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Abstract
In this paper, we show the impact of certain general results by the author on the topic
described in the title. Here is a sample:
Let (X , 〈·, ·〉) be a real Hilbert space and let T : X → X be a nonexpansive potential

operator.
Then, the following alternative holds: either T has a fixed point, or, for each sphere S

centered at 0, the restriction to S of the functional x → ∫ 1
0 〈T (sx), x〉ds has a unique

global maximum towards which each maximizing sequence in S converges.
MSC: 47H09; 47H10; 47J30; 47N10; 49K40; 90C31

Keywords: nonexpansive operator; potential operator; fixed point; well-posedness

1 Introduction
There is no doubt that fixed point theory for nonexpansive mappings is one of the central
topics in modern analysis. Actually, since [, , ], such a theory has had (and contin-
ues to have) a strong development, and several deep (often spectacular) results have been
achieved within it in the settings such as abstract harmonic analysis (where the contribu-
tions of Professor Lau are fundamental) and the geometry of Banach spaces.
On the other hand, another very important class of operators is that composed of poten-

tial operators. That is to say, the operators that can be regarded as the Gâteaux derivative
of a suitable functional. Actually, the variational methods to study linear and nonlinear
equations are fully based on potential operators.
In the present paper, as the title says, we are interested in fixed point theory for the

intersection of the two above classes of operators in the setting of Hilbert spaces. More
precisely, we intend to show the impact of certain general results that the author has es-
tablished in the last years on such a topic.
Referring to [] for a thorough introduction to potential operators (with several exam-

ples related to them), we recall here a specific situation where one can easily appreciate
the relationships between the two classes of operators we are dealing with. Namely, let
(X, 〈·, ·〉) be a real Hilbert space, L : X → X a continuous linear operator and z ∈ X. Then,
L + z is a potential operator if and only if

〈
L(x), y

〉
=

〈
L(y),x

〉

for all x, y ∈ X, while it is nonexpansive if and only if ‖L‖L(X) ≤ .
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The following result subsumes very well the spirit of the ones that we will establish in
Section :

Theorem . Let (X, 〈·, ·〉) be a real Hilbert space and let T : X → X be a nonexpansive
potential operator. Then, the following alternative holds: either T has a fixed point, or, for
each sphere S centered at , the restriction to S of the functional x → ∫ 

 〈T(sx),x〉ds has a
unique global maximum towards which each maximizing sequence in S converges.

2 Preliminaries
From now on, (X, 〈·, ·〉) will be a real Hilbert space.
For each r > , we put

Br =
{
x ∈ X : ‖x‖ < r

}
,

Br =
{
x ∈ X : ‖x‖ ≤ r

}

and

Sr =
{
x ∈ X : ‖x‖ = r

}
.

T : X → X will be a nonexpansive operator, i.e.,

∥∥T(x) – T(y)
∥∥ ≤ ‖x – y‖

for all x, y ∈ X. We also assume that there exists a Gâteaux differentiable functional
J : X → R, with J() = , such that J ′ = T , where J ′ is the Gâteaux derivative of J . This
amounts to say that

lim
λ→+

J(x + λy) – J(x)
λ

=
〈
T(x), y

〉

for all x, y ∈ X. It can easily be checked that

J(x) =
∫ 



〈
T(sx),x

〉
ds

for all x ∈ X.
We also put

Iλ(x) =


‖x‖ – λJ(x)

for all x ∈ X, λ ∈ R. For λ =  we will simply use the symbol I instead of I.
The basic proposition which relates the fixed points of λT (|λ| ≤ ) with the functional

Iλ is as follows.

Proposition . The functional Iλ is strictly convex and coercive for |λ| < , and convex for
|λ| = . Hence, for each λ ∈ [–, ], the fixed points of λT agree with the global minima of
the functional Iλ.
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Proof Let |λ| ≤ . For each x, y ∈ X, we have

〈
x – λT(x) – y + λT(y),x – y

〉
= ‖x – y‖ – 〈

λT(x) – λT(y),x – y
〉

≥ ‖x – y‖ – |λ|∥∥T(x) – T(y)
∥∥‖x – y‖

≥ (
 – |λ|)‖x – y‖.

From this, it follows that the derivative of the functional Iλ (that is the operator x →
x – λT(x)) is monotone and that it is uniformly monotone if |λ| < . Now, the conclusion
follows from classical results ([], pp.-). �

Another very useful proposition [] is as follows.

Proposition . Let Y be a nonempty set, f , g : Y → R two functions, and λ, μ two real
numbers, with λ < μ. Let ŷλ be a global minimum of the function f + λg and let ŷμ be a
global minimum of the function f +μg.
Then, one has

g(ŷμ)≤ g(ŷλ).

If either ŷλ or ŷμ is strict and ŷλ 
= ŷμ, then

g(ŷμ) < g(ŷλ).

Let S be a topological space. As usual, given a function f : S → R and a set C ⊆ S, we say
that the problem of minimizing (resp. maximizing) f over C is well posed if the following
two conditions hold:
- the restriction of f to C has a unique global minimum (resp. maximum), say x̂;
- every sequence {xn} in C such that limn→∞ f (xn) = infC f (resp.
limn→∞ f (xn) = supC f ), converges to x̂.

A set of the type {x ∈ S : f (x)≤ r} is said to be a sub-level set of f .
Given two functionals �,� : X → R, for each λ ∈ ]–∞, +∞], we denote by M(�,� ,λ)

either the set of all global minima of � + λ� or the empty set according to whether λ ∈ R
or λ = +∞. We adopt the conventions inf∅ = +∞, sup∅ = –∞. We also set

α(�,� ,λ) :=max
{
inf
X

�, sup
M(�,� ,λ)

�
}
,

β(�,� ,λ) :=min
{
sup
X

�, inf
M(�,� ,λ)

�
}
.

Note that, by Proposition ., if a < b, one has

α(�,� ,b)≤ β(�,� ,a).

In [], we established the following basic result:

Theorem . Let �,� : X → R and let a,b ∈ ]–∞, +∞], with a < b. Assume that

α(�,� ,b) < β(�,� ,a)

http://www.fixedpointtheoryandapplications.com/content/2012/1/123
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and that, for each λ ∈ ]a,b[, the functional � + λ� has weakly compact sub-level sets and
admits a unique global minimum in X.
Then, for each r ∈ ]α(�,� ,b),β(�,� ,a)[, the problem of minimizing � over �–(r) is

well posed with respect to the weak topology. More precisely, the unique global minimum
of �|�–(r), say x̂r , agrees with the unique global minimum of � + λ� for some λ ∈ ]a,b[.
Moreover, the functions r → x̂r and r → �(x̂r) are continuous in ]α(�,� ,a),β(�,� ,b)[
with respect to the weak topology.

Finally, let us recall the result of M. Schechter and K. Tintarev [] that we will apply
jointly with Theorem . in the next section.

Theorem . Assume that J is sequentially weakly continuous. For each r > , set

ψ(r) = sup
x∈Sr

J(x).

Moreover, let A ⊆ ], +∞[ be an open interval such that, for each r ∈ A, J has no local max-
ima in Br and there exists a unique x̂r ∈ Sr satisfying J(x̂r) = ψ(r).
Then, the following conclusions hold:
(i) the function ψ is C and increasing in A;
(ii) for each r ∈ A, one has

T(x̂r) = ψ ′(r)x̂r .

3 Results
Our first result (inspired by []) shows the key role which a certain function ϕ : ], +∞[→
[, +∞[ plays in dealing with the fixed points of T .

Theorem . For each r > , put

ϕ(r) = inf
x∈Br

supBr J – J(x)
r – ‖x‖ .

If there is r >  such that ϕ(r) < 
 , then T has a fixed point which lies in Br.

If T() 
= , then one has

lim inf
r→+

ϕ(r)≥ 

.

In any case, one has

lim sup
r→+∞

ϕ(r)≤ 

.

Proof Let r >  be such that ϕ(r) < 
 . So, there exists x ∈ Br , such that

supBr J – J(x)
r – ‖x‖ <



. (.)
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By Proposition ., I is weakly lower semicontinuous, and so there exists x̂ ∈ Br such that

I(x̂)≤ I(x) (.)

for all x ∈ Br .We claim that ‖x̂‖ < r. Actually, if ‖x̂‖ = r, then, by (.), taking into account
that supBr J = supBr J , we would have



‖x‖ – J(x) <



r – sup

y∈Br
J(y) ≤ 


‖x̂‖ – J(x̂)

against (.). As a consequence, x̂ is a local minimum of the functional I , and so it is a fixed
point of T , by Proposition . again.
Now, assume that T() 
= . Arguing by contradiction, suppose that

lim inf
r→+

ϕ(r) <


.

Then, we could find a sequence of positive numbers {rn} converging to  such that ϕ(rn) <

 for all n ∈N. But then, for each n ∈ N, there would be a fixed point xn of T lying in Brn .
Hence, {xn} would converge to  in X and so, by continuity, we would have T() = .
Now, to prove the third assertion, assume thatT has a fixed point, say x̃. Then, by Propo-

sition ., we have



‖x̃‖ – J(x̃) ≤ 


‖x‖ – J(x) (.)

for all x ∈ X. Fix r > ‖x̃‖. From (.), we then obtain

sup
Br

J ≤ 

(
r – ‖x̃‖) + J(x̃)

and so

ϕ(r) ≤ supBr J – J(x̃)
r – ‖x̃‖ ≤ 


.

This clearly implies that

lim sup
r→+∞

ϕ(r)≤ 

.

Fix λ ∈ ], [. So, λT has a (unique) fixed point. By the previous remark, we clearly infer
that

lim sup
r→+∞

λϕ(r)≤ 


and so the conclusion is obtained passing to the limit for λ tending to . �

Note the following corollary of Theorem ..

http://www.fixedpointtheoryandapplications.com/content/2012/1/123
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Corollary . If T has no fixed points, then

lim
r→+∞ϕ(r) = inf

r>
ϕ(r) =



.

The next two results come from Theorem .. Clearly, fix(T) (resp. fix(–T)) will denote
the set of all fixed points of T (resp. –T ).

Theorem . Assume that T() 
= . Set

η =max
{
inf
X
J , sup

fix(–T)
J
}
, θ =min

{
sup
X

J , inf
fix(T)

J
}
.

For each λ ∈ ] – , [, let ŷλ be the unique fixed point of the operator λT.
Then, the following assertions hold:

(a) the function λ → g(λ) := J(ŷλ) is increasing in ]–, [ and its range is ]η, θ[;
(a) for each r ∈ ]η, θ[, the point x̂r := ŷg–(r) is the unique point of minimal norm of J–(r)

towards which every minimizing sequence in J–(r), for the norm, converges;
(a) the function r → x̂r is continuous in ]η, θ[.

Proof We apply Theorem . taking

a = –,

b = 

and

�(x) = –J(x),

�(x) =


‖x‖

for all x ∈ X. With these choices, we have

α(�,� ,b) = –θ

and

β(�,� ,a) = –η.

By Propositions . and ., the function g is non-decreasing in ]–, [ and g(]–, [) ⊆
[η, θ]. Now, let A ⊂ ]–, [ be a non-degenerate interval. If g was constant in A, then, by
Proposition . again, the function λ → ŷλ would be constant in A. Let ŷ be its unique
value. Then, we would have

ŷ = λT(ŷ)

for all λ ∈ A. This would imply that T(ŷ) = , and so T() = , against the assumption.
Consequently, g is increasing in ]–, [. Since, for |λ| < , the functional Iλ is weakly lower
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Ricceri Fixed Point Theory and Applications 2012, 2012:123 Page 7 of 13
http://www.fixedpointtheoryandapplications.com/content/2012/1/123

semicontinuous, coercive and with a unique global minimum (that is ŷλ), we are allowed
to apply Theorem .. Accordingly, for each r ∈ ]η, θ[, there exists λr ∈ ]–, [, with ŷλr ∈
J–(r), such that

‖ŷλr‖ < ‖x‖

for all x ∈ J–(r) \ {ŷλr }, and each sequence {yn} in J–(r) with limn→∞ ‖yn‖ = ‖ŷλr‖, weakly
converges to ŷλr . Since X is a Hilbert space, this implies that {yn} strongly converges to ŷλr .
Likewise, we get the strong continuity in ]η, θ[ of the function r → ŷλr from its weak
continuity that is ensured by Theorem . too. Now, to get (a), (a), (a), it is enough to
observe that

λr = g–(r)

for all r ∈ ]η, θ[. �

Theorem . Assume that T() 
= . Set

θ = inf
x∈fix(T)

‖x‖.

For each λ > , let ûλ be the unique fixed point of the operator 
λ
T.

Then, the following assertions hold:

(b) the function λ → h(λ) := ‖ûλ‖ is decreasing in ], +∞[ and its range is ], θ[;
(b) for each r ∈ ], θ[, the point v̂r := ûh–(r) is the unique global maximum of J|Sr towards

which every maximizing sequence for J|Sr converges;
(b) the function r → v̂r is continuous in ], θ[.

If, in addition, the functional J is sequentially weakly continuous and has no local max-
ima in Bθ , then, with ψ defined as in Theorem ., the following further assertions hold:

(b) the function ψ is C, increasing and strictly concave in ], θ[;
(b) one has

T(v̂r) = ψ ′(r)v̂r

for all r ∈ ], θ[;
(b) one has

ψ ′(r) =


h–(r)

for all r ∈ ], θ[.

Proof This time, we apply Theorem . taking

a = ,

b = +∞

http://www.fixedpointtheoryandapplications.com/content/2012/1/123
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and

�(x) =


‖x‖,

�(x) = –J(x)

for all x ∈ X. With these choices, we have

α(�,� ,b) = 

and

β(�,� ,a) =


θ.

Since  /∈ fix(T) and fix(T) is closed, we have θ > . Of course, for each λ > , the func-
tional x → λ

‖x‖ – J(x) is weakly lower semicontinuous, coercive and with a unique global
minimum (that is ûλ), and so we can derive (b), (b), (b) from Theorem ., reasoning
as in the proof of Theorem .. Under the additional assumptions on J , (b), (b) follow
directly from Theorem ., taking A = ], θ[. Finally, (b) is a consequence of (b) and of
the fact that T(v̂r) = h–(r)v̂r . �

Remark . Of course, Theorem . is a by-product of Theorem ., as, if T has no fixed
points, we have θ = +∞. On the other hand, if, for some r > , the problem of maximizing
J over Sr is not well posed, then T has a fixed point lying in Br . Indeed, from (b) it follows
that r ≥ θ. But, fix(T) is a closed and convex set. So, it admits a point of minimal norm.
By the above inequality, such a point lies in Br and we are done.

Now, we want to present the form that Theorem . assumes when T is an affine oper-
ator.
As usual, for a linear operator L : X → X, we say that
- L is compact if, for each bounded set C ⊂ X , the set L(C) is compact;
- L is symmetric if

〈
L(x),u

〉
=

〈
L(u),x

〉

for all x,u ∈ X .

Theorem . Let L : X → X be a symmetric continuous linear operator, with norm , and
let z ∈ X \ {}.
For each λ > , let ŵλ be the unique fixed point of the operator 

λ
(L – z). Moreover, set

θ = inf
x∈fix(L–z)

‖x‖

and, for each r > ,

δ(r) = sup
x∈Sr

H(x),

http://www.fixedpointtheoryandapplications.com/content/2012/1/123
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where

H(x) =
〈


L(x) – z,x

〉
.

Then, the following assertions hold:

(c) the function λ → k(λ) := ‖wλ‖ is decreasing in ], +∞[ and its range is ], θ [;
(c) for each r ∈ ], θ [, the point ω̂r := ŵk–(r) is the unique global maximum of H|Sr towards

which every maximizing sequence for H|Sr converges;
(c) the function r → ω̂r is continuous in ], θ [.

If, in addition, T is compact, then the following further assertions hold:

(c) the function δ is C, increasing and strictly concave in ], θ [;
(c) one has

L(ω̂r) – δ′(r)ω̂r = z

for all r ∈ ], θ [;
(c) one has

δ′(r) =


k–(r)

for all r ∈ ], θ [.

Before giving the proof of Theorem ., we establish the following

Proposition . Let L : X → X be a symmetric continuous linear operator and let H be
defined as in Theorem ..
Then, for x̃ ∈ X, the following are equivalent:

(j) x̃ is a local maximum of H .
(jj) x̃ is a global maximum of H .
(jjj) L(x̃) = z and supx∈X〈L(x),x〉 ≤ .

Proof First, observe that the symmetry of L is equivalent to the fact that the functional H
is Gâteaux differentiable with derivative given by

H ′(x) = L(x) – z

for all x ∈ X ([], p.). By the symmetry of L again, it is easy to check that, for each
x ∈ X, the inequality

H(x̃ + x) ≤ H(x̃) (.)

is equivalent to

〈
L(x̃) – z +



L(x),x

〉
≤ . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/123
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Now, if (j) holds, thenH ′(x̃) =  (that is L(x̃) = z) and there is r >  such that (.) holds for
all x ∈ Br . So, from (.), we have 〈L(x),x〉 ≤  for all x ∈ Br and then, by linearity, for all
x ∈ X, and this shows (jjj). Vice versa, if (jjj) holds, then (.) is satisfied for all x ∈ X and
so by (.), x̃ is a global maximum of H , and the proof is complete. �

Proof of Theorem . As we observed above, the symmetry of L is equivalent to the fact
that L agrees with the derivative of H . So, since z 
= , we can apply Theorem . taking
T = L – z. In such a way, we derive (c)-(c) directly from (b)-(b). Now, assume that L
is also compact. Then, this implies that H is sequentially weakly continuous ([], Corol-
lary .). Suppose that H has a local maximum, say x̃. Then, by Proposition ., x̃ is a
global maximum of H . In particular, this implies that the functional x → 

‖x‖ –H(x) is
coercive and hence, by sequential weak lower semicontinuity, it has a global minimum.
That is, fix(L – z) 
= ∅, by Proposition .. So, by Proposition ., it clearly follows that

‖x̃‖ ≥ θ .

In other words, H has no local maxima in Bθ . At this point, (c)-(c) come directly from
(b)-(b). �

Some remarks on Theorem . are now in order.

Remark . Note that the compactness of L serves only to guarantee that the functional
x → 〈L(x),x〉 is sequentially weakly continuous. So, Theorem. actually holds under such
a weaker condition.

Remark . Anatural question is: if assertions (c)-(c) hold, must the operator L be sym-
metric and the functional x → 〈L(x),x〉 sequentially weakly continuous?

Remark . Note that if L, besides being compact and symmetric, is also positive (i.e.,
infx∈X〈L(x),x〉 ≥ ), then, by classical results, the operator x → L(x) – x is not surjective,
and so there are z ∈ X for which the conclusion of Theorem . holds with θ = +∞.

In the previous results, the essential assumption is that T() 
= . In the next (and last)
result, to the contrary, we highlight a remarkable uniqueness property occurring when
supX J =  (and so T() = ). Actually, in such a case,  is the unique fixed point of λT for
each λ ∈ ], [.
More precisely, for each real Hilbert space (Y , 〈·, ·〉), we denote by AY the class of all

nonexpansive potential operators P : Y → Y such that

sup
x∈Y

∫ 



〈
P(sx),x

〉
ds = .

Set

γY = inf
P∈AY

inf
{
λ >  : x = λP(x) for some x 
= 

}
.

We have:

http://www.fixedpointtheoryandapplications.com/content/2012/1/123
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Theorem . For any real Hilbert space (Y , 〈·, ·〉), with Y 
= {}, one has

γY = .

We first prove

Proposition . One has

γR = .

Proof Let P ∈ AR. Fix λ ∈ ], [. Let us prove that  is the only fixed point of λP. Arguing
by contradiction, assume that x is a non-zero fixed point of λP. It is not restrictive to
assume that x >  (otherwise, we would work with P(–x)). Consider now the function
χ : R → R defined by

χ (x) =

⎧⎪⎪⎨
⎪⎪⎩
– x

 if x < x
 ,

x
 – xx

 + x
 if x

 ≤ x≤ x,

– x
 + xx

 – x
 if x > x.

Clearly, χ ∈ C(R). Let x > . If  < x≤ x
 , we have

χ ′(x) = –x≤ P(x).

If x > x
 , we have

χ ′(x) =
x


– |x – x| = λP(x)


– |x – x| < P(x) – |x – x| ≤ P(x).

So, in particular, we get

x


∫ 


P
(
x


s
)
ds =

∫ x



P(x)dx >

∫ x



χ ′(x)dx = χ

(
x


)
= 

which contradicts the fact P ∈AR. From what we have just proven, it clearly follows that

≤ γR.

Now, fix any μ > . Continue to consider the function χ defined above (for a fixed x > ).
Clearly, the function 

μ
χ ′ belongs to AR and

x = μ
χ ′(x)

μ
.

Of course, from this we infer that

γR ≤ μ,

and the conclusion clearly follows. �
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Proof of Theorem . First, let us prove that

γY ≤ . (.)

To this end, fix any Q ∈AR and any λ >  such that

t̂ = λQ(t̂)

for some t̂ 
= . Fix also u ∈ Y , with ‖u‖ = , and consider the operator P : Y → Y defined
by

P(x) =Q
(〈u,x〉)u

for all x ∈ Y . Clearly, P ∈AY . Finally, set

x̂ = λQ(t̂)u.

Of course, x̂ 
= . Since

〈u, x̂〉 = λQ(t̂)

we also have

〈u, x̂〉 = t̂

and so

x̂ = λP(x̂).

From this, it clearly follows that

γY ≤ γR,

and so (.) follows now from Proposition ..
Now, let us prove that

≤ γY . (.)

To this end, fix P ∈AY , λ >  and x̃ ∈ Y \ {} such that

x̃ = λP(x̃). (.)

Then, consider the function Q : R → R defined by

Q(t) =
〈
P
(

tx̃
‖x̃‖

)
,
x̃

‖x̃‖
〉

http://www.fixedpointtheoryandapplications.com/content/2012/1/123
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for all t ∈ R. Clearly, the primitive of Q vanishing at  is non-positive in R. Moreover, for
each t, s ∈ R, we have

∣∣Q(t) –Q(s)
∣∣ =

∣∣∣∣
〈
P
(

tx
‖x‖

)
– P

(
sx
‖x‖

)
,
x

‖x‖
〉∣∣∣∣

≤
∥∥∥∥P

(
tx
‖x‖

)
– P

(
sx
‖x‖

)∥∥∥∥ ≤ |t – s|.

This shows that Q is nonexpansive, and so Q ∈AR. Now, from (.), we get

‖x̃‖ = λ

〈
P(x̃),

x̃
‖x̃‖

〉

that is

‖x̃‖ = λQ
(‖x̃‖).

From this, we infer that

γR ≤ γY .

So (.) follows from Proposition ., and the proof is complete. �

For specific consequences of Theorem . concerning nonlinear elliptic equations, we
refer to the very interesting papers [] and [] where a problem asked in [] was solved.

Competing interests
The author declares that he has no competing interest.

Acknowledgement
Dedicated to Professor Anthony To-Ming Lau, with esteem and friendship.

Received: 4 April 2012 Accepted: 10 July 2012 Published: 24 July 2012

References
1. Browder, FE: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041-1044 (1965)
2. Fan, XL: A remark on Ricceri’s conjecture for a class of nonlinear eigenvalue problems. J. Math. Anal. Appl. 349,

436-442 (2009)
3. Fan, XL: On Ricceri’s conjecture for a class of nonlinear eigenvalue problems. Appl. Math. Lett. 22, 1386-1389 (2009)
4. Göhde, D: Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 30, 251-258 (1965)
5. Kirk, WA: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 72, 1004-1006 (1965)
6. Ricceri, B: A general variational principle and some of its applications. J. Comput. Appl. Math. 113, 401-410 (2000)
7. Ricceri, B: Uniqueness properties of functionals with Lipschitzian derivative. Port. Math. 63, 393-400 (2006)
8. Ricceri, B: Well-posedness of constrained minimization problems via saddle-points. J. Glob. Optim. 40, 389-397 (2008)
9. Ricceri, B: A remark on a class of nonlinear eigenvalue problems. Nonlinear Anal. 69, 2964-2967 (2008)
10. Schechter, M, Tintarev, K: Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems. Differ.

Integral Equ. 3, 889-899 (1990)
11. Zeidler, E: Nonlinear Functional Analysis and Its Applications, vol. III. Springer, Berlin (1985)

doi:10.1186/1687-1812-2012-123
Cite this article as: Ricceri: Fixed points of nonexpansive potential operators in Hilbert spaces. Fixed Point Theory and
Applications 2012 2012:123.

http://www.fixedpointtheoryandapplications.com/content/2012/1/123

	Fixed points of nonexpansive potential operators in Hilbert spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Results
	Competing interests
	Acknowledgement
	References


