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1 Introduction
Throughout this paper, we assume thatH is a real Hilbert space with zero vector θ , whose
inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let K be a nonempty
subset of H and T be a mapping from K into itself. The set of fixed points of T is denoted
by F (T). The symbols N and R are used to denote the sets of positive integers and real
numbers, respectively.
Let C and K be nonempty subsets of real Banach spaces E and E, respectively. Let

A : E → E be a bounded linear mapping, T a mapping from C into itself with F (T) �= ∅
and f a bi-function from K ×K into R. The classical equilibrium problem is to find x ∈ K
such that

f (x, y) ≥ , ∀y ∈ K . (.)

The symbol EP(f ) is used to denote the set of all solutions of the problem (.), that is,

EP(f ) =
{
u ∈ K : f (u, v) ≥ ,∀v ∈ K

}
.

The equilibrium problem contains optimization problems, variational inequalities prob-
lems, saddle point problems, the Nash equilibrium problems, fixed point problems, com-
plementary problems, bilevel problems, and semi-infinite problems as special cases and
have many applications in mathematical program with equilibrium constraint; for detail,
one can refer to [–] and references therein.
In this paper, we study the following split common solution problem (SCSP) for equi-

librium problems and fixed point problems of nonlinear mappings A, T and f :
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(SCSP) Find p ∈ C such that p ∈F (T) and u := Ap ∈ K which satisfies f (u, v) ≥ , ∀v ∈ K .
The solution set of (SCSP) is denoted by

� =
{
p ∈F (T) : Ap ∈ EP(f )

}
.

Many authors had proposed somemethods to find the solution of the equilibrium prob-
lem (.). As a generalization of the equilibrium problem (.), finding a common solution
for some equilibrium problems and fixed point problems of nonlinear operators, it has
been considered in the same subset of the same space; see [–]. However, some equi-
librium problems and fixed point problems of nonlinear mappings always belong to dif-
ferent subsets of spaces in general. So the split common solution is very important for the
research on generalized equilibriums problems and fixed point problems.

Example . Let E = E =R, C := [, +∞) and K := (–∞, –]. Let A(x) = –x for all x ∈R

and Tx = x
x+ for all x ∈ C. Let f : K ×K →R be define by f (u, v) = (u – v) for all u, v ∈ K .

Clearly, A is a bounded linear operator, F (T) = {} and A() = – ∈ EP(f ). So � = {p ∈
F (T) : Ap ∈ EP(f )} �= ∅.

Example . Let E =R
 with the norm ‖α‖ = (a + a)


 for α = (a,a) ∈ R

 and E =R

with the standard norm | · |. Let C := {α = (a,a) ∈ R
|a + a ≤ } and K := [–, ]. Let

Aα = –a for α = (a,a) ∈ E and Tα = (a ,a) for all α = (a,a) ∈ C. Then F (T) =
{(, ), (, ), (, )} and A is a bounded and linear operator from E into E with ‖A‖ = .
Now define a bi-function f as f (u, v) = v – u for all u, v ∈ K . Then f is a bi-function from
K ×K into R with EP(f ) = {–}.
Clearly, p = (, ) ∈F (T), Ap = – ∈ EP(f ). So � = {p ∈F (T) : Ap ∈ EP(f )} �= ∅.

Remark . It is worth tomention that the split common solution problem in Example .
lies in two different subsets of the same space and the split common solution problem in
Example . lies in two different subsets of the different space. So, Examples . and .
also show that the split common solution problem is meaningful.

In this paper, we introduce a weak convergence algorithm and a strong convergence al-
gorithm for the split common solution problemwhen the nonlinear operator T is a quasi-
nonexpansivemapping. Some strong and weak convergence theorems are established.We
also give some examples to illustrate our results.

2 Preliminaries
We write xn ⇀ x to indicate that the sequence {xn} weakly converges to x and xn → x will
symbolize strong convergence as usual.
A Banach space (X,‖ · ‖) is said to satisfy Opial’s condition, if for each sequence {xn} in

X which converges weakly to a point x ∈ X, we have

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖, ∀y ∈ X, y �= x.

It is well known that any Hilbert space satisfies Opial’s condition.
Let K be a nonempty subset of real Hilbert spaces H . Recall that a mapping T : K → K

is said to be nonexpansive if ‖Tx–Ty‖ ≤ ‖x– y‖ for all x, y ∈ K and quasi-nonexpansive if
F (T) �= ∅ and ‖Tx – Tp‖ ≤ ‖x – p‖ for all x ∈ K , p ∈F (T).
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Example . Let H = R with the inner product defined by 〈x, y〉 = xy for all x, y ∈ R and
the standard norm | · |. Let C := [,+∞) and Tx = x+

+x for all x ∈ C. Obviously,F (T) = {}.
It is easy to see that

|Tx – | = x
 + x

|x – | ≤ |x – | for x ∈ C

and
∣∣∣∣T() – T

(



)∣∣∣∣ = 


>
∣∣∣∣ – 



∣∣∣∣.

Hence, T is a continuous quasi-nonexpansive mapping but not nonexpansive.

Definition . (see []) Let K be a nonempty closed convex subset of a real Hilbert space
H and T a mapping from K into K . The mapping T is said to be demiclosed if, for any
sequence {xn} which weakly converges to y, and if the sequence {Txn} strongly converges
to z, then Ty = z.

Remark . In Definition ., the particular case of demiclosedness at zero is frequently
used in some iterative convergence algorithms, which is the particular case when z = θ ,
the zero vector of H ; for more detail, one can refer to [].

The following concept of zero-demiclosedness was introduced in [].

Definition . (see []) Let K be a nonempty, closed, and convex subset of a real Hilbert
space and T a mapping from K into K . The mapping T is called zero-demiclosed if {xn} in
K satisfying ‖xn – Txn‖ →  and xn ⇀ z ∈ K implies Tz = z.

The following result was essentially proved in [], but we give the proof for the sake of
completeness.

Proposition . Let K be a nonempty, closed, and convex subset of a real Hilbert space
with zero vector θ and T a mapping from K into K. Then the following statements hold.
(a) T is zero-demiclosed if and only if I – T is demiclosed at θ ;
(b) If T is a nonexpansive mappings and there is a bounded sequence {xn} ⊂H such that

‖xn – Txn‖ →  as n→ , then T is zero-demiclosed.

Proof Obviously, the conclusion (a) holds. To see (b), since {xn} is bounded, there is a
subsequence {xnk } ⊂ {xn} and z ∈ H such that xnk ⇀ z. One can claim Tz = z. Indeed, if
Tz �= z, it follows from the Opial’s condition that

lim inf
k→∞

‖xnk – z‖ < lim inf
k→∞

‖xnk – Tz‖

≤ lim inf
k→∞

{‖xnk – Txnk‖ + ‖Txnk – Tz‖}
= lim inf

k→∞
‖Txnk – Tz‖

≤ lim inf
k→∞

‖xnk – z‖,

which is a contradiction. So Tz = z and hence T is zero-demiclosed. �
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Example . Let H , C, and T be the same as in Example .. Let {xn} be a sequence in C.
If xn → z and xn – Txn → , then z ∈ F(T) = {}. Indeed, since T is continuous, we have
Tz = z and z ∈ F(T) = {}. Hence, T is zero-demiclosed.

Example . Let H = R with the inner product defined by 〈x, y〉 = xy for all x, y ∈ R and
the standard norm | · |. Let C := [,+∞). Let T be a mapping from C into C defined by

Tx =

⎧⎨
⎩

x
x+ , x ∈ (, +∞),

, x ∈ [, ].

Then T is a discontinuous quasi-nonexpansive mapping but not zero-demiclosed.

Proof Obviously,F (T) = {}, and T is a quasi-nonexpansive operator. On the other hand,
let xn =  + 

n for all n ∈ N, then it is not hard to prove that xn → , xn – Txn →  and
 /∈F (T). So T is not zero-demiclosed. �

Let H andH be two Hilbert spaces. Let A :H →H and B :H →H be two bounded
linear operators. B is called the adjoint operator (or adjoint) of A, if for all z ∈ H, w ∈
H, B satisfies 〈Az,w〉 = 〈z,Bw〉. It is known that the adjoint operator of a bounded linear
operator on a Hilbert space always exists and is bounded linear and unique. Moreover, it
is not hard to show that if B is an adjoint operator of A, then ‖A‖ = ‖B‖.

Example . Let H = R
 with the norm ‖α‖ = (a + a + a)


 for α = (a,a,a) ∈ R



and H = R
 with the norm ‖γ ‖ = (c + c + c + c)


 for γ = (c, c, c, c) ∈ R

. Let
〈α,β〉 = ab + ab + ab and 〈γ ,η〉 = cd + cd + cd + cd denote the inner prod-
uct ofH andH, respectively, where α = (a,a,a), β = (b,b,b) ∈ H, γ = (c, c, c, c),
η = (d,d,d,d) ∈H. Let Aα = (a,a + a,a – a,a) for α = (a,a,a) ∈H. Then A is
a bounded linear operator from H into H with ‖A‖ =

√
. For γ = (c, c, c, c) ∈ H,

let Bγ = (c + c, c – c, c + c). Then B is a bounded linear operator from H into
H with ‖B‖ =

√
. Moreover, for any α = (a,a,a) ∈ H and γ = (c, c, c, c) ∈ H,

〈Aα,γ 〉 = 〈α,Bγ 〉, so B is an adjoint operator of A.

Let K be a closed and convex subset of a real Hilbert space H . For each point x ∈ H ,
there exists a unique nearest point in K , denoted by PKx, such that ‖x – PKx‖ ≤ ‖x – y‖,
∀y ∈ K . The mapping PK is called the metric projection from H onto K . It is well known
that PK has the following characterizations:

(i) 〈x – y,PKx – PKy〉 ≥ ‖PKx – PKy‖ for every x, y ∈H .
(ii) for x ∈H , and z ∈ K , z = PK (x) ⇐⇒ 〈x – z, z – y〉 ≥ , ∀y ∈ K .
(iii) ‖y – PK (x)‖ + ‖x – PK (x)‖ ≤ ‖x – y‖ for all x ∈ H and y ∈ K .
The following lemmas are crucial in our proofs.

Lemma . (see []) Let K be a nonempty, closed, and convex subset of H and F be a bi-
function of K ×K into R satisfying the following conditions.
(A) F(x,x) =  for all x ∈ K ;
(A) F is monotone, that is, F(x, y) + F(y,x) ≤  for all x, y ∈ K ;
(A) for each x, y, z ∈ K , lim supt↓ F(tz + ( – t)x, y)≤ F(x, y);
(A) for each x ∈ K , y �→ F(x, y) is convex and lower semicontinuous.

http://www.fixedpointtheoryandapplications.com/content/2012/1/130
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Let r >  and x ∈ H. Then there exists z ∈ K such that F(z, y) + 
r 〈y – z, z – x〉 ≥ , for all

y ∈ K.

Lemma . (see []) Let K be a nonempty, closed, and convex subset of H and let F be a
bi-function of K × K into R satisfying (A)-(A). For r > , define a mapping TF

r : H → K
as follows:

TF
r (x) =

{
z ∈ K : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ K

}
(.)

for all x ∈ H. Then the following hold:
(i) TF

r is single-valued and F(TF
r ) = EP(F) for any r >  and EP(F) is closed and convex;

(ii) TF
r is firmly nonexpansive, that is, for any x, y ∈H ,

‖TF
r x – TF

r y‖ ≤ 〈TF
r x – TF

r y,x – y〉.

Lemma . (see, e.g., []) Let H be a real Hilbert space. Then the following hold.
(a) ‖x + y‖ ≤ ‖y‖ + 〈x,x + y〉 and ‖x – y‖ = ‖x‖ + ‖y‖ – 〈x, y〉 for all x, y ∈H ;
(b) ‖αx + ( – α)y‖ = α‖x‖ + ( – α)‖y‖ – α( – α)‖x – y‖ for all x, y ∈H and

α ∈ [, ].

The following result is simple, but it is very useful in this paper; see also [].

Lemma . Let the mapping TF
r be defined as (.). Then for r, s >  and x, y ∈H,

∥∥TF
r (x) – TF

s (y)
∥∥ ≤ ‖x – y‖ + |s – r|

s
∥∥TF

s (y) – y
∥∥.

In particular, ‖TF
r (x) –TF

r (y)‖ ≤ ‖x– y‖ for any r >  and x, y ∈H, that is TF
r is nonexpan-

sive for any r > .

Proof For r, s >  and x, y ∈ H , by (i) of Lemma ., TF
r (x) = z and TF

s (y) = z for some
z, z ∈ K . By the definition of TF

r , we have

F(z,u) +

r
〈u – z, z – x〉 ≥ , ∀u ∈ K (.)

and

F(z,u) +

s
〈u – z, z – y〉 ≥ , ∀u ∈ K . (.)

So, combining (.), (.), and (A), we get


r
〈z – z, z – x〉 + 

s
〈z – z, z – y〉 ≥ ,

or

〈
z – z,

z – x
r

〉
–

〈
z – z,

z – y
s

〉
≥ ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/130
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or
〈
z – z,

s
r
(z – x)

〉
– 〈z – z, z – y〉 ≥ ,

or
〈
z – z, z – x –

r
s
(z – y)

〉
≥ ,

or
〈
z – z, z – z + z – x –

r
s
(z – y)

〉
≥ ,

which implies

‖z – z‖ ≤
〈
z – z, z – x –

r
s
(z – y)

〉
≤ ‖z – z‖

∥∥∥∥z – x –
r
s
(z – y)

∥∥∥∥,

and hence

∥∥TF
r (x) – TF

s (y)
∥∥ = ‖z – z‖

≤
∥∥∥∥z – x –

r
s
(z – y)

∥∥∥∥
≤ ‖y – x‖ +

∥∥∥∥
(
 –

r
s

)
(z – y)

∥∥∥∥
= ‖y – x‖ + |s – r|

s
∥∥TF

s (y) – y
∥∥.

In particular, the last inequality show that for any r > , TF
r is nonexpansive. The proof is

completed. �

3 Main results
In this section, we first introduce a weak convergence iterative algorithms for the split
common solution problem.

Theorem . Let H and H be two real Hilbert spaces and C ⊂ H and K ⊂ H be
two nonempty closed convex sets. Let T : C → C be zero-demiclosed quasi-nonexpansive
mappings and f : K × K → R be bi-functions with � = {p ∈ F(T) : Ap ∈ EP(f )} �= ∅. Let
A :H →H be a bounded linear operator with its adjoint B.
Given x ∈ C and η ∈ (, ). Let {xn} and {un} be sequences generated by

⎧⎪⎪⎨
⎪⎪⎩
un = Tf

rnAxn,

xn+ = ( – αn)yn + αnTyn,

yn = PC(xn + εB(Tf
rn – I)Axn), ∀n ∈N,

(.)

where {rn} ⊂ (, +∞) with lim infn→∞ rn > , ε ∈ (, 
‖B‖ ) is a constant, PC is a projection

operator from H into C and {αn} satisfies αn ∈ [η,  – η] for n ∈ N. Then xn ⇀ p ∈ � and
un ⇀ Ap ∈ EP(f ).

http://www.fixedpointtheoryandapplications.com/content/2012/1/130
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Proof Let x∗ ∈ �. Then Ax∗ ∈ EP(f ). For each n ∈N, by Lemmas . and ., we have

∥∥Tf
rnAxn – Tf

rnAx
∗∥∥ ≤ 〈

Tf
rnAxn – Tf

rnAx
∗,Axn –Ax∗〉

=


{∥∥Tf

rnAxn –Ax∗∥∥ + ‖Axn –Ax∗‖ – ∥∥Tf
rnAxn –Axn

∥∥}.
So,

∥∥Tf
rnAxn –Ax∗∥∥ ≤ ‖Axn –Ax∗‖ – ∥∥Tf

rnAxn –Axn
∥∥ for any n ∈N. (.)

By (b) of Lemma . and (.), for each n ∈N, we get

ε
〈
xn – x∗,B

(
Tf
rn – I

)
Axn

〉
= ε

〈
A(xn – x∗) +

(
Tf
rn – I

)
Axn –

(
Tf
rn – I

)
Axn,

(
Tf
rn – I

)
Axn

〉

= ε
(


∥∥Tf

rnAxn –Ax∗∥∥ +


∥∥(
Tf
rn– I

)
Axn

∥∥ –


‖Axn –Ax∗‖ – ∥∥(

Tf
rn– I

)
Axn

∥∥
)

≤ ε
(


∥∥(
Tf
rn – I

)
Axn

∥∥ –
∥∥(
Tf
rn – I

)
Axn

∥∥
)
= –ε

∥∥(
Tf
rn – I

)
Axn

∥∥. (.)

Note that for any n ∈ N,

∥∥B(
Tf
rn – I

)
Axn

∥∥ ≤ ‖B‖∥∥(
Tf
rn – I

)
Axn

∥∥, (.)

so it follows from (.), (.), and (.) that

∥∥xn+ – x∗∥∥

= ( – αn)
∥∥yn – x∗∥∥ + αn

∥∥Tyn – x∗∥∥ – ( – αn)αn‖yn – Tyn‖

≤ ∥∥yn – x∗∥∥ – η‖yn – Tyn‖

=
∥∥PC

(
xn + εB

(
Tf
rn – I

)
Axn

)
– PCx∗∥∥ – η‖yn – Tyn‖

≤ ∥∥xn + εB
(
Tf
rn – I

)
Axn – x∗∥∥ – η‖yn – Tyn‖

=
∥∥xn – x∗∥∥ +

∥∥εB
(
Tf
rn – I

)
Axn

∥∥ + ε
〈
xn – x∗,B

(
Tf
rn – I

)
Axn

〉
– η‖yn – Tyn‖

≤ ∥∥xn – x∗∥∥ + ε‖B‖∥∥(
Tf
rn – I

)
Axn

∥∥ – ε
∥∥(
Tf
rn – I

)
Axn

∥∥ – η‖yn – Tyn‖

=
∥∥xn – x∗∥∥ – ε

(
 – ε‖B‖)∥∥(

Tf
rn – I

)
Axn

∥∥ – η‖yn – Tyn‖. (.)

Since ε ∈ (, 
‖B‖ ), ε( – ε‖B‖) > , by (.), we obtain

∥∥xn+ – x∗∥∥ ≤ ∥∥yn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ (.)

and

η‖yn – Tyn‖ + ε
(
 – ε‖B‖)∥∥(

Tf
rn – I

)
Axn

∥∥

≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥ for any n ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/130
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The inequality (.) implies that limn→∞ ‖xn – x∗‖ exists. Further, from (.) and (.), we
get

lim
n→∞

∥∥xn – x∗∥∥ = lim
n→∞

∥∥yn – x∗∥∥, (.)

lim
n→∞‖yn – Tyn‖ =  (.)

and

lim
n→∞

∥∥(
Tf
rn – I

)
Axn

∥∥ = . (.)

From (.) and (.), we have

‖yn – xn‖ =
∥∥PC

(
xn + εB

(
Tf
rn – I

)
Axn

)
– PCxn

∥∥
≤ ε

∥∥B(
Tf
rn – I

)
Axn

∥∥ →  as n→ ∞. (.)

Since limn→∞ ‖xn – x∗‖ exists, {xn} is bounded and hence {xn} has a weakly convergence
subsequence {xnj}. Assume that xnj ⇀ p for some p ∈ C. Then Axnj ⇀ Ap ∈ K , ynj ⇀ p
and Tf

rnj Axnj ⇀ Ap by (.) and (.).
We argue p ∈ �. Since T is a zero-demiclosed mapping, by (.) and ynj ⇀ p, we ob-

tain p ∈ F (T). Applying Lemma ., EP(f ) = F (Tf
r ) for any r > . We claim Tf

r Ap = Ap.
If Tf

r Ap �= Ap, since Axn – Tf
rnAxn = (I – Tf

rn )Axn →  as n → ∞ from (.) and applying
Opial’s condition, we have

lim inf
j→∞ ‖Axnj –Ap‖

< lim inf
j→∞

∥∥Axnj – Tf
r Ap

∥∥
= lim inf

j→∞
∥∥Axnj – Tf

rnj
Axnj + Tf

rnj
Axnj – Tf

r Ap
∥∥

≤ lim inf
j→∞

{∥∥Axnj – Tf
rnj
Axnj

∥∥ +
∥∥Tf

rnj
Axnj – Tf

r Ap
∥∥}

= lim inf
j→∞

∥∥Tf
rnj
Axnj – Tf

r Ap
∥∥

= lim inf
j→∞

∥∥Tf
r Ap – Tf

rnj
Axnj

∥∥

≤ lim inf
j→∞

(
‖Axnj –Ap‖ + |rnj – r|

rnj

∥∥Tf
rnj
Axnj –Axnj

∥∥)
(by Lemma .)

= lim inf
j→∞ ‖Axnj –Ap‖,

which lead to a contradiction. So Ap ∈ F(Tf
r ) = EP(f ), and hence we show p ∈ �.

Now, we prove {xn} converges weakly to p ∈ �. Otherwise, if there exists other subse-
quence of {xn} which is denoted by {xnl } such that xnl ⇀ q ∈ � with q �= p. Then, by Opial’s
condition,

lim inf
l→∞

‖xnl – q‖ < lim inf
l→∞

‖xnl – p‖ < lim inf
l→∞

‖xnl – q‖.

This is a contradiction. Hence, {xn} converges weakly to an element p ∈ �.

http://www.fixedpointtheoryandapplications.com/content/2012/1/130


He and Du Fixed Point Theory and Applications 2012, 2012:130 Page 9 of 14
http://www.fixedpointtheoryandapplications.com/content/2012/1/130

Finally, we prove {un} ≡ {Tf
rnAxn} convergesweakly toAp ∈ EP(f ). Since xn ⇀ p, we have

Axn ⇀ Ap as n→ ∞. Thus, by (.), we obtain un ⇀ Ap ∈ EP(f ) as n→ ∞. The proof is
completed. �

Corollary . Let H and H be two real Hilbert spaces. Let T : H → H be a zero-
demiclosed quasi-nonexpansive mapping with F (T) �= ∅ and f : H × H → R be a bi-
function with EP(f ) �= ∅. Let A :H → H be a bounded linear operator with its adjoint B.
Given η ∈ (, ). Let {xn} and {un} be sequences generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈H,

un = Tf
rnAxn,

xn+ = ( – αn)yn + αnTyn,

yn = xn + εB(Tf
rn – I)Axn, ∀n ∈N,

(.)

where ε ∈ (, 
‖B‖ ) and {rn} ⊂ (, +∞) with lim infn→∞ rn > . Suppose � = {p ∈ F (T) :

Ap ∈ EP(f )} �= ∅ and the control coefficient sequence {αn} satisfies αn ∈ [η,  – η] for n ∈ N.
Then the sequence {xn} convergesweakly to an element p ∈ � and {un}weakly to Ap ∈ EP(f ).

Next, we introduce a strong convergence algorithm for the split common solution prob-
lem.

Theorem . Let C ⊂ H and K ⊂ H be two nonempty, closed, and convex sets, T : C →
C zero-demiclosed quasi-nonexpansive mappings and f : K × K → R a bi-function with
� = {p ∈ F (T) : Ap ∈ EP(f )} �= ∅. Let A : H → H be a bounded linear operator with the
adjoint B. Given x ∈ C, C = C and η ∈ (, ). Let {xn} and {un} be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = Tf
rnAxn,

yn = ( – αn)zn + αnTzn,

zn = PC(xn + εB(Tf
rn – I)Axn)),

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), n ∈N,

(.)

where {rn} ⊂ (, +∞) with lim infn→∞ rn > , PC is a projection operator from H into C
and ε ∈ (, 

‖B‖ ) is a constant, {αn} satisfies αn ∈ [η,  – η] for n ∈ N, then xn → p ∈ � and
un → Ap ∈ EP(f ).

Proof First, we claim � ⊂ Cn for n ∈ N. In fact, let p ∈ �. Following the same argument as
in Theorem ., we have

ε
〈
xn – p,B

(
Tf
rn – I

)
Axn

〉 ≤ –ε
∥∥(
Tf
rn – I

)
Axn

∥∥, (.)

and

∥∥B(
Tf
rn – I

)
Axn

∥∥ ≤ ‖B‖∥∥(
Tf
rn – I

)
Axn

∥∥ for any n ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/130
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By (.), (.), and (.), we get

‖yn – p‖

≤ ‖zn – p‖ – ( – αn)αn‖zn – Tzn‖

≤ ∥∥xn + εB
(
Tf
rn – I

)
Axn – p

∥∥ – η‖zn – Tzn‖

= ‖xn – p‖ + ∥∥εB
(
Tf
rn – I

)
Axn

∥∥ + ε
〈
xn – p,B

(
Tf
rn – I

)
Axn

〉
– η‖zn – Tzn‖

≤ ‖xn – p‖ + ε‖B‖∥∥(
Tf
rn – I

)
Axn

∥∥ – ε
∥∥(
Tf
rn – I

)
Axn

∥∥ – η‖zn – Tzn‖

≤ ‖xn – p‖ – ε
(
 – ε‖B‖)∥∥(

Tf
rn – I

)
Axn

∥∥ – η‖zn – Tzn‖

for any n ∈ N. (.)

Notice ε ∈ (, 
‖B‖ ), ε( – ε‖B‖) > . It follows from (.) that

‖yn – p‖ ≤ ‖zn – p‖ ≤ ‖xn – p‖ for all n ∈ N,

and hence p ∈ Cn for all n ∈N. Hence, � ⊂ Cn and Cn �= ∅ for all n ∈N.
Now, we prove Cn is a closed convex set for each n ∈N. It is not hard to verify that Cn is

closed for each n ∈ N, so it suffices to verify that Cn is convex for each n ∈ N. Indeed, let
w,w ∈ Cn+. For any γ ∈ (, ), since

∥∥yn – (
γw + ( – γ )w

)∥∥

=
∥∥γ (yn –w) + ( – γ )(yn –w)

∥∥

= γ ‖yn –w‖ + ( – γ )‖yn –w‖ – γ ( – γ )‖w –w‖

≤ γ ‖zn –w‖ + ( – γ )‖zn –w‖ – γ ( – γ )‖w –w‖

=
∥∥zn – (

γw + ( – γ )w
)∥∥,

we have ‖yn – (γw + ( – γ )w)‖ ≤ ‖zn – (γw + ( – γ )w)‖. Similarly, we also have ‖zn –
(γw + (–γ )w)‖ ≤ ‖xn–(γw + (–γ )w)‖, which implies γw + (–γ )w ∈ Cn+. Hence,
we show that Cn+ is a convex set for each n ∈N.
Notice that Cn+ ⊂ Cn and xn+ = PCn+ (x) ⊂ Cn, then ‖xn+ – x‖ ≤ ‖xn – x‖ for n ∈ N

with n ≥ . It follows that limn→∞ ‖xn – x‖ exists. Hence {xn} is bounded, which yields
that {zn} and {yn} are bounded. For any k,n ∈N with k > n, from xk = PCk (x) ⊂ Cn and the
character (iii) of the projection operator P, we have

‖xn – xk‖ + ‖x – xk‖ =
∥∥xn – PCk (x)

∥∥ +
∥∥x – PCk (x)

∥∥ ≤ ‖xn – x‖. (.)

Since limn→∞ ‖xn – x‖ exists, by (.), we have limn→∞ ‖xn – xk‖ = , which implies that
{xn} is a Cauchy sequence.
Let xn → p. One claim p ∈ �. Firstly, by xn+ = PCn+ (x) ∈ Cn+ ⊂ Cn, from (.) we have

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn+ – xn‖ ≤ ‖xn+ – xn‖ →  as n→ ∞ (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/130
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and

‖zn – xn‖ ≤ ‖zn – xn+‖ + ‖xn+ – xn‖ ≤ ‖xn+ – xn‖ →  as n→ ∞. (.)

Setting ρ = ε( – ε‖B‖), from (.) again, we have

ρ
∥∥(
Tf
rn – I

)
Axn

∥∥ + η‖zn – Tzn‖ ≤ ‖xn – p‖ – ‖yn – p‖

≤ ‖xn – yn‖
{‖xn – p‖ + ‖yn – p‖}.

So

lim
n→∞‖Tzn – zn‖ =  (.)

and

lim
n→∞

∥∥(
Tf
rn – I

)
Axn

∥∥ = . (.)

Let r > . Since xn → p as n→ ∞, Lemma . and equation (.) imply that

∥∥Tf
r Ap –Ap

∥∥ ≤ ∥∥Tf
r Ap – Tf

rnAxn
∥∥ +

∥∥Tf
rnAxn –Axn

∥∥ + ‖Axn –Ap‖

≤ ‖Axn –Ap‖ +
(
 +

|rn – r|
rn

)∥∥Tf
rnAxn –Axn

∥∥ →  as n→ ∞.

So Tf
r Ap = Ap, which say thatAp ∈F (Tf

r ) = EP(f ). On the other hand, since xn–zn →  by
(.) and xn → p, we have zn → p. Notice that T is zero-demiclosed quasi-nonexpansive
mappings, by (.), Tp = p, namely, p ∈F (T). So p ∈ �. From (.), we also have {un} ≡
{Tf

rnAxn} converges strongly to Ap ∈ EP(f ). The proof is completed. �

Corollary . Let H and H be two real Hilbert spaces. Let T : H → H be a zero-
demiclosed quasi-nonexpansive mappings with F(T) �= ∅ and f : H × H → R be a bi-
function with EP(f ) �= ∅. Let A :H → H be a bounded linear operator with the adjoint B.
Given x ∈H, C =H, and η ∈ (, ). Let {xn} and {un} be sequences generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = Tf
rnAxn,

yn = ( – αn)zn + αnTzn,

zn = xn + εB(Tf
rn – I)Axn,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖zn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+ (x), n ∈N,

(.)

where {rn} ⊂ (, +∞) with lim infn→∞ rn > , and ε ∈ (, 
‖B‖ ) is a constant. Suppose that

� = {p ∈ F (T) : Ap ∈ EP(f )} �= ∅ and the control coefficient sequence {αn} satisfies αn ∈
[η,  – η] for n ∈ N, then the sequence {xn} converges strongly to an element p ∈ � and {un}
converges strongly to Ap ∈ EP(f ).
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Example . Let H =H =R with the inner product defined by 〈x, y〉 = xy for all x, y ∈R

and the standard norm | · |. Let C := [,+∞) and Tx = x+
+x for all x ∈ C. From Exam-

ples . and ., we know that T is an zero-demiclosed quasi-nonexpansive mapping with
F(T) = {}.
Let K := [–∞, ] and f(x, y) = (y – x)(x + ) for all x, y ∈ K , then f satisfies the condition

(A)-(A) and EP(f ) = {–}. LetAx = –x for all x ∈R, thenA is a bounded linear operator
with B (the adjoint of A) = A and ‖A‖ = ‖B‖ = .
Obviously, � = {p ∈ F(T) : Ap ∈ EP(f )} = {} =F (T), so � �= ∅. Let x ∈ C, {xn} and {un}

be sequences generated by

⎧⎪⎪⎨
⎪⎪⎩
un = Tf

rnAxn,

xn+ = ( – αn)yn + αnTyn,

yn = PC(xn + 
B(T

f
rn – I)Axn), ∀n ∈N,

(.)

where, rn =  and αn ∈ (, ) for all n ∈N, PC is a projection operator fromH into C. Then
the sequence {xn} converges strongly to  ∈ � and {un} converges strongly to A() = – ∈
EP(f ).

Proof
(i) Firstly, for given rn =  for n ∈N, we prove that for any {xn} ⊂ C, there exists a

unique sequence {un}n∈N ≡ {–xn – }n∈N in K such that

f (un, v) + 〈v – un,un –Axn〉 ≥ , ∀v ∈ K ,n ∈ N. (.)

Because (.) is equivalent with

(v – un)
(
un +  + (un + xn)

)
= (v – un)

(
un +  + (un –Axn)

) ≥ , ∀v ∈ K ,n ∈ N, (.)

while (.) is true if and only if un = –(xn + ) for all n ∈N. So the conclusion is
true.

(ii) Secondly, it is not hard to compute B(Tf
rn – I)Axn = B(un –Axn) = –(xn – ) for all

n ∈N. Hence,

xn +


B
(
Tf
rn – I

)
Axn =



xn +




∈ C for all n ∈N.

(iii) By (i) and (ii), for x ∈ C, we can rewrite the algorithm (.) as follows:

xn+ = ( – αn)yn + αnTyn, yn =


xn +




(.)

and

un = Tf
rnAxn = –(xn + ), ∀n ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/130
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As in Example ., we easily obtain |Tyn – | ≤ |yn – |. Hence, from (.) and
(.), we get

|xn+ – | ≤ ( – αn)|yn – | + αn|Tyn – |
≤ |yn – | = 


|xn – |

≤ · · ·

≤
(



)n

|x – |, ∀n ∈N,

which shows xn →  ∈F (T) = �. Since un = –(xn + ), n ∈N, we obtain
un → – = A() ∈ EP(f ).

�
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