz – Sz



∥∥∥∥
≤ 


‖STz – Sz‖ + 


‖STz – Sz‖ = 


(
d(Sz,STz) + d(Sz,STz)

)
=  (.)

since z+z
 ∈ A∩B, since A∩B is convex, or all points in the segment [z, z] ⊂ A∩B, again

since A ∩ B is convex, are fixed points of the self-mappings S,S ◦ T : A ∪ B → A ∪ B.
Now, take arbitrarily closed points z′, z′′ = z′+ ∈ (z, z), which are also fixed points. Then
the continuity of S : A∪ B → A∪ B leads to a further contradiction limz′→z′′ (Sz′) = z′′ �= z′.
Then, no segment [z, z] ⊂ A∩ B can consist of fixed points of S,S ◦T : A∪ B → A∪ B. �

3 Relaxing a hypothesis of Section 2
The assumption d(x,Sx)≤ d(x,Tx); ∀x ∈ A∪B in Lemma . and Lemma ., then in The-
orem . and Theorem ., can be removed at the expense of more restrictive constraints
on the corresponding contractive conditions on the parameters. For instance, the triangle
inequality for distances yields

d
(
Snx,Sn+x

) ≤ d
(
Snx,TSnx

)
+ d

(
TSnx,Sn+x

)
; ∀x ∈ A∪ B. (.)

The contractive condition (.) becomes equivalent to

d
(
Sn+x,TSnx

) ≤ β
(
d
(
Snx,Sn+x

)
+ d

(
Snx,TSnx

))
+ γd

(
Sn+x,TSnx

)
+ωD; ∀x ∈ A∪ B (.)

with the replacements x, Sy→ Snx, y→ Sn–x. The inequality (.) is equivalent to

d
(
Sn+x,TSnx

) ≤ β

 – γ

(
d
(
Snx,Sn+x

)
+ d

(
Snx,TSnx

))
+

ωD
 – γ

; ∀x ∈ A∪ B (.)

if  ≤ γ < . The substitution of (.) into (.) yields

d
(
Snx,Sn+x

) ≤ β

 – γ

(
d
(
Snx,Sn+x

)
+ d

(
Snx,TSnx

))

+ d
(
Snx,TSnx

)
+

ωD
 – γ

; ∀x ∈ A∪ B (.)

and using (.) in (.)

d
(
Sn+x,Snx

)
≤  + β – γ

 – β – γ
d
(
Snx,TSnx

)
+

ωD
 – β – γ

≤  + β – γ

 – β – γ

(
α + β + γ

 – β – γ
d
(
Sn–x,Snx

)
+

ωD
 – β – γ

)
+

ωD
 – β – γ

=
( + β – γ )(α + β + γ )

( – β – γ )
d
(
Sn–x,Snx

)
+
( – γ )ωD
( – β – γ )

; ∀x ∈ A∪ B (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/136
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and S : A∪ B → A∪ B is cyclic contractive if (+β–γ )(α+β+γ )
(–β–γ ) < , that is, if

 ≤ α <
( – β – γ )

 + β – γ
– (β + γ ); ≤ β <

 + γ (γ – )
 – γ

; γ ∈ (/, ), (.)

ω ≥ ( – β – γ ) – ( + β – γ )(α + β – γ )
( – γ )

, (.)

where the second constraint of (.) guarantees that β + γ < (–β–γ )
+β–γ

; i.e. α ≥  and the
third one that β is nonnegative. Lemma .(i) is modified by using (.)-(.) as follows
without using the assumption d(x,Sx)≤ d(x,Tx); ∀x ∈ A∪ B.

Lemma . Assume that (.) holds subject to the constraints (.)-(.). Then

D ≤ lim sup
n→∞

d
(
Snx,Sn+x

) ≤ ( – γ )ωD
( – β – γ )

; ∀x ∈ A∪ B. (.)

If ω = (–β–γ )–(+β–γ )(α+β–γ )
(–γ ) , then

∃ lim
n→∞d

(
Snx,Sn+x

)
=D. (.)

An “ad-hoc” modified version of Theorem . follows.

Theorem . Let (X,d) be a complete metric space and assume that S,T : A∪B → A∪B
are cyclic self-mappings where A and B intersect and are nonempty and closed, and that
the contractive condition (.) holds subject to

 ≤ α <
( – β – γ )

 + β – γ
– (β + γ ); ≤ β <

 + γ (γ – )
 – γ

; γ ∈ (/, ), (.)

ω =
( – β – γ ) – ( + β – γ )(α + β – γ )

( – γ )
. (.)

Then, there exists a fixed point z of S : A∪B → A∪B in A∩B. If, in addition,  ≤ β < –γ
and  ≤ γ ≤ / then z is a fixed point of the composite self-mapping T ◦ S : A∪B → A∪B
and also of the self-mapping T : A∪ B → A∪ B. If, furthermore, A and B are convex, then
Fix(S)≡ Fix(T ◦ S) ≡ Fix(T) consists of a single point.

Proof It follows from Lemma . that if D =  then {Snx}n∈N is a Cauchy sequence conver-
gent in the closed set A ∩ B since S : A ∪ B → A ∪ B is globally Lipschitz continuous for
any x ∈ A ∪ B from (.). Thus, ∃z ∈ Fix(S) ⊂ A ∩ B, which satisfies Snx → z = Sz for any
given x ∈ A∪B. If, in addition, we take x = y = z = Sz and D =  in (.) with  ≤ β < –γ
and  ≤ γ ≤ /, one gets

d(Sz,TSz) = d(Sz,Tz) ≤ γ

 – β – γ
d(z,Sz), (.)

which only holds if and only if Sz = TSz = Tz = z so that z ∈ Fix(S)∩ Fix(T ◦ S)∩ Fix(T) ⊂
A ∩ B. The uniqueness of the fixed point follows as in the proof of Theorem . by using
the convexity assumption. �
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Reformulations of Lemma . and Theorem . without using d(x,Sx) ≤ d(x,Tx); ∀x ∈
A∪ B could be made in a similar way.

4 Properties of convergence and common best proximity points for the case
when A and B do not intersect

This section extends some relevant results from the previous sections to the case that the
subsets do not intersect provided they are subsets of a uniformly convex Banach space.
For such a case, Lemmas ., ., . and . still hold. However, Theorems ., ., .
and . do not further hold since fixed points in A∩ B = ∅ cannot exist. Thus, the further
investigation is centred on the existence and potential uniqueness of best proximity points.
It has been proved in [] that if T : A ∪ B → A ∪ B is a cyclic ϕ-contraction with A and B
being weakly closed subsets of a reflexive Banach space (X,‖ ‖), then ∃(x, y) ∈ A× B such
that D = d(x, y) = ‖x – y‖ where d : R+ → R+ is a norm-induced metric, i.e. x and y are
best proximity points. Also, if A and B are nonempty subsets of a metric space (X,d), A is
compact, B is approximatively compact with respect to A and T : A∪B → A∪B is a cyclic
contraction, then ∃(x, y) ∈ A× B such that D = d(x, y) (i.e. if limn→∞ d(Tnx, y) = d(B, y) :=
infz∈B d(z, y) for some y ∈ A and all x ∈ B then the sequence {Tnx}n∈N has a convergent
subsequence, []). Theorem . extends as follows, via Lemma ., for the general case
when A and B do not intersect.

Theorem. Assume that A and B are nonempty closed and convex subsets of a uniformly
convex Banach space (X,‖ ‖). Assume also that S,T : A ∪ B → A ∪ B are both cyclic self-
mappings and that the contractive condition (.) holds subject tomin(α,β ,γ )≥ , α+(β+
γ ) <  and d(x,Sx)≤ d(x,Tx); ∀x ∈ A∪B. Then, there exist two unique best proximity points
z ∈ A, y ∈ B of the self-mappings S,T ,T ◦ S : A∪ B → A∪ B such that

z = Sy = Ty = TSy = TSz = Sz = STy = Sy, (.)

y = Sz = Tz = TSz = TSy = Sy = STz = Sz. (.)

If A∩B �= ∅, then z = y ∈ A∩B is the unique fixed point of S,T ,T ◦ S : A∪B→ A∪B which
is in A∩ B.

Proof IfD = , i.e. A and B intersect, then this result reduces to Theorem ., with the best
proximity points being coincident and equal to the unique fixed point. Consider the case
thatA and B do not intersect, that is,D > , and take x ∈ A∪B. Assume that x ∈ A. SinceA
and B are nonempty and closed, A is convex and Lemma .(i) holds; since min(α,β ,γ )≥
, α + (β + γ ) <  and d(x,Sx)≤ d(x,Tx); ∀x ∈ A∪ B, it follows that

[
d
(
Sn+x,Snx

) →D;d
(
Sn+x,Sn+x

) →D
]

⇒ d
(
Snx,Snx

) →  as n→ ∞ (.)

(which was proved in Lemma . []). The same conclusion arises if x ∈ B since B is
convex. Thus, {Snx}n∈N is bounded and converges to some point z = z(x), being poten-
tially dependent on the initial point x which is in A if x ∈ A, since A is closed, and in B
if x ∈ B, since B is closed. Take, with no loss in generality, the norm-induced metric and
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consider the associate metric space (X,d) which can be identified with (X,‖ ‖) in this con-
text. It is now proved by contradiction that for every ε ∈ R+, there exists n ∈ N such that
d(Smx,Sn+x)≤ D+ ε for allm > n≥ n. Assume the contrary; that is, given some ε ∈ R+,
there exists n ∈ N such that d(Smkx,Snk+x) >D+ ε for allmk > nk ≥ n, ∀k ∈ N. Then,
by using the triangle inequality for distances

D + ε < d
(
Smkx,Snk+x

)
≤ d

(
Smkx,Smk+x

)
+ d

(
Smk+x,Snk+x

)
as n → ∞ (.)

one gets from (.)-(.) that

lim inf
k→∞

(
d
(
Smkx,Smk+x

)
+ d

(
Smk+x,Snk+x

))
= lim inf

k→∞
d
(
Smk+x,Snk+x

)
>D + ε. (.)

Now, one gets from (.), (.) and Lemma .(i) the following contradiction:

D + ε < lim sup
k→∞

d
(
Smk+x,Snk+x

)
≤ lim sup

nk→∞
d
(
Snk+x,Snk+x

)
+ lim sup

k→∞
d
(
Smk+x,Snk+x

)
= lim sup

nk→∞
d
(
Snk+x,Snk+x

)
=D. (.)

As a result, d(Smx,Sn+x) ≤ D + ε for every given ε ∈ R+ and all m > n ≥ n for some
existing n ∈ N. This leads by a choice of arbitrarily small ε to

D ≤ lim sup
n→∞

d
(
Smx,Sn+x

) ≤ D ⇒ ∃ lim
n→∞d

(
Smx,Sn+x

)
=D. (.)

But {Snx}n∈N is a Cauchy sequence with a limit z = Sz in A (respectively, with a limit y =
Sy in B) if x ∈ A (respectively, if x ∈ B) such that D = ‖Sz – z‖ = d(z,Sz) (Proposition .,
[]). Assume on the contrary that x ∈ A and {Snx}n∈N → z �= Sz as n → ∞ so that
Sz–Sz = z–Sz �= z– y; so that since A is convex and (X,‖ ‖) is a uniformly convex Banach
space, then being strictly convex, one has

D = d(z,Sz) = d
(
Sz + z


– Sz

)
=

∥∥∥∥Sz – Sz


+
z – Sz


∥∥∥∥
≤

∥∥∥∥Sz – Sz


∥∥∥∥ +
∥∥∥∥z – Sz



∥∥∥∥ <
D

+
D

=D, (.)

which is a contradiction and z = Sz is the best proximity point in A of S : A∪ B → A∪ B.
In the same way, {Snx}n∈N is a Cauchy sequence with a limit Sy = y ∈ B which is the
best proximity point in B of S : A ∪ B → A ∪ B if x ∈ B since B is convex and (X,‖ ‖)
is strictly convex. We prove now that y = Sz. Assume, on the contrary, that y �= Sz with
y = Sy, Sz = Sz ∈ B, z = Sz ∈ A, d(z, y) > D, d(Sz,Sy) ≥ D, d(Sz, z) = d(Sy, y) = D. One
gets the following contradiction from (.), which is obtained from (.) provided that
d(x,Sx) ≤ d(x,Tx); ∀x ∈ A ∪ B, since S : A ∪ B → A ∪ B is globally Lipschitz continuous
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from Banach contraction principle since all composite self-mappings Sn : A∪B → A∪B;
n ∈ N are contractive:

[
d
(
Snx,Sn+x

) →D = d(z, y);∀x ∈ A∪ B as n→ ∞]
⇒ [

y ← Sn+x = S
(
Snx

) → Sz as n→ ∞]
. (.)

Thus, z = Sy = Sz = Sy and y = Sz = Sy = Sz are the best proximity points of S :
A ∪ B → A ∪ B in A and B. Finally, we prove that the best proximity points z ∈ A and
y ∈ B are unique. Assume that z(�= z) ∈ A are two distinct best proximity points of S :
A∪B → A∪B in A. Thus, Sz(�= Sz) ∈ B are two distinct best proximity points in B. Oth-
erwise, Sz = Sz ⇒ Sz = Sz ⇒ z = z, since z and z are best proximity points, contra-
dicts z �= z. From Lemma .(i) and d(Sz,Sz) = d(Sz,Sz) = d(z,Sz) = d(z,Sz) =D
through a similar argument to that concluding with (.) with the convexity of A and the
strict convexity of (X,‖ ‖), guaranteed by its uniform convexity, one gets the following
contradiction:

D = d
(
Sz,Sz

) ≤
∥∥∥∥Sz – Sz



∥∥∥∥ +
∥∥∥∥z – Sz



∥∥∥∥ <
D

+
D

=D (.)

since Sz – Sz �= Sz – z. Thus, z is the unique best proximity point of S : A∪B→ A∪B
in A while Sz is its unique best proximity point in B.
Now, note that the condition d(x,Sx) ≤ d(x,Tx) applied to the best proximity points

yields

D = d(z, y) = d(z,Sz) = d(y,Sy) ≤ d = d(y,Sy)

= d
(
z,TSz

)
= d

(
y,TSy

)
= d(y,TSz) =D, (.)

which implies strict equalities in (.), i.e.

D = d(z, y) = d(z,Sz) = d(y,Sy) = d(z,Tz) = d(z,TSy)

= d
(
z,TSz

)
= d

(
y,TSy

)
= d(y,TSz) =D. (.)

If A∩ B �= ∅, then y = z is the unique fixed point of S,T ,T ◦ S : A∪ B→ A∪ B from Theo-
rem .. �

In a similar way, Theorem . might be directly extended via Lemma . for the modifi-
cation (.) of the contractive condition (.). On the other hand, Theorem . is extended
via Lemma . under the contractive constraint (.) if, in general, D �=  as follows.

Theorem . Let (X,‖ ‖) be a uniformly convex Banach space and assume that S,T :
A ∪ B → A ∪ B are cyclic self-mappings satisfying the contractive condition (.), subject
to the constraints min(α,β ,γ ,μ,ν) ≥ , ω =  – α – (β + γ ) and α + δ + βμ + γ ν <  and
d(x,Sx)≤ d(x,Tx); ∀x ∈ A∪B, where the subsets A and B are nonempty, closed and convex.
Then, there exist two unique best proximity points z ∈ A, y ∈ B of the self-mappings S,T ,T ◦
S : A∪ B → A∪ B such that (.)-(.) hold.
If A ∩ B �= ∅, then z = y ∈ A ∩ B is the unique fixed point of S,T ,T ◦ S : A ∪ B → A ∪ B

which is in A∩ B.
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The proof of Theorem. is very similar to that of Theorem. by using Lemma .. In a
similar way, Theorem . is extended as follows under Lemma . allowing the removal of
the constraint d(x,Sx)≤ d(x,Tx); ∀x ∈ A∪B. The proof is very close to that of Theorem.
and is, therefore, omitted.

Theorem . Let (X,‖ ‖) be a uniformly convex Banach space and assume that S,T : A∪
B → A∪B are cyclic self-mappings where A and B intersect and are nonempty and closed,
and that the contractive condition (.) holds subject to the constraintsmin(α,β ,γ ,μ,ν)≥ 
and

 ≤ α <
( – β – γ )

 + β – γ
– (β + γ );

 ≤ β <min

(
 + γ (γ – )

 – γ
,  – γ

)
; γ ∈ (/, ), (.)

ω =
( – β – γ ) – ( + β – γ )(α + β – γ )

( – γ )
. (.)

Then, there exist two unique best proximity points z ∈ A, y ∈ B of the self-mappings S,T ,T ◦
S : A∪ B → A∪ B such that (.)-(.) hold.
If A ∩ B �= ∅, then z = y ∈ A ∩ B is the unique fixed point of S,T ,T ◦ S : A ∪ B → A ∪ B

which is in A∩ B.

It has to be pointed out that if ω in Theorems .-. is not given by the corresponding
definitions but instead their respective equality right-hand sides are strict lower-bounds
of ω, then the distances in Lemmas ., ., . and . do not converge to D but to some
D̄ >D. The iterates Snx and Sn+x are always in A and B for any x ∈ A and, respectively, in
B andA for any x ∈ B, and they are as a result in some nonempty subsetsA′ ⊆ A and B′ ⊆ B
such that D̄ := dist(A′,B′) > D or, conversely, as n → ∞ by construction since S(A) ⊆ B,
T(A) ⊆ B, S(B) ⊆ A and T(B) ⊆ A. Lemmas . and . of [] still hold. Then, {Snx}n∈N
and {Sn+x}n∈N are Cauchy sequences which converge to some z ∈ A and Sz ∈ B such that
d(z,Sz) = D̄ if x ∈ A and to Sz and z if x ∈ B which are unique since A and B are closed and
convex and (X,‖ ‖) is a uniformly convex Banach space. The sets A′ and B′ are non-unique
but they are in families A′ and B′ of the subsets of A and B which contain by construction
the two above unique convergence points. Then, the convergence points of the Cauchy
sequences z = Sz ∈ A and Sz ∈ B are the unique best proximity points of all the closed
convex sets in the families A′ and B′ of the subsets ofA and B if D̄ >D > . Then, Theorems
.-. extend as follows.

Corollary . Assume that Theorems .-. are reformulated under respective identi-
cal assumptions except that D >  and the respective definitions of ω are replaced with
strict lower-bounds for their respective right-hand sides. Then, there exist two unique best
proximity points z = Sz ∈ A and Sz = Tz = TSz ∈ B of all sets in two families A′ and B′

of nonempty, closed and convex subsets of A and B which are convergence points of the
sequences {Snx}n∈N and {Sn+x}n∈N for x ∈ A so that Sx ∈ B.
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5 Examples
Example . Define the discrete time-invariant scalar positive dynamic systems

xn+ = Sxn := axn + b; yn+ = Tyn := cyn + d; ∀n ∈ N, (.)

where N = N ∪ {} with a, c ∈ [, ) and min(b,d) ≥  subject to initial conditions satis-
fying min(x, y) ≥ d–b

a–c . The respective solutions converge asymptotically to the globally
stable equilibrium points x* = b

–a and y* = d
–c which are both identical if d = –c

–ab for
min(x, y) ≥ b

–a . Then, note also that x* = Sx* = ab
–a + b = b

–a and y* = Ty* = x* = Sx* =
cd
–c +d = b

–a is a common unique fixed point of S,T : [ b
–a ,∞)→ [ b

–a ,∞). This result also
follows from Lemma ., and Theorem . with xn, yn(= xn) ∈ A ≡ B := [ b

–a ,∞); ∀n ∈ N

yields for x = y ∈ A and D = dist(A,B) =  since A ∩ B = A �= ∅ under the contractive con-
straint (.):

( – γ – β)d
(
Sx,Sx

) ≤ ( – γ – β)d(Sx,TSx)≤ (α + β + γ )d(x,Sx) (.)

if α + (β + γ ) <  from the necessary condition of Lemma .

d(x,Sx)≤ d(x,Tx) ⇒ d(Sx,TSx)≥ d
(
Sx,Sx

)
. (.)

Then, (.) is re-arranged as d(Sx,Sx)≤ kd(Sx,x) being contractive provided that

k =
α + β + γ

 – β – γ
<  ⇔ α + (β + γ ) < 

since the necessary condition d(x,Sx) ≤ d(x,Tx) ⇔ x ≥ d–b
a–c = x*; ∀x ∈ A holds for the

Euclidean metric d(x, y) = |x – y|. Then, S : [ b
–a ,∞) → [ b

–a ,∞) is contractive, so that
d(Sn+x,Snx) →  as n → ∞, and has a unique fixed point x* = y* = b

–a ∈ A(= A ∩ B)
since it is continuous. It also holds that x* is a fixed point of the composite mappings
T ◦ S : [ b

–a ,∞) → [ b
–a ,∞) (Theorem .) and S ◦ T : [ b

–a ,∞) → [ b
–a ,∞). Note that

the necessary condition of Lemma . d(x,Sx) ≤ d(x,Tx) ⇔ x ≥ d–b
a–c = x* justifies to fix

A≡ B = [ b
–a ,∞) as definition domain of the self-mappings S and T .

Example . The results of Example . also hold from Lemma . and Theorem . for
the contractive constraint (.) subject to α + β + γ < .

Example . Consider the following dynamic systems:

xn+ = Sxn := axn + b; xn+ = Sxn+ := –xn+; ∀n ∈ N,

yn+ = Tyn := ayn + b; yn+ = Tyn+ := –yn+; ∀n ∈ N

under the same constraints of Example .. Define real subsets A := [ b
–a ,∞) and B :=

(–∞, b
a– ] of empty intersection whose Euclidean distance is D = b

–a ≥  and consider
maps S,T : (–∞, b

a– ] → (–∞, b
a– ] being associated with the solutions of both dynamic

systems which fulfil the necessary condition of Lemma . d(x,Sx)≤ d(x,Tx) everywhere
in their definition domain. It follows the convergence to unique best proximity points x*
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being the limit of the sequences {xn} and {yn} and z* = –x* being that of the sequences
{xn+} and {yn+} if x, y ∈ A and, conversely, if x, y ∈ B which is a unique common
fixed point x* =  of S,T ,T ◦ S,T ◦ S : R → R if b = d =  with A ≡ B := R. The conclusion
also follows directly from Lemma ., under the constraint (.), with λ := α + (β + γ ) < 
and ω = –λ, and Lemma ., under the constraint (.) with α +β + γ <  and ω = –λ,
and Theorem ..

Example . The extension of the above examples to the non-scalar case is direct. For
instance, consider the discrete dynamic systems:

xn+ = Sxn :=Mxn +m; ∀n ∈ N, (.)

yn+ = Tyn := Cnyn +Gnd; ∀n ∈ N, (.)

where M(�= ),Cn(�= ) ∈ Rp×p
+ , m,Gn ∈ Rp

+, d ∈ R+ and the real sequences {Cn}, {Gn} are
bounded. Assume thatM,Gn are convergent matrices for n ∈ N and that ‖∏q+�–

j=q [Cj]‖ ≤
Kρ�; ∀q ∈ N, ∀� ∈ N for some, in general, norm-dependent K ∈ [,∞) and norm-
independent ρ ∈ [, ) real constants. Thus, {xn} → x* = (I – M)–m and {yn} → y* =∑∞

i=(
∏∞

j=i+[Cj]Gi)d. Note that the dynamic systems (.)-(.) can be easily described in
a close way for Gn ∈ Rp×p

+ and d ∈ Rp
+. We can take the Euclidean norm (and metric) in Rp

for the subsequent discussion and the corresponding vector-induced spectralmatrix norm
in Rp×p which is compatible for well-posed mixed vector/matrix norm computations with
the Euclidean vector norm. The fixed point x* = y* = (I – M)–m =

∑∞
i=(

∏∞
j=i+[Cj]Gi)d

exists for any d ∈ R+ which satisfies

(
m
d

)
∈Ker

[
–(I –M)–

...
∞∑
i=

( ∞∏
j=i+

[Cj]Gi

)]
, (.)

where I denotes the pth identity matrix, since the above null-space is nonempty which
holds from Rouché-Froebenius theorem from linear algebra, since

rank

[
–(I –M)–

...
∞∑
i=

( ∞∏
j=i+

[Cj]Gi

)]
= p

holds from (I –M) being non-singular, which implies the compatibility of the subsequent
algebraic system of linear equations:

[
–(I –M)–

...
∞∑
i=

( ∞∏
j=i+

[Cj]Gi

)](
bT

... dT)T = .

On the other hand, note that if ‖∑∞
i=(

∏∞
j=i+[Cj]Gi)d‖ < ∞ and M is critically stable (i.e.

it is singular with at least one eigenvalue of modulus one, while it has no eigenvalue with
modulus larger than one), then there are still non-unique common fixed points which are
also stable equilibrium points of both mappings if

m = (I –M)

( ∞∑
i=

( ∞∏
j=i+

[Cj]Gi

))
d = (I –M)y* (.)
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since the algebraic linear system (I –M)x* = (I –M)y* = m is indeterminate compatible
since

p = rank[I –M,m] = rank

[
I –M, (I –M)

( ∞∑
i=

( ∞∏
j=i+

[Cj]Gi

))
d

]

= rank
(
[I –M

... I –M]Block Diag(I
...m)

) ≤ rank(I –M
... I –M) = rank(I –M) = p.

A particular interesting case of both mappings having the same unique fixed point, so
that both dynamic systems have the same stable equilibriumpoint being identical to such a
fixedpoint, iswhen the seconddynamic system is a perturbation of the first one considered
to be the nominal one, that is Cn =M+ C̃n; d =G–m andGnd = (G+ G̃n)d =m+ G̃nd with
G, Gn being real square p-matrices, provided that the following equations have a solution
in G irrespective of the p-vectorm:

x* = (I –M)–m =
∞∑
i=

( ∞∏
j=i+

[Cj](G + G̃i)

)
G–m =

∞∑
i=

( ∞∏
j=i+

[Cj]
(
I + G̃iG–))m,

which is

G =

[
(I –M)– –

∞∑
i=

( ∞∏
j=i+

[Cj]

)]–( ∞∑
i=

∞∏
j=i+

[Cj]G̃i

)
(.)

provided that the sequences {Cn} and {G̃n} are such that [(I –M)– –
∑∞

i=(
∏∞

j=i+[Cj])] and∑∞
i=

∏∞
j=i+[Cj]G̃i are non-singular.

The discussion of the existence of common fixed points from Lemma . and Theo-
rem . under the constraint (.) imply

d
(
Sx,Sx

) ≤ kd(Sx,TSx); k =
α + β + γ

 – β – γ
< 

provided that d(x,Sx) ≤ d(x,Tx) ⇒ d(Sx,TSx) ≥ d(Sx,Sx) leading together to the con-
tractive condition d(Sx,Sx)≤ kd(Sx,x) for the self-mappings S,T : A→ A with

A≡ B :=
{
z = (z, z, . . . , zp) ∈ Rp : zi ≥ eTi (I –M)–m

}
, (.)

where ei is the ith unit Euclidean vector in Rp whose ith component is unit provided that
{Gn} is such that

p∑
i=

[((
MT

i – 1
)
xin +mi

) – (
CT
in – 1

)
xin +GT

ind)
] ≤ ; ∀n ∈ N (.)

for x ∈ A satisfying the sequences (.) and (.), where MT
i , CT

in and GT
in; ∀n ∈ N are

the ith row of the matrices M, Cn and GT
n ; ∀n ∈ N respectively; xin and mi are the ith

components of xn; ∀n ∈ N andm, respectively; 1 is a Euclidean p-vector with all its com-
ponents being one. It can be easily seen that (.) is equivalent to the necessary condition
‖(I – S)x‖ = d(x,Sx)≤ d(x,Tx) = ‖(I – T)x‖ of Lemma . for the Euclidean metric.
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