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Abstract

In this article, we establish sufficient conditions for the solution sets of parametric
generalized quasi-variational relation problems with the stability properties such as
the upper semicontinuity, lower semi-continuity, the Hausdorff lower semicontinuity,
continuity, Hausdorff continuity, and closedness. Our results improve recent existing
ones in the literature.
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Introduction and preliminaries
Let X, Y be Hausdorff topological vector spaces and Λ, Γ, M be topological spaces. Let

A ⊆ X and B ⊆ Y be nonempty sets. Let K1: A × Λ ® 2A, K2: A × Λ ® 2A, T : A ×

A × Γ ® 2B be multifunctions and R(x, t, y, μ) be a relation linking x Î A, t Î B, y Î
A and μ Î M.

For the sake of simplicity, we adopt the following notations (see [1,2]). Letters w, m,

and s are used for weak, middle, and strong, respectively, kinds of considered pro-

blems. For subsets U and V under consideration we adopt the notations

(u, v)wU × V means ∀u ∈ U, ∃v ∈ V,

(u, v)mU × V means ∃v ∈ V,∀u ∈ U,

(u, v) sU × V means ∀u ∈ U,∀v ∈ V,

ρ1(U,V) means U ⊆ V,

ρ2(U,V) means U ∩ V �= ∅,
(u, v) w̄ U × V means ∃u ∈ U,∀v ∈ V and similarly for m̄, s̄,

ρ̄1(U,V) means U � V and similarly for ρ̄2.

Let a Î {w, m, s}, ᾱ ∈ {w̄, m̄, s̄},r Î {r1, r2}, and ρ̄ ∈ {ρ̄1, ρ̄2}. We consider the fol-

lowing for parametric generalized quasi-variational relation problem (in short, (QVRa)):

(QVRa): Find x̄ ∈ K1(x̄, λ) such that (y, t)αK2(x̄,λ) × T(x̄, y, γ ) satisfying

R(x̄, t, y,μ) holds.

For each l Î Λ, g Î Γ, μ Î M, we let E(l) := {x Î A|x Î K1(x, l)} and let Sa : Λ × Γ ×

M ® 2A be a set-valued mapping such that Sa(l, g, μ) is the solution set of (QVRa).
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Throughout the article, we assume that Sa(l, g, μ) ≠ ∅ for each (l, g, μ) in the

neighborhoods (l0, g0, μ0) Î Λ × Γ × M.

The parametric generalized quasi-variational relation problems are more general than

many following problems.

(a) The parametric variational relation problem (VR):

Let A, B, X, Y, M = Γ = Λ, K1, K2, T, a = s as in (QVRa). Then, (QVRa) becomes

(VR) is studied in [3]:

Find x̄ ∈ K1(x̄, λ) such that

R(x̄, t, y,λ) holds,∀t ∈ T(x̄, y,λ),∀y ∈ K2(x̄,λ).

(b) The parametric generalized quasi-variational inclusion problem (QGVIPa):

Let A, B, X, Y, M, Γ, Λ, K1, K2, T as in (QVRa) and let Z be a Hausdorff topological

vector space. Given a mapping F : A × B × A × M ® 2Z , the relation R is defined as

follows

R(x, t, y,μ) holds iff 0 ∈ F(x, t, y,μ).

Then, (QVRa) becomes (QGVIPa)

Find x̄ ∈ K1(x̄, λ) such that (y, t)αK2(x̄,λ) × T(x̄, y, γ ) satisfying

0 ∈ F(x̄, t, y,μ).

(c) The parametric quasi-variational inclusion problem (Par):

Let A, B, X, Y, M, Γ, Λ, K1, K2, T, R as in (QVRa) and let Z be a Hausdorff topologi-

cal vector space. Let F : A × B × A × M ® 2Z and G : A × B × A × M ® 2Z be multi-

valued mappings. The relation R is defined as follows

R(x, t, y,μ) holds iff ρ(F(x, t, y,μ),G(x, t, x,μ)).

Then, (QVRa) becomes (Par) is studied in [1,2]:

Find x̄ ∈ K1(x̄, λ) such that (y, t)αK2(x̄,λ) × T(x̄, y, γ ) satisfying

ρ(F(x̄, t, y,μ),G(x̄, t, x̄,μ)).

(d) The parametric vector quasi-equilibrium problems:

Let A, X, M, Γ, Λ, K1 ≡ K2 ≡ K, T as in (QVRa) and let Y be a Hausdorff topological

vector space. Given a mapping F : A × A × M ® 2Y and C ⊆ Y be a closed subset with

nonempty interior, the relation R is defined as follows

R(x, t, y,μ) holds iff ρ(F(t, y,μ), (Y\ − intC)).

Then, (QVRa) becomes the parametric vector quasi-equilibrium problems is studied

in [4]. Find x̄ ∈ clK(x̄,λ) such that (y, t)αK(x̄,λ) × T(x̄, y, γ ) satisfying

ρ(F(t, y,μ), (Y\ − intC)).

(e) The parametric multivalued vector quasi-equilibrium problems:

Let A = B, X = Y, M = Γ, Λ, K1 = clK, K2 = K, T = {t} as in (QVRa) and let Z be a

Hausdorff topological vector space. Given a mapping F : A × A × M ® 2Z and C ⊆ Z

be a closed subset with nonempty interior, the relation R is defined as follows

R(x, t, y,μ) holds iff ρ(F(x, y,μ), (Z\ − intC)).
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Then, (QVRa) becomes the parametric multivalued vector quasi-equilibrium

problems is studied in [5]. Find x̄ ∈ clK(x̄,λ) such that

ρ(F(x̄, y,μ), (Z\ − intC)),∀y ∈ K(x̄,λ).

(f) The parametric generalized vector quasi-equilibrium problems (QEPar):

Let A, B, X, Y, M, Γ, Λ, K1, K2, T as in (QVRa) and let Z be a Hausdorff topological

vector space. Given a mapping F : A × B × A × M ® 2Z and C ⊆ Z be a closed subset

with nonempty interior, the relation R is defined as follows

R(x, t, y,μ) holds iff ρ(F(x, t, y,μ),C).

Then, (QVRa) becomes (QEPar)

Find x̄ ∈ K1(x̄, λ) such that (y, t)αK2(x̄,λ) × T(x̄, y, γ ) satisfying

ρ(F(x̄, t, y,μ),C).

Stability properties of solution sets for parametric generalized quasi-variational rela-

tion problem is an important topic in optimization theory and applications. Recently,

the continuity, especially the upper semicontinuity, the lower semicontinuity and the

Hausdorff lower semicontinuity of the solution sets have been investigated in models

as equilibrium problems [1,2,4-13], variational inequality problems [14-19], and the

references therein.

The structure of this article is as follows. In the remaining part of this section, we

recall definitions for later uses. Section “Main results” is devoted to the upper semicon-

tinuity, the lower semicontinuity, and the Hausdorff lower semicontinuity of solutions

for problem (QVRa). Applications to the parametric vector quasi-equilibrium problem

are presented in Section “Applications”.

Now we recall some notions see [5,6,20,21]. Let X and Y be as above and G : X ® 2Y

be a multifunction. G is said to be lower semicontinuous (lsc) at x0 if G(x0) ∩ U ≠ ∅
for some open set U ⊆ Y implies the existence of a neighborhood N of x0 such that,

for all x Î N, G(x) ∩ U ≠ ∅. An equivalent formulation is that: G is lsc at x0 if

∀xα → x0,∀z0 ∈ G(x0), ∃zα ∈ G(xα), zα → z0. G is called upper semicontinuous (usc) at

x0 if for each open set U ⊇ G(x0), there is a neighborhood N of x0 such that U ⊇ G(x),

for all x Î N. G is said to be Hausdorff upper semicontinuous (H-usc in short; Haus-

dorff lower semicontinuous, H-lsc, respectively) at x0 if for each neighborhood B of the

origin in Y, there exists a neighborhood N of x0 such that, G(x) ⊆ G(x0) + B, ∀x Î N

(G(x0) ⊆ G(x) + B, ∀x Î N). G is said to be continuous at x0 if it is both lsc and usc at

x0 and to be H-continuous at x0 if it is both H-lsc and H-usc at x0. G is called closed

at x0 if for each net {(xa, za )} graphG := {(x, z) | z Î G(x)}, (xa, za) ® (x0, z0), z0 must

belong to G(x0). We say that G satisfies a certain property in a subset A ⊆ X if G satis-

fies it at every points of A. If A = X we omit “in X“ in the statement.

Let A and Y be as above and G : A ® 2Y be a multifunction.

(i) If G is usc at x0, then G is H-usc at x0. Conversely if G is H-usc at x0 and if G(x0)

is compact, then G is usc at x0;

(ii) If G is H-lsc at x0, then G is lsc at x0. The converse is true if G(x0) is compact;

(iii) If Y is compact and G is closed at x0, then G is usc at x0;

(iv) If G is usc at x0 and G(x0) is closed, then G is closed at x0;
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(v) If G has compact values, then G is usc at x0 if and only if, for each net {xa} ⊆ A

which converges to x0 and for each net {ya} ⊆ G(xa), there are y0 Î G(x0) and a subnet

{yb} of {ya} such that yb ® y0.

Now we let A, B, X, Y, M, Γ, Λ, R as in (QVRa), we use the following notations for

level sets of R

1evupperR := {(x, t, y,μ)|R(x, t, y,μ) holds}.
1evupperR(., ., .,μ0) := {(x, t, y)|R(x, t, y,μ0) holds}.

1evlowerR := {(x, t, y,μ)|R(x, t, y,μ) does not hold}.

Main results
In this section, we discuss the upper semicontinuity, the lower semicontinuity, the

Hausdorff lower semicontinuity, continuity, and H-continuity of solution sets for para-

metric quasi-variational relation problem (QVRa).

Theorem 1 Assume for problem (QVRa) that

(i) E is usc at l0 and E(l0) is compact, and K2 is lsc in K1(A, Λ) × {l0};
(ii) in K1(A, Λ) × K2(K1(A, Λ), Λ) × {g0}, T is usc and compact-valued if a = w (or

a = m), and lsc if a = s;

(iii) in K1(A, Λ) × T(K1(A, Λ), K2(K1(A, Λ), Λ), Γ) × K2(K1(A, Λ), Λ) × {μ0}, levupperR

is closed.

Then Sa is both usc and closed at (l0, g0, μ0).
Proof. Since a = {w, m, s}, we have in fact three cases. However, the proof techni-

ques are similar. We consider only the cases a = w. We first prove that Sw is upper

semicontinuous at (l0, g0, μ0). Indeed, we suppose to the contrary that Sw is not upper

semicontinuous at (l0, g0, μ0), i.e., there is an open subset U of Sw(l0, g0, μ0) such that

for all nets {(ln, gn, μn)} convergent to (l0, g0, μ0), there exists xn Î Sw(ln, gn, μn), xn ∉
U, ∀n. By the upper semicontinuity of E and the compactness of E(l0), one can assume

that xn ® x0 for some x0 Î E(l0). If x0 ∉ Sw(l0, g0, μ0), then ∃y0 Î K2(x0, l0), ∀t0 Î T

(x0, y0, g0) such that

R(x0, t0, y0,μ0)does not hold. (1)

By the lower semicontinuity of K2 at (x0, l0), there exists yn Î K2(xn, ln) such that yn
® y0. Since xn Î Sw(ln, gn, μn), ∃tn Î T (xn, yn, gn) such that

R(xn, tn, yn,μn) holds. (2)

Since T is usc at (x0, y0, g0) and T (x0, y0, g0) is compact, there exists t0 Î T (x0, y0,

g0) such that tn ® t0 (can take a subnet if necessary). By the condition (iii) and (2), we

have

R(x0, t0, y0,μ0) holds, (3)

we see a contradiction between (1) and (3). Thus, x0 Î Sw(l0, g0, μ0) ⊆ U, this con-

tradicts to the fact xn ∉ U, ∀n. Hence, Sw is upper semicontinuous at (l0, g0, μ0).
Now we prove that Sw is closed at (l0, g0, μ0). Indeed, we supposed that Sw is not

closed at (l0, g0, μ0), i.e., there is a net {(xn, ln, gn, μn)} ® (x0, l0, g0, μ0) with xn Î Sw
(ln, gn, μn) but x0 ∉ Sw(l0, g0, μ0). The further argument is the same as above. And so

we have Sw is closed at (l0, g0, μ0). □
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The following example shows that the upper semicontinuity and the compactness of

E are essential.

Example 2 Let A = B = X = Y = ℝ, Λ = Γ = M = [0, 1], l0 = 0, F(x, t, y, l) = 2l+1,

K1(x, l) = (−l − 1, l], K2(x, l) = {-1} and T
(
x, y, λ

)
= [0, e2

λ+cos λ]. We let relation R

be defined by R(x, t, y, l) holds iff F (x, t, y, l) ⊆ ℝ+. Then, we have E(0) = (-1, 0] and

E(l) = (−l − 1, l], ∀l Î (0, 1]. We show that K2 is lsc and assumptions (ii) and (iii) of

Theorem 1 are fulfilled. But Sa is neither usc nor closed at (0, 0, 0). The reason is that

E is not usc at 0 and E(0) is not compact. In fact, Sa(0, 0, 0) = (-1, 0] and Sa(l, g, μ) =
(−l −1, l], ∀l Î (0, 1].

The following example shows that the lower semicontinuity of K2 is essential.

Example 3 Let X, Y, Λ, Γ, M, l0 as in Example 2 and let A = B = [-3, 3], F (x, t, y, l)
= x + y + l, K1(x, l) = [0, 3], T (x, y, l) = {t}. Let relation R be defined by R(x, t, y, l)
holds iff F(x, t, y, l) ⊆ ℝ+ and

K2(x,λ) =
{ {−3, 0, 3} if λ = 0,

{0, 3} otherwise.

We have E(l) = [0, 3], ∀l Î [0, 1]. Hence E is usc at 0 and E(0) is compact and the

conditions (ii) and (iii) of Theorem 1 are easily seen to be fulfilled. But Sa is not upper

semicontinuous at (0, 0, 0). The reason is that K2 is not lower semicontinuous. In fact,

Sα(λ, γ ,μ) =
{ {3} if λ = 0,
[0, 3] if λ ∈ (0, 1].

The following example shows that the condition (iii) of Theorem 1 is essential.

Example 4 Let Λ, Γ, M, T, l0 as in Example 3 and let X = Y = A = B = [0, 1]. Let rela-

tion R be defined by R(x, t, y, l) holds iff F(x, t, y, l) ⊆ ℝ+, K1(x, l) = K2(x, l) = [0, 1]

and F(x, t, y, 0) = x
2 − y

2, F(x, t, y,λ) =
y
2 − x

3, ∀λ ∈ (0, 1]. We show that the assump-

tions (i) and (ii) of Theorem 1 are easily seen to be fulfilled and

Sα(λ, γ ,μ) =
{ {0} if λ ∈ (0, 1],

{1} if λ = 0.

But Sa is not usc at (0, 0, 0). The reason is that assumption (iii) is violated. Indeed,

taking xn = 0, tn = 0, yn = 1
2, λn = 1

n → 0 as n ® ∞, then {(xn, tn, yn,λn)} → (0, 0, 12 , 0)

and F(xn, tn, yn,λn) = F(0, 0, 12 ,
1
n) =

1
4 > 0, but F(0, 0, 1

2 , 0) = − 1
4 < 0.

The following example shows that all assumptions of Theorem 1 are fulfilled. But

Theorem 3.2 in [5] cannot be applied.

Example 5 Let A, B, X, Y, Λ, Γ, M, l0 as in Example 2 and let K1(x, l) = K2(x, l) =
[0, 1], T(x, y, γ ) = [0, 2cos

6x+sin4x+2] and

F(x, t, y,λ) =
{ {0} if λ = 0,
3sin

4x+cos2x+2 otherwise.

Let relation R be defined by R(x, t, y, l) holds iff F(x, t, y, l) ⊆ ℝ+. We show that the

assumptions (i), (ii), and (iii) of Theorem 1 are easily seen to be fulfilled and

Sα(λ, γ ,μ) = [0, 1],∀λ ∈ [0, 1]

Hence, Sa is usc at (0, 0, 0). But Theorem 3.2 in [5] cannot be applied. The reason is

that F is not usc at (x, t, y, 0).
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The following example shows that all assumptions of Theorem 1 are fulfilled. But

Theorem 3.4 in [5] cannot be applied.

Example 6 Let A, B, X, Y, Λ, Γ, M, l0, as in, Example, 5 and, let, K1(x, l), = K2(x, l) =
[0, 3], T (x, y, g) = {t} and

F(x, t, y,λ) =
{ {0} if λ = 0,
ecos

2λ+1 otherwise.

Let relation R be defined by R(x, t, y, l) holds iff F(x, t, y, l) ⊆ ℝ+. We show that the

assumption (i), (ii,) and (iii) of Theorem 1 are easily seen to be fulfilled

Hence, Sa is usc at (0, 0, 0). But Theorem 3.4 in [5] cannot be applied. The reason is

that F is not usc (x, t, y, 0).

Assumptions in Theorem 1, we have K2 is lsc in K1(A, Λ) × {l0} (which is not

imposed in this Theorem 4.1 of [10]). The Example 3 shows that the lower semiconti-

nuity of K2 needs to be added to Theorem 4.1 of [10].

Remark 7 (i) In the special case, if T (x, y, g) = {t}, Λ = Γ = M, A = B, X = Y, K1 =

K2 = K and the variational relation R is defined as follows R(x, t, y,λ) holds iff F(x, y, l)
⊄ -intC(x, l) (or F (x, y, l) ∩−intC(x, l) = ∅), where F : A × A × Λ ® 2Y and C : A ×

Λ ® 2Y be multifunctions, with C(x, l) being a convex cone. Then, (QVRa) becomes

(PGQVEP) and (PEQVEP) in [10].

(ii) In the special case as in Remark 7 (i). Then, Theorem 1 reduces to Theorem 4.1

in [10]. However the proof of the Theorem 4.1 in a different way. Its assumptions

(i)-(iv) derive (i) Theorem 1, assumptions (v) and (vi) coincide with (iii) of Theorem 1.

The following example shows a case where the assumed compactness in Theorem

4.1 of [10] is violated but the assumptions of Theorem 1 are fulfilled.

Example 8 Let X, Y, Λ, Γ, M, T, l0, as in Example 6 and we let A = B = [0, 3),

F(x, y, l) = x − y and K1(x, l) = K2(x, l) = [1, 2]. Let relation R be defined by R(x, t,

y, l) holds iff F(x, t, y, l) ⊆ ℝ+. We show that the assumptions of Theorem 1 are

easily seen to be fulfilled and so Sa is usc and closed at (0, 0, 0), although A is not

compact. In fact, Sa (l, g, μ) = {2},∀l Î [0, 1].

Theorem 9 Assume for problem (QVRa) that

(i) E is lsc at l0, K2 is usc and compact-valued in K1(A, Λ) × {l0};
(ii) in K1(A, Λ) × K2(K1(A, Λ), Λ) × {g0}, T is usc and compact-valued if a = s, and

lsc if a = w (or a = m);

(iii) in K1(A, Λ) × T(K1(A, Λ), K2(K1(A, Λ), Λ), Γ) × K2(K1(A, Λ), Λ) × {μ0}, levlowerR

is closed.

Then Sa is lower semicontinuous at (l0, g0, μ0).
Proof. Since a = {w, m, s}, we have in fact three cases. However, the proof techniques

are similar. We consider only the cases a = s. Suppose to the contrary that Ss is not lsc

at (l0, g0, μ0), i.e., there are x0 Î Ss(l0, g0, μ0) and net {(ln, gn, μn)}, (ln, gn, μn) ® (l0, g0,
μ0) such that ∀xn Î Ss(ln, gn, μn), xn ® x0. Since E is lsc at l0, there is x′

n ∈ E(λn)with

x′
n → x0. By the above contradiction assumption, there must be a subnet

{
x′
m
}
of

{
x′
n
}

such that, ∀m, x′
m �∈ Ss(λm, γm,μm), i.e., ∃ym ∈ K2(x′

m,λm), ∃tm ∈ T(x′
m, ym, γm) such that

R(x′
m, tm, ym,μm) does not hold. (4)
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As K2, is usc at (x0, l0) and K2(x0, l0) is compact, one has y0 Î K2(x0, l0) such that

ym ® y0 (taking a subnet if necessary). By the upper semicontinuity of T at (x0, y0, g0),
one has t0 Î T(x0, y0, g0) such that tm ® t0.

Since (x′
m, tm, ym,λm, γm,μm) → (x0, t0, y0,λ0, γ0,μ0) and by the condition (iii) and

(4), yields that

R(x0, t0, y0,μ0) does not hold,

which is impossible since x0 Î Ss(l0, g0, μ0). Therefore, Ss is lsc at (l0, g0, μ0). □
The following example shows that the lower semicontinuity of E is essential

Example 10 Let A, B, X, Y, Λ, Γ, M, l0 as in Example 2 and let F(x, t, y, l) = 2l, T

(x, y, l) = {t}, K2(x, l) = [0, 1]. Let relation R be defined by R(x, t, y, l) holds iff F(x, t,
y, l) ⊆ (0, +∞) and

K1(x,λ) =
{
[−1, 1] if λ = 0,
[−λ − 1, 0] otherwise.

We have E(0) = [-1, 1], E(l) = [−l − 1, 0], ∀l Î (0, 1]. Hence K2 is usc and the con-

ditions (ii) and (iii) of Theorem 9 are easily seen to be fulfilled. But S is not lower

semicontinuous at (0, 0, 0). The reason is that E is not lower semicontinuous at 0. In

fact, Sa (0, 0, 0) = [-1, 1] and Sa(l, g, μ) = [−l − 1, 0], ∀l Î (0, 1].

The following example shows that all assumptions of Theorem 9 are fulfilled. But

Theorems 2.1 and 2.3 in [5] and Theorem 2.2 in [4] are not fulfilled.

Example 11 Let A, B; X, Y, T, Λ, Γ, M, l0 as in Example 10, let

K1(x, λ) = K2(x, λ) = [0, 1
2 ] and

F(x, y,λ) =

{
[
1
2
, 1] if λ = 0,

[2, 3λ+2] otherwise.

and we let relation R be defined by R(x, t, y, μ) holds iff F(x, y, l) ⊆ (0, +∞). We

show that the assumptions (i), (ii) and (iii) of Theorem 9 are satisfied and

∀λ ∈ [0, 1], ∀λ ∈ [0, 1]. Theorems 2.1 and 2.3 in [5] and Theorem 2.2 in [4] are not

fulfilled. The reason is that F is neither usc nor lsc at (x, y, 0).

Theorem 12 Impose the assumption of Theorem 9 and the following additional

conditions:

(iv) K2(., l0) is lsc in K1(A, Λ) and E(l0) is compact;

(v) in K1(A, Λ) × K2(K1(A, Λ), Λ), T (., ., g0) is usc and compact-valued if a = w (or

a = m), and lsc if a = s;

(vi) in K1(A, Λ) × T(K1(A, Λ), K2(K1(A, Λ), Λ), Γ) × K2(K1(A, Λ), Λ), levupperR(., ., μ0)

is closed ;

Then Sa is Hausdorff lower semicontinuous at (l0, g0, μ0).
Proof. We consider only for the cases a = s. We first prove that Ss(l0, g0, μ0) is

closed. Indeed, we let xn Î Ss(l0, g0, μ0) such that xn ® x0. If x0 ∉ Ss(l0, g0, μ0), then
∃y0 Î K2(x0, l0), ∃t0 Î T (x0, y0, g0) such that

R(x0, t0, y0,μ0) does not hold. (5)

By the lower semicontinuity of K2(., l0) at x0, one has yn Î K2(xn, l0) such that yn ®
y0. By the lower semicontinuity of T (., ., g0) at (x0, y0), one has tn Î T(xn, yn, g0) such
that tn ® t0. Since xn Î Ss(l0, g0, μ0), we have
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R(xn, tn, yn,μ0) holds. (6)

Since (xn, tn, yn) ® (x0, t0, y0) and by the condition (vi) and (6) yields that

R(x0, t0, y0,μ0) holds, (7)

we see a contradiction between (5) and (7). Therefore, Ss(l0, g0, μ0) is closed.
On the other hand, since Ss(l0, g0, μ0) ⊆ E(l0) is compact by E(l0) compact. Since Ss

is lower semicontinuous at (l0, g0, μ0) and Ss(l0, g0, μ0) compact. Hence Ss is Hausdorff

lower, semicontinuous at (l0, g0, μ0). And so we complete the proof. □
The following example shows that the assumed compactness in (iv) is essential

Example 13 Let X = A = B = ℝ2, Y = ℝ, Λ = Γ = M = [0, 1], l0 = 0, and x = (x1, x2) ∈ R2,

T(x, y,λ) = [0, 3sin
4x+sin2x+1], T(x, y,λ) = [0, 3sin

4x+sin2x+1] and

F(x, t, y,λ) =
{{ 1

2

}
if λ = 0,{ 1

2 + λ
2λ+1

}
otherwise.

Let relation R be defined by R(x, t, y, l):holds iff F(x, t, y, l) ⊆ (0, +∞). We have E(0) =,

{x Î ℝ2 | x2 = 0} and E(λ) = {x ∈ R2|x2 = λx41)}, ∀l Î (0, 1]. We show that the assump-

tions, of Theorem 12 are satisfied, but the compactness of E(0) is not satisfied. Hence, Sa
is not, Hausdorff lower semicontinuous at (0, 0, 0). In fact, Sa(0, 0, 0) = {(x1, x2) Î ℝ2|x2 =

0} and Sα(λ, γ ,μ) = {(x1, x2) ∈ R2|x2 = λx41)}, ∀l Î (0, 1].

Corollary 14 Suppose that all conditions in Theorems 1 and 9 are satisfied. Then, we

have Sa is both continuous and closed at (l0, g0, μ0).
Corollary 15 Suppose that all conditions in Theorems 1 and 12 are satisfied. Then,

we have Sa is Hausdorff continuous and closed at (l0, g0, μ0).

Applications
Since our generalized quasi-variational relation problems include many rather general

problems as particular cases as mentioned in Section “Introduction”. The results of

Section “Main results” can derive corresponding to results of these special cases. In

Section “Applications” we discuss only some corollaries for generalized vector quasi-

equilibrium problems as example.

In this section, we discuss the upper semicontinuity, the lower semicontinuity, the

Hausdorff lower semicontinuity, continuity, H-continuity of solution sets for general-

ized parametric vector quasi-equilibrium problems (QEPar).

For each l Î Λ, g Î Γ, μ Î M, let Ψar : Λ × Γ × M ® 2A e a set-valued mapping

such that Ψar(l, g, μ) is the solution set of (QEPar).

Throughout the article, we assume that Ψar(l, g, μ) ≠ ∅ for each (l, g, μ) in the

neighborhoods (l0, g0, μ0) Î Λ × Γ × M.

Corollary 16 Assume for problem (QEPar) that

(i) E is usc at l0 and E(l0) is compact, and K2 is lsc in K1(A, Λ) × {l0};
(ii) in K1(A, Λ) × K2(K1(A, Λ), Λ) × {g0}, T is usc and compact-valued if a = w (or

a = m), and lsc if a = s;

(iii) in K1(A, Λ) × T(K1(A, Λ), K2(K1(A, Λ), Λ), Γ) × K2(K1(A, Λ), Λ) × {μ0}, the set

{(x, t, y,μ) ∈ A × B × A × M|ρ(F(x̄, t, y,μ);C)} is closed.
Then Ψar is both usc and closed at (l0, g0, μ0).
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Proof. Since a = {w, m, s}, r = {r1, r2}, we have in fact six cases. However, the proof

techniques are similar. We consider only the cases a = w, r = r1. Let relation R be

defined by R(x, t, y, μ) holds iff F(x̄, t, y, μ) ⊆ C. To apply Theorem 1, we need to

check only that in K1(A, Λ) × T(K1(A, Λ), K2(K1(A, Λ), Λ), Γ) × K2(K1(A, Λ), Λ) × {μ0},

the set {(x, t, y,μ) ∈ A × B × A × M|F(x̄, t, y,μ) ⊆ C} is closed.
Indeed, for all nets {(xn, tn, yn, n)} ® (x0, t0, y0, μ0) such that

R(xn, tn, yn,μn) holds.

By assumption (iii), we have

F(x0, t0, y0,μ0) ⊆ C.

□
Corollary 17 Assume for problem (QEPar) that

(i) E is lsc at l0, K2 is usc and compact-valued in K1(A, Λ) × {l0};
(ii) in K1(A, Λ) × K2(K1(A, Λ), Λ) × {g0}, T is usc and compact-valued if a = s, and

lsc if a = w (or a = m);

(iii) in K1(A, Λ) × T(K1(A, Λ), K2(K1(A, Λ), Λ), Γ) × K2(K1(A, Λ), Λ) × {μ0}, the set

{(x, t, y,μ) ∈ A × B × A × M|ρ̄(F(x, t, y,μ);C)} is closed.
Then Ψar is lower semicontinuous at (l0, g0, μ0).
Proof. Since a = {w, m, s}, r = {r1, r2}, we have in fact six cases. However, the proof

techniques are similar. We consider only the cases a = s, r = r1. Let relation R be

defined by R(x, t, y, μ) holds iff F(x, t, y, μ) ⊆ C. To apply Theorem 9, we need to

check only that in K1(A, Λ) × T (K1(A, Λ), K2(K1(A, Λ), Λ), Γ) × K2(K1(A, Λ), Λ) ×

{μ0}, the set {(x, t, y, μ) Î A × B × A × M | F(x, t, y, μ) ⊆ C)} is closed.

Indeed, for all nets {(xn, tn, yn, μn)} ® (x0, t0, y0, μ0) such that

R(xn, tn, yn,μn) does not hold.

By assumption (iii), we have

F(x0, t0, y0,μ0) �⊂ C.

□
Corollary 18 Impose the assumption of Corollary 17 and the following additional

conditions:

(iv) K2(., l0) is lsc in K1(A, Λ) and E(l0) is compact;

(v) in K1(A, Λ) × K2(K1(A, Λ), Λ), T (., ., g0) is usc and compact-valued if a = w (or

a = m), and lsc if a = s;

(vi) in K1(A, Λ) × T(K1(A, Λ), K2(K1(A, Λ), Λ), Γ) × K2(K1(A, Λ), Λ), the set {(x, t, y) Î
A × B × A | r(F(x, t, y, μ0); C)} is closed.
Then Ψar is Hausdorff lower semicontinuous at (l0, g0, μ0).
Proof. Since a = {w, m, s}, r = {r1, r2}, we have in fact six cases. However, the proof

techniques are similar. We consider only the cases a = s, r = r1. Let relation R be defined

by R(x, t, y, μ) holds iff F(x, t, y, μ) ⊆ C. To apply Theorem 12, we need to check only that

in K1(A, Λ) × T (K1(A, Λ), K2(K1(A, Λ), Λ), Γ) × K2(K1(A, Λ), Λ), the set {(x, t, y) Î A ×

B × A | F(x, t, y, μ0) ⊆ C)} is closed. Indeed, for all nets {(xn, tn, yn)} ® (x0, t0, y0) such that

R(xn, tn, yn, μ0) holds. By assumption (vi), we have F(x0, t0, y0, μ0) ⊆ C. □
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Remark 19 (i) Suppose that all conditions in Corollaries 16 and 17 are satisfied.

Then, we have Ψa is both continuous and closed at (l0, g0, μ0).
(ii) Suppose that all conditions in Corollaries 16 and 18 are satisfied. Then, we have

Ψar is Hausdorff continuous and closed at (l0, g0, μ0).
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