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Abstract

This article is written due to a small gap in our published paper. In this erratum, we
point out and fix the problem to set our existed results at the best of their
perfection.

1. On the results in [1]
In [1], the authors have studied and introduced some fixed point theorems in the

frame-work of a modular metric space. We shall first state their results and then dis-

cuss some small gap herewith.

Theorem 1.1 (Theorem 3.2 in Mongkolkeha et al. [1]). Let Xω be a complete mod-

ular metric space and f be a self-mapping on X satisfying the inequality

ωλ(fx, fy) ≤ kωλ(x, y),

for all x, y Î Xω, where k Î [0, 1). Then, f has a unique fixed point in x∗ ∈ Xω and

the sequence {fn x} converges to x*.

Theorem 1.2 (Theorem 3.6 in Mongkolkeha et al. [1]). Let Xω be a complete mod-

ular metric space and f be a self mapping on X satisfying the inequality

ωλ(fx, fy) ≤ k[ω2λ(x, fx) + ω2λ(y, fy)],

for all x, y Î Xω, wherek ∈ [
0, 1

2

)
. Then, f has a unique fixed point in x∗ ∈ Xω and

the sequence {fnx} converges to x*.
We now claim that the conditions in the above theorems are not sufficient to guar-

antee the existence and uniqueness of the fixed points. We state a counterexample to

Theorem 1.1 in the following:

Example 1.3. Let X := {0, 1} and ω be given by

ωλ(x, y) =
{∞, if 0 < λ < 1 and x �= y,
0, if λ ≥ 1 or x = y.

Thus, the modular metric space Xω= X. Now let f be a self-mapping on X defined by
{
f (0) = 1,
f (1) = 0.
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Then, f is satisfies the inequality (1.1) with any k Î [0, 1) but it possesses no fixed

point after all.

Notice that this gap flaws the theorems only when ∞ is involved.

2. Revised theorems
In this section, we shall now give the corrections to our theorems in [1].

Theorem 2.1. Let Xω be a complete modular metric space and f be a self mapping on

X satisfying the inequality

ωλ(fx, fy) ≤ kωλ(x, y),

for all x, y Î Xω, where k Î [0, 1). Suppose that there exists x0 Î X such that ωl(x0,

fx0) < ∞ for all l >0. Then, f has a unique fixed point in x∗ ∈ Xω and the sequence

{fnx0} converges to x*.
Theorem 2.2. Let Xω be a complete modular metric space and f be a self-mapping on

X satisfying the inequality

ωλ(fx, fy) ≤ k[ω2λ(x, fx) + ω2λ(y, fy)],

for all x, y Î Xω .where k ∈ [
0, 1

2

)
.Suppose that there exists x0 Î X such that

ωl(x0, fx0) < ∞ for all l > 0. Then, f has a unique fixed point in x∗ ∈ Xω and the

sequence {fn x} converges to x*.
Proof (of Theorem 2.1). Let l >0 and observe that

ωλ(f nx0, f n+1x0) ≤ kωλ(f n−1x0, f nx0) ≤ · · · ≤ knωλ(x0, f x0) < ∞, for all n ∈ N

Assume m > n be two positive integers. Observe that

ωλ(f mx0, f nx0) ≤ ωλ(f nx0, f n+1x0) + (f n+1x0, f n+2x0) + · · · + ωλ(f m−1x0, f mx0)

≤ (kn + kn+1 + · · · + km−1)ωλ(x0, f x0)

≤ (kn + kn+1 + · · · )ωλ(x0, f x0)

= kn
1−kωλ(x0, f x0).

Since ωl(x0, fx0) < ∞, we deduce that for any given ε >0, ωl(fmx0, fnx0) < ε for m > n

> N with N ∈ N big enough. Thus, {fnx0} is Cauchy and hence it converges to some

x∗ ∈ Xω in essence of the completeness of Xω. Observe further that

ωλ(x∗, f x∗) ≤ ωλ(x∗, f nx0) + kωλ(f n−1x0, x∗).

Letting n ® ∞ to obtain that ωλ(x∗, f x∗) = 0 for all l >0. Therefore, x*is a fixed

point of f. Suppose also that y∗ = f y∗. Note that

ωλ(x∗, y∗) = ωλ(f x∗, f y∗) ≤ kωλ(x∗, y∗),

which implies that ωλ(x∗, f x∗) = 0 for all l >0. Therefore, the theorem is proved.

□
For the proofs of the remaining theorem, take the idea of the above correction and

combine with the proof aforementioned in [1] to obtain the expected results.
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