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1 Introduction
Let E be a real Banach space andE* be the dual space ofE. Thenormalized dualitymapping
J : E → E* is defined by

Jx =
{
x* ∈ E* :

〈
x,x*

〉
= ‖x‖∥∥x*∥∥,∥∥x*∥∥ = ‖x‖}

for all x ∈ E, where 〈·, ·〉 denotes the duality pairing. A Banach space E is said to be uni-
formly convex if given ε ∈ (, ], there exists δ >  such that for all x, y ∈ E with ‖x‖ ≤ ,
‖y‖ ≤  and ‖x–y‖ ≥ ε, we have ‖ x+y

 ‖ ≤ – δ. E is strictly convex if ‖ x+y
 ‖ <  for all x, y ∈ E

with ‖x‖ = ‖y‖ =  and x 	= y. The space E is said to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for all x, y ∈ U , where U := {z ∈ E : ‖z‖ = }. It is also uniformly smooth if the limit
exists uniformly for x, y ∈ U . It is well known that if E is strictly convex, smooth and re-
flexive, then the duality map J is one-to-one, single-valued and onto. Also if E is uniformly
smooth, then J is norm-to-norm uniformly continuous on bounded subsets of E.
Let C be a nonempty, closed, convex subset of E. Let T : C → C be a map, a point x ∈ C

is called a fixed point of T if Tx = x and the set of all fixed points of T is denoted by
F(T). We recall that a point p ∈ C is called an asymptotic fixed point of T if there exists a
sequence {xn} ⊂ C which converges weakly to p and limn→∞ ‖xn – Txn‖ = . The mapping
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T is called Lipschitz if there exists L >  such that ‖Tx–Ty‖ ≤ L‖x– y‖ for all x, y ∈ C, and
if L = , then T is called nonexpansive. T is asymptotically nonexpansive if there exists a
sequence {tn} ⊂ [,∞) such that tn →  as n → ∞ and ‖Tnx – Tny‖ ≤ tn‖x – y‖ for all
n ∈ N and for all x, y ∈ C. The map T is quasi-nonexpansive if F(T) 	= ∅ and for all x ∈ C,
q ∈ F(T), ‖Tx – q‖ ≤ ‖x – q‖ and is called asymptotically quasi-nonexpansive if F(T) 	= ∅
and ‖Tnx – q‖ ≤ tn‖x – q‖ for all x ∈ C, q ∈ F(T) and the sequence {tn} ⊂ [,∞) satisfies
tn →  as n→ ∞. ThemappingT is called generalized asymptotically quasi-nonexpansive
if F(T) 	= ∅, there exist sequences {sn} ⊂ [, ], {tn} ⊂ [,∞) with sn → , tn →  as n→ ∞
and ‖Tnx – q‖ ≤ tn‖x – q‖ + sn for all x ∈ C, q ∈ F(T) and n ∈ N.
The map T is said to be
(i) asymptotically regular on C if limn→∞ ‖Tn+x – Tnx‖ =  for all x ∈ C,
(ii) uniformly asymptotically regular on C if lim supn→∞x∈K ‖Tn+x – Tnx‖ =  holds for

any bounded subset K of C.
For a positive real number L, themapT is calleduniformly L-Lipschitzian if ‖Tnx–Tny‖ ≤
L‖x – y‖ for all x, y ∈ C and n ∈ N.
It is clear from these definitions that every nonexpansive mapping with a fixed point

is quasi-nonexpansive and all asymptotically nonexpansive maps with fixed points are
asymptotically quasi-nonexpansive. Recently, the class of generalized asymptotically
quasi-nonexpansive mappings was introduced and studied by Shahzad and Zegeye [].
They proved that every asymptotically quasi-nonexpansive mapping is a generalized
asymptotically quasi-nonexpansive mapping and the inclusion is proper. The class of
quasi-nonexpansive mappings was introduced and studied first in  by Diaz and Met-
calf []. Goebel andKirk [] introduced the class of asymptotically nonexpansivemappings
and proved that ifC is a nonempty, closed, convex and bounded subset of a uniformly con-
vex Banach space E, then an asymptotically nonexpansive mapping T : C → C has a fixed
point.
Kirk [], proved that if E is a reflexive Banach space with normal structure and C is a

nonempty, closed, convex and bounded subset of E, a nonexpansive map T : C → C has
a fixed point in C. This result was extended to a finite family of nonexpansive maps by
Bellus and Kirk [] and then to an infinite family of nonexpansive maps by Lim [].
Let H be a real Hilbert space, C be a nonempty closed convex subset of H . Recall that

for each x ∈ H there exists a unique nearest point in C to x denoted by PCx. That is, ‖x –
PCx‖ ≤ ‖x – y‖ for all y ∈ C. PC is called ametric projection of H onto C.
It is well known that the metric projection is nonexpansive only in a Hilbert space. This

fact actually characterizes Hilbert spaces. Alber [], introduced a generalized projection
map

∏
C : E → C in a Banach space which is an analogue of the metric projection in a

Hilbert space.
Let E be a real normed linear spacewith single-valued normalized dualitymap. Consider

the functional defined by φ(x, y) = ‖x‖ +‖y‖ –〈x, Jy〉.We observe that in aHilbert space,
φ(x, y) reduces to ‖x– y‖. It is clear that for x, y ∈ E, the following inequality holds (‖x‖–
‖y‖) ≤ φ(x, y) ≤ (‖x‖ + ‖y‖). The generalized projection map

∏
C : E → C is a map that

assigns to an arbitrary point x ∈ E, the minimum point of the functional φ(x, ·) over C,
that is,

∏
C x = x* where φ(x,x*) =miny∈C φ(x, y). Existence and uniqueness of the map

∏
C

follow from the properties of the functional φ and the strict monotonicity of J (see, for
example, []).
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Let C be a nonempty, closed, and convex subset of E, a mapping T : C → C is said to be
(i) relatively nonexpansive if F(T) = F̃(T) and φ(q,Tx) ≤ φ(q,x) for all x ∈ C, q ∈ F(T)

where F̃(T) denotes the set of asymptotic fixed points of T ;
(ii) φ-nonexpansive if φ(Tx,Ty) ≤ φ(x, y) for all x, y ∈ C;
(iii) φ-asymptotically nonexpansive if there exists a sequence {tn} ⊂ [,∞) satisfying

tn → ∞ as n→ ∞ and φ(Tnx,Tny) ≤ tnφ(x, y) for all x, y ∈ C, n ∈N;
(iv) quasi-φ-asymptotically nonexpansive if F(T) 	= ∅ and φ(q,Tnx) ≤ tnφ(q,x) for all

x ∈ C, q ∈ F(T), n ∈N, where {tn} is as in (iii) above.
We shall call the map T generalized quasi-φ-asymptotically nonexpansive in the light of

[], if F(T) 	= ∅ and there exist sequences {sn} ⊂ [, ], {tn} ⊂ [,∞) with sn → , tn → 
as n→ ∞ and φ(q,Tnx) ≤ tnφ(q,x) + sn for all x ∈ C, q ∈ F(T) and n ∈N.
Existence and approximations of fixed points of mappings of nonexpansive type and

their generalizations were studied by numerous authors, see, for example, [, , , , ,
, –, , , ] and the references therein.
In , Das and Debata [] studied the Ishikawa-like scheme defined by x ∈ C,

xn+ = αnS
[
βnTxn + ( – βn)xn

]
+ ( – αn)xn, (.)

where {αn} and {βn} are sequences in [a,b] such that  < a < b < . They studied the scheme
for two quasi-nonexpansive maps S and T and proved strong convergence of the sequence
{xn} to a common fixed point of S and T in a real strictly convex Banach space. Takahashi
and Tamura [] proved strong and weak convergence of the sequence defined by (.) to a
common fixed point of a pair of nonexpansivemappings T and S using a weaker condition
on the maps.
Using a similar scheme,Wang [] proved strong and weak convergence theorems for a

pair of nonself asymptotically nonexpansivemappings in a uniformly convex Banach space.
Shahzad andUdomene [] proved the necessary and sufficient conditions for the strong

convergence of the scheme of type (.) to a common fixed point of two uniformly contin-
uous asymptotically quasi-nonexpansive mappings in a real Banach space.
Chidume and Ali [] introduced and proved strong convergence of the scheme defined

by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

xn+ = P[( – αn)xn + αnT(PT)n–yn+m–],

yn+m– = P[( – αn)xn + αnT(PT)n–yn+m–],
...

yn = P[( – αmn)xn + αmnTm(PTm)n–xn], n≥ 

to a common fixed point of a finite family of nonself asymptotically nonexpansive map-
pings in a uniformly convex Banach space.
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Khan et al. [] introduced and studied the following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ K , yn = xn,

xn+ = ( – αkn)xn + αknTn
k yk–n,

yk–n = ( – αk–n)xn + αk–nTn
k–yk–n,

...

yn = ( – αn)xn + αnTn
 yn, n ≥ 

for a commonfixed point of a finite family of asymptotically quasi-nonexpansivemappings
in a Banach space.
It is known that only weak convergence theorems were proved for nonexpansive maps

even in Hilbert spaces using Mann and Ishikawa type schemes.
In  Solodov and Svaiter [] introduced a hybrid proximal point type iterative

scheme and proved the strong convergence of the scheme to a zero of a maximal mono-
tone operator.
In  Nakajo and Takahashi [] proposed a hybrid Mann scheme for nonexpansive

mappings and nonexpansive semigroups and proved strong convergence theorems.
Kim and Xu [] generalized the result of Nakajo and Takahashi by proving strong con-

vergence theorems for asymptotically nonexpansive mappings and asymptotically nonex-
pansive semigroups. Plubtieng and Ughchittrakool [] introduced an Ishikawa type hy-
brid scheme for two asymptotically nonexpansive mappings and two asymptotically non-
expansive semigroups.
Takahashi et al. [] studied a simpler hybrid scheme for nonexpansive mappings in

Hilbert spaces. Inchan and Plubtieng [], adopted this simpler scheme of Takahashi et al.
with little modification for two nonexpansive maps and two nonexpansive semigroups.
They proved the following theorem:

Theorem . ([]) Let H be a real Hilbert space and let C be a nonempty, closed, convex,
and bounded subset of H. Let S,T : C → C be two asymptotically nonexpansive mappings
with sequences {sn} and {tn} respectively and F = F(S) ∩ F(T) 	= ∅. Let x ∈ C. Then the
sequence {xn} generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn = αnxn + ( – αn)Tn
 zn,

zn = βnxn + ( – βn)Snxn,

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖ + θn},
xn+ = PCn+x, n ∈N,

(.)

converges strongly to z = PFx, where θn = (–αn)[(tn –)+ (–βn)tn(sn–)](diamC) → 
as n→ ∞ and  ≤ αn ≤ a < ,  < b≤ βn ≤ c <  for all n ∈N.

Kimura and Takahashi [] proved strong convergence theorem for the family of rela-
tively nonexpansive mappings in strictly convex Banach spaces having Kadec-Klee prop-
erty and Frechet differentiable norm.
Recently, Zhou et al. [] have proved strong convergence theorem for the family Ti :

C → C, i ∈ I of quasi-φ-asymptotically nonexpansive mappings, where C is a nonempty,
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closed, convex and bounded subset of a uniformly smooth and uniformly convex Banach
space E.
More recently, Xu et al. [] have studied a modified hybrid scheme for fixed point of

families of quasi-φ-asymptotically nonexpansive mappings. They proved the following
theorem:

Theorem . ([]) Let C be a nonempty closed convex subset of a uniformly convex and
uniformly smooth Banach space E, and let Ti : C → C, i ∈ I be a family of closed and quasi-
φ-asymptotically nonexpansive mappings such that F :=

⋂
i∈I F(Ti) 	= ∅. Assume that every

Ti, i ∈ I is asymptotically regular on C. Let {αn}, {βn} and {γn} be real sequences in [, ]
such that limn→∞ αn = , lim infn→∞ γn > . Define a sequence {xn} in C by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yni = j–(αnjx + βnjxn + γnjTn
i xn),

C = C,

Cn,i = {z ∈ Cn– : φ(z, yn,i) ≤ αnφ(z,x) + (βn + γnkn,i)φ(z,xn)},
Cn =

⋂
i∈I Cn,i,

xn+ =
∏

Cn x.

(.)

Then, {xn} converges strongly to
∏

F x, where
∏

F is the generalized projection from E
onto F.

Motivated by these results, we have the purpose in this paper to study a new modi-
fied hybrid iterative scheme and prove a strong convergence theorem for a finite family
of generalized quasi-φ-asymptotically nonexpansive mappings in a uniformly convex and
uniformly smooth real Banach space. Our theorems improve and unify several recent im-
portant results.

2 Preliminaries
Consider a sequence {Cn} of nonempty closed and convex subsets of a reflexive Banach
space E. Let s– limCn denotes the set of all strong limits of sequences {xn} satisfying xn ∈
Cn for all n ∈ N and w – limCn be the set of all weak limits of sequences {yi} satisfying
yi ∈ Cni for all i ∈N where {Cni} is some subsequence of {Cn}. The sequence {Cn} is said to
converge to C* in the sense of Mosco [] if s – limCn = w – limCn = C*. The Mosco limit
of {Cn} is denoted byM – limCn.
We shall make use of the following important results in the sequel.

Lemma . (Kamimura and Takahashi []) Let E be a real smooth and uniformly convex
Banach space and {xn}, {yn} be two sequences of E. If limn→∞ φ(xn, yn) =  and either {xn}
or {yn} is bounded, then limn→∞ ‖xn – yn‖ = .

Lemma. (Ibaraki, Kimura andTakahashi []) Let C be a nonempty closed convex subset
of a real uniformly smooth and uniformly convex Banach space E. Let {Cn} be a sequence
of nonempty closed convex subsets of C. If M – limCn = C* exists and is nonempty, then
{∏Cn x} converges strongly to {∏C* x} for each x ∈ E.
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The result in [] is more general than the one presented here, but this is sufficient for
our purpose.

Lemma . Let C be a nonempty closed convex subset of a real smooth Banach space and
T : C → C be a closed generalized quasi-φ-asymptotically nonexpansive mapping. Then
F(T) is closed and convex.

Proof By the closedness assumption on T and the definition of φ, the result follows im-
mediately. �

3 Main results
Theorem . Let E be a real uniformly convex and uniformly smooth Banach space and
C be a nonempty, bounded, closed and convex subset of E. Let Tk : C → C, k = , , , . . . ,m
be a finite family of closed generalized quasi-φ-asymptotically nonexpansive maps with
corresponding sequences {tkn} and {skn}, k = , , , . . . ,m such that tkn →  and skn → 
as n → ∞. Let F =

⋂m
k= F(Tk) 	= ∅ and let tn = max≤k≤m tkn, n ∈ N. Assume also that the

maps Tk, k = , , . . . ,m are uniformly asymptotically regular. Let x ∈ C be arbitrary and
C = C and let M = supx,y∈C φ(x, y). For k = , , . . . ,m, let {βkn} be sequences in (a,b) for
some a,b ∈ (, ), a < b. Let {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x,

zn = j–(βnjxn + ( – βn)jTn
 xn),

zkn = j–(βknjxn + ( – βkn)jTn
k z(k–)n), k = , , , . . . ,m,

Ckn = {v ∈ Cn– : φ(v, zkn) ≤ φ(v,xn) + γkn}, k = , , , . . . ,m,

Cn =
⋂m

k=Ckn,

xn+ =
∏

Cn x, n ≥ ,

(.)

where γkn = (tn – )( – βkn)[ + tkn( – β(k–)n)[ + t(k–)n( – β(k–)n) × [ + t(k–)n( –
β(k–)n)[· · · [+ tn(–βn)] · · · ]]]]M+

∑k
i= sin

∏k
j=i(–βjn)

∏k
l=i+ tln. Then the sequence {xn}

converges strongly to x* =
∏

F x.

Proof We start by showing that F ⊂ Cn ∀n ∈ N∪ {}. We do this by induction. F ⊂ C by
definition.We suppose that F ⊂ CN for someN ∈N∪{}. We observe that for v ∈ F , using
convexity of ‖ · ‖ and (.), we have

φ(v, zn) = ‖v‖ + ∥∥j–(βnjxn + ( – βn)jTn
 xn

)∥∥

– 
〈
v, j

(
j–

(
βnjxn + ( – βn)jTn

 xn
))〉

= βn‖v‖ + ( – βn)‖v‖ +
∥∥βnjxn + ( – βn)jTn

 xn
∥∥

– 
〈
v,βnjxn + ( – βn)jTn

 xn
〉

≤ βn
(‖v‖ + ‖xn‖ – 〈v, jxn〉

)
+ ( – βn)

(‖v‖ + ∥∥jTn
 xn

∥∥ – 
〈
v, jTn

 xn
〉)

= βnφ(v,xn) + ( – βn)φ
(
v,Tn

 xn
)

≤ φ(v,xn) – ( – βn)φ(v,xn) + ( – βn)tnφ(v,xn) + ( – βn)sn
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= φ(v,xn) + (tn – )( – βn)φ(v,xn) + sn( – βn)

≤ φ(v,xn) + (tn – )( – βn)φ(v,xn) + sn( – βn)

and

φ(v, zn) = ‖v‖ + ∥∥j–(βnjxn + ( – βn)jTn
 zn

)∥∥

– 
〈
v, j

(
j–

(
βnjxn + ( – βn)jTn

 zn
))〉

≤ φ(v,xn) – ( – βn)φ(v,xn) + ( – βn)tnφ(v, zn) + ( – βn)sn

≤ φ(v,xn) – ( – βn)φ(v,xn)

+ ( – βn)tn
[
φ(v,xn) + (tn – )( – βn)φ(v,xn) + ( – βn)sn

]
+ ( – βn)sn

= φ(v,xn) + (tn – )( – βn)φ(v,xn) + ( – βn)tn
[
(tn – )( – βn)φ(v,xn)

]
+ ( – βn)( – βn)sntn + ( – βn)sn

≤ φ(v,xn) + (tn – )( – βn)
[
 + tn( – βn)

]
φ(v,xn)

+ sn( – βn)( – βn)tn + sn( – βn).

Similarly,

φ(v, zn) = ‖v‖ + ∥∥j–(βnjxn + ( – βn)jTn
 zn

)∥∥

– 
〈
v, j

(
j–

(
βnjxn + ( – βn)jTn

 zn
))〉

≤ φ(v,xn) – ( – βn)φ(v,xn) + ( – βn)tnφ(v, zn) + ( – βn)sn

≤ φ(v,xn) – ( – βn)φ(v,xn)

+ ( – βn)tn
[
φ(v,xn) + (tn – )( – βn)

[
 + tn( – βn)

]
φ(v,xn)

+ ( – βn)( – βn)sntn + ( – βn)sn
]
+ ( – βn)sn

≤ φ(v,xn) + (tn – )( – βn)φ(v,xn)

+ ( – βn)tn
[
(tn – )( – βn)

[
 + tn( – βn)

]]
φ(v,xn)

+ sn( – βn)( – βn)( – βn)tntn + sn( – βn)( – βn)tn + sn( – βn)

= φ(v,xn) + (tn – )( – βn)
[
 + tn( – βn)

[
 + tn( – βn)

]]
φ(v,xn)

+
∑
i=

sin
∏
j=i

( – βjn)
∏

l=i+

tln.

Continuing in this way, we get for k = , , . . . ,m,

φ(v, zkn) ≤ φ(v,xn) + (tn – )( – βkn)
[
 + tkn( – β(k–)n)

× [
 + t(k–)n( – β(k–)n)

[
 + t(k–)n( – β(k–)n)

× [· · · [ + tn( – βn)
] · · · ]]]]M
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+
k∑
i=

sin
k∏
j=i

( – βjn)
k∏

l=i+

tln

= φ(v,xn) + γkn.

So φ(v, zk(N+)) ≤ φ(v,xN+) + γk(N+) for any v ∈ F and k ∈ {, , . . . ,m}. This and the in-
duction hypothesis give that F ⊂ Ck(N+) for all k ∈ {, , . . . ,m}. Therefore, F ⊂ CN+ and
hence F ⊂ Cn for all n ∈N.
Also by induction andusing the fact that φ(·,x) is continuous onE for any x ∈ E, it follows

that Ckn is closed for each n ∈ N and k ∈ {, , . . . ,m}, and consequently, Cn is closed for
each n ∈N.
We now prove that Cn is convex for all n ∈ N. We observe that s ∈ Ckn is equivalent

to s ∈ Cn– and ‖znk‖ – ‖xn‖ ≤ 〈s, jxn – jznk〉 + γkn. So the convexity of Ckn for each
k ∈ {, , . . . ,m} and for each n ∈ N follows immediately by induction. Thus Cn is convex
for each n ∈ N.
We now show that the sequence {xn} converges. Since {Cn} is a decreasing sequence of

closed, convex subsets of E, such that
⋂∞

n=Cn 	= ∅, then the Mosco limit M – limn→∞ Cn

exists andM – limn→∞ Cn =
⋂∞

n=Cn. By Lemma ., the sequence {xn} converges to x* :=∏
C* x, where C* =

⋂∞
n=Cn.

We observe that

lim
n→∞γkn =  for each k ∈ {, , . . . ,m} (.)

and from the fact that {xn} is convergent, we easily deduce that

lim
n→∞φ(xn+,xn) = . (.)

Since xn+ ∈ Cn, we get that for each k ∈ {, , . . . ,m}, φ(xn+, zkn) ≤ φ(xn+,xn) + γkn, and
so from (.) and (.), we obtain limn→∞ φ(xn+, zkn) =  for each k ∈ {, , . . . ,m}. By
Lemma ., we get that limn→∞ ‖xn+ – zkn‖ =  and limn→∞ ‖xn+ – xn‖ = . So, for each
k ∈ {, , . . . ,m},

‖xn – zkn‖ ≤ ‖xn+ – zkn‖ + ‖xn – xn+‖ →  as n→ ∞. (.)

Since j is norm-to-norm uniformly continuous on bounded subsets of E, we get that, for
each k ∈ {, , . . . ,m}, limn→∞ ‖jxn – jzkn‖ = . Using (.) we obtain that

∥∥jxn – jTn
 xn

∥∥ =


( – βn)
‖jxn – jzn‖ →  as n→ ∞,

and for k ∈ {, , . . . ,m},
∥∥jxn – jTn

k z(k–)n
∥∥ =


( – βkn)

‖jxn – jzkn‖ →  as n → ∞.

Using these and the fact that j– is norm-to-norm uniformly continuous on bounded sub-
sets of E*, we get

lim
n→∞

∥∥xn – Tn
 xn

∥∥ = lim
n→∞

∥∥xn – Tn
 zn

∥∥ = · · · = lim
n→∞

∥∥xn – Tn
mz(m–)n

∥∥ = . (.)
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Since xn → x* as n → ∞, we obtain that Tn
 xn → x*,Tn

 zn → x*, . . . ,Tn
mz(m–)n → x*, as

n → ∞. By the uniform asymptotic regularity of each of the maps Tk , k = , , . . . ,m, we
get

∥∥Tn+
 xn – x*

∥∥ ≤ ∥∥Tn+
 xn – Tn

 xn
∥∥ +

∥∥Tn
 xn – x*

∥∥ →  as n→ ∞,

and

∥∥Tn+
k z(k–)n – x*

∥∥ ≤ ∥∥Tn+
k z(k–)n – Tn

k z(k–)n
∥∥

+
∥∥Tn

k z(k–)n – x*
∥∥ →  as n → ∞,

for k = , , . . . ,m. These imply T(Tn
 xn) → x* and Tk(Tn

k z(k–)n) → x* as n → ∞, and for
k = , , . . . ,m. By the closedness of each of themaps Tk , k = , , . . . ,m, we have that x* ∈ F .
As F is a nonempty closed convex subset of C* :=

⋂∞
n=Cn, we obtain that x* =

∏
F x.

This completes the proof. �

The conditions of closedness and uniform asymptotic regularity on the maps {Tk}mk=
can be replaced by the condition that each of the maps {Tk}mk= is uniformly Lipschitz. So
we have the following theorem:

Theorem. Let E, C, {Tk}mk=, F, {tkn}, {skn}, and {xn} be as in Theorem . with the excep-
tion that {Tk}mk= are uniformly Lk, k = , , . . . ,m, Lipschitzian instead of uniformly asymp-
totically regular and closed. Then the sequence {xn} converges strongly to x* = ∏

F x.

Proof The proof that F ∈ Cn, Cn is closed, convex for each n ∈ N and limn→∞ xn = x* fol-
lows as in Theorem .. Also relations (.), (.), (.) and (.) are obtainable as in The-
orem .. We only need to show that x* ∈ F . Let L := max≤k≤m Lk , then using (.) and
(.) we get

∥∥Tn
 xn – xn

∥∥ ≤ ∥∥Tn
 xn – Tn

 zn
∥∥ +

∥∥Tn
 zn – xn

∥∥
≤ L‖xn – zn‖ +

∥∥Tn
 zn – xn

∥∥ →  as n→ ∞, (.)

and for k = , , . . . ,m,

∥∥Tn
k xn – xn

∥∥ ≤ ∥∥Tn
k xn – Tn

k z(k–)n
∥∥ +

∥∥Tn
 z(k–)n – xn

∥∥
≤ L‖xn – z(k–)n‖ +

∥∥Tn
k z(k–)n – xn

∥∥ →  as n→ ∞. (.)

So we obtain

‖Txn – xn‖ ≤ ∥∥Txn – Tn+
 xn

∥∥ +
∥∥Tn+

 xn – Tn+
 xn+

∥∥
+

∥∥Tn+
 xn+ – xn+

∥∥ + ‖xn+ – xn‖
≤ L

∥∥xn – Tn
 xn

∥∥ + L‖xn – xn+‖
+

∥∥xn+ – Tn+
 xn+

∥∥ + ‖xn+ – xn‖ →  as n→ ∞, (.)
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and also for k = , , . . . ,m,

‖Tkxn – xn‖ ≤ ∥∥Tkxn – Tn+
k z(k–)n

∥∥ +
∥∥Tn+

k z(k–)n – Tn+
k xn

∥∥
+

∥∥Tn+
k xn – Tn+

k xn+
∥∥ +

∥∥Tn+
k xn+ – xn+

∥∥ + ‖xn+ – xn‖
≤ L

∥∥xn – Tn
k z(k–)n

∥∥ + L‖z(k–)n – xn‖
+ ( + L)‖xn – xn+‖ +

∥∥xn+ – Tn+
k xn+

∥∥ →  as n→ ∞. (.)

Finally, using these, the fact that xn → x* as n → ∞, and the continuity of Tk for each k,
we obtain that x* ∈ F and this completes the proof. �

The following corollaries follow from Theorems . and ..

Corollary . Let E be a real uniformly convex and uniformly smooth Banach space and
C be a nonempty, bounded, closed and convex subset of E. Let Tk : C → C, k = , , , . . . ,m
be a finite family of quasi-φ-asymptptically nonexpansive maps with corresponding se-
quences {tkn}, k = , , , . . . ,m, such that tkn → , as n → ∞. Let F =

⋂m
k= F(Tk) 	= ∅ and

let tn =max≤k≤m tkn,n ∈ N. Assume also that the maps Tk, k = , , . . . ,m are either closed
and uniformly asymptotically regular on C or uniformly Lipschitzian on C. Let x ∈ C be
arbitrary and C = C. For k = , , . . . ,m, let {βkn} be sequences in (a,b) for some a,b ∈ (, ),
a < b. Let {xn} be a sequence generated by (.). Then the sequence {xn} converges strongly
to x* =

∏
F x.

Corollary . Let E be a real uniformly convex and uniformly smooth Banach space and
C be a nonempty, bounded, closed and convex subset of E. Let Tk : C → C, k = , , , . . . ,m
be a finite family of φ-asymptotically nonexpansive maps with corresponding sequences
{tkn}, k = , , , . . . ,m, such that tkn → , as n → ∞. Let F =

⋂m
k= F(Tk) 	= ∅ and let tn =

max≤k≤m tkn. Assume also that the maps Tk, k = , , . . . ,m are either closed and uniformly
asymptotically regular on C or uniformly Lipschitzian on C. Let x ∈ C be arbitrary and
C = C. For k = , , . . . ,m, let {βkn} be sequences in (a,b) for some a,b ∈ (, ), a < b. Let
{xn} be a sequence generated by (.). Then the sequence {xn} converges strongly to x* =∏

F x.

Corollary . Let H be a real Hilbert space, C be a nonempty, bounded, closed and convex
subset of H. Let Tk : C → C, k = , , , . . . ,m be a finite family of generalized asymptotically
quasi-nonexpansive maps with corresponding sequences {tkn} and {skn}, k = , , , . . . ,m
such that tkn →  and skn →  as n→ ∞. Let F =

⋂m
k= F(Tk) 	= ∅ and let tn =max≤k≤m tkn.

Assume also that themaps Tk, k = , , . . . ,mare either closed and uniformly asymptotically
regular on C or uniformly Lk, k = , , . . . ,m Lipschitzian on C. Let x ∈ C be arbitrary and
C = C. For k = , , . . . ,m, let {βkn} be sequences in (a,b) for some a,b ∈ (, ), a < b. Let
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{xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x
zn = βnxn + ( – βn)Tn

 xn,

zkn = βknxn + ( – βkn)Tn
k z(k–)n, k = , , , . . . ,m,

Ckn = {v ∈ Cn– : ‖zkn – v‖ ≤ ‖xn – v‖ + γkn},
Cn =

⋂k
k=Ckn,

xn+ = PCnx, n ∈N,

(.)

where γkn = (tn – )( – βkn)[ + tkn( – βk–n)[ + t(k–)n( – β(k–)n) × [ + t(k–)n( –
β(k–)n)[· · · [ + tn( – βn)] · · · ]]]](diamC) +

∑k
i= sin

∏k
j=i( – βjn)

∏k
l=i+ tln. Then, the se-

quence {xn} converges strongly to x* = PFx.

Corollary . Let H be a real Hilbert space, C be a nonempty,closed and convex subset
of H. Let Tk : C → C, k = , , , . . . ,m be a finite family of asymptotically nonexpansive
maps with corresponding sequences {tkn}, k = , , , . . . ,m, such that tkn →  as n→ ∞. Let
F =

⋂m
k= F(Tk) 	= ∅ and let tn =max≤k≤m tkn. Let x ∈ C be arbitrary and C = C. For k =

, , . . . ,m, let {βkn} be sequences in (a,b) for some a,b ∈ (, ), a < b. Let {xn} be a sequence
generated by (.). Then the sequence {xn} converges to PFx.

Remark . Theorem . and Corollary . extend and improve several important recent
results. For instance, Corollary . is an improvement and generalization of Theorem .
and Theorem . of [].

Remark . It is not clear whether Theorem . and Corollary . hold without the
boundedness assumption on C.
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