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Abstract

In this paper, we establish some tripled coincidence point results for a mixed g-
monotone mapping F : X3 ® X satisfying (ψ, j)-contractions in ordered generalized
metric spaces. Also, an application and some examples are given to support our
results.

Introduction and preliminaries
Banach contraction principle is one of the core subject that has been studied. It has so

many different generalizations with different approaches. One of the remarkable gener-

alizations, known as F-contraction, was given by Boyd and Wong [1] in 1969. In 1997,

Alber and Guerre-Delabriere [2], introduced the notion of a weak j-contraction which

generalizes Boyd and Wong results, so Banach’s result. Very recently, inspired from

the notion of weak j-contractions, a new concept of ( ψ, j)-contractions was intro-

duced (see e.g. [3-7]).

Mustafa and Sims [8] introduced the notion of generalized metric spaces or simply G-

metric spaces as a generalization of the concept of a metric space. Based on the concept

of G-metric space, Mustafa et al. [9-11] proved several fixed point theorems for mapping

satisfying different contractive condition. The study of common fixed point was initiated

by Abbas and Rhoades [12]. The first result for contractive mappings in ordered G-

metric spaces was obtained by Saadati et al. [13]. Bhashkar and Lakshmikantham [14]

introduced the concept of a coupled fixed point of a mapping F : X × X ® X and proved

some coupled fixed point theorems in ordered metric spaces. Some authors obtained

some interesting coupled fixed point theorems in G-metric spaces (see e.g. [15-18]). For

more results on G-metric spaces, one can refer to the papers [9-13,15-28].

Throughout the paper, N* is the set of positive integers. In 2004, Mustafa and Sims

[8] introduced the concept of G-metric spaces as follows:

Definition 1. (see [8]). Let X be a non-empty set, G : X × X × X ® ℝ+ be a function

satisfying the following properties

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 <G(x, x, y) for all x, y Î X with x ≠ y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z Î X with y ≠ z,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a Î X (rectangle inequality).
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Then the function G is called a generalized metric, or, more specially, a G-metric on

X, and the pair (X, G) is called a G-metric space.

Every G-metric on X defines a metric dG on X by

dG(x, y) = G(x, y, y) + G(y, x, x), for all x, y ∈ X. (1)

Example 2. Let (X, d) be a metric space. The function G : X × X × X ® [0, +∞),

defined by

G(x, y, z) = max{d(x, y), d(y, z), d(z, x)},

or

G(x, y, z) = d(x, y) + d(y, z) + d(z, x),

for all x, y, z Î X, is a G-metric on X.

Definition 3. (see [8]). Let (X, G) be a G-metric space, and let {xn} be a sequence of

points of X, therefore, we say that {xn} is G-convergent to x Î X if

lim
n,m→+∞G(x, xn, xm) = 0, that is, for any ε > 0, there exists N Î N such that G(x, xn, xm)

<ε, for all n, m ≥ N. We call x the limit of the sequence and write xn ® x or

lim
n→+∞ xn = x.

Proposition 4. (see [8]). Let (X,G) be a G-metric space. The following are equivalent:

(1) {xn} is G-convergent to x,

(2) G(xn, xn, x) ® 0 as n ® +∞,

(3) G(xn, x, x) ® 0 as n ® +∞,

(4) G(xn, xm, x) ® 0 as n, m ® +∞.

Definition 5. (see [8]). Let (X, G) be a G-metric space. A sequence {xn} is is called a

G-Cauchy sequence if, for any ε > 0, there is N Î N such that G(xn, xm, xl) <ε for all

m, n, l ≥ N, i.e., G(xn, xm, xl) ® 0 as n, m, l ® ∞.

Proposition 6. (see [8]). Let (X, G) be a G-metric space. Then the following are

equivalent:

(1) the sequence {xn} is G-Cauchy,

(2) for any ε > 0, there exists N Î N such that G(xn, xm, xm) <ε, for all m, n ≥ N.

Definition 7. (see [8]). A G-metric space (X, G) is called G-complete if every G-Cau-

chy sequence is G-convergent in (X, G).

Definition 8. Let (X, G) be a G-metric space. A mapping F : X × X × X ® X is said

to be continuous if for any three G-convergent sequences {xn}, {yn} and {zn} converging

to x, y and z respectively, {F(xn, yn, zn)} is G-convergent to F(x, y, z).

Following the paper of Berinde and Borcut [29], Aydi, Karapınar and Postolache [30]

introduced the following definitions:

Definition 9. (see [30]). Let (X, ≤) be a partially ordered set and F : X × X × X ® X,

g : X ® X. The mapping F is said to has the mixed g-monotone property if for any x,

y, z Î X

x1, x2 ∈ X, gx1 ≤ gx2 ⇒ F(x1, y, z) ≤ F(x2, y, z),

y1, y2 ∈ X, gy1 ≤ gy2 ⇒ F(x, y1, z) ≥ F(x, y2, z),

z1, z2 ∈ X, gz1 ≤ gz2 ⇒ F(x, y, z1) ≤ F(x, y, z2).

(2)

Definition 10. (see [30]). Let F : X × X × X ® X and g : X ® X. An element (x, y, z)

is called a tripled coincidence point of F and g if
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F(x, y, z) = gx, F(y, x, y) = gy, F(z, y, x) = gz.

The point (gx, gy, gz) is called a point of coincidence of F and g.

Definition 11. (see [30]). Let F : X × X × X ® X and g : X ® X. An element (x, y, z)

is called a tripled common fixed point of F and g if

F(x, y, z) = gx = x, F(y, x, y) = gy = y, F(z, y, x) = gz = z.

Definition 12. (see [30]). Let X be a non-empty set. Let F: X × X × X ® X and g: X ®
X are such that

g(F(x, y, z)) = F(gx, gy, gz)

whenever x, y, z Î X, then F and g are said to be commutative.

Khan et al. [31] introduced the concept of altering distance function as follows:

Definition 13. (altering distance function, [31]) The function ψ : [0, + ∞) ® [0, + ∞)

is called an altering distance function if the following properties are satisfied:

(1) ψ is continuous and non-decreasing,

(2) ψ(t) = 0 if and only if t = 0.

Let Ψ be the set of altering distances. Again, we denote by F the set of functions j :

[0, +∞) ® [0, +∞) such that

(i) j is lower-continuous and non-decreasing,

(ii) j(t) = 0 if and only if t = 0.

The notion of a fixed point of N-order was first introduced by Samet and Vetro [32].

Later, Berinde and Borcut [29] proved some tripled fixed point results (N = 3) in par-

tially ordered metric spaces (see also [33-36]). In this paper, we establish tripled coinci-

dence point results for mappings F : X3 ® X and g : X ® X involving nonlinear

contractions in the setting of ordered G-metric spaces. Also, we present an application

and some examples in support of our results.

Main results
Before stating our results, we give the following useful lemma.

Lemma 14. Consider three non-negative real sequences {an}, {bn} and {cn}. Suppose

there exists a ≥ 0 such that

lim
n→+∞max{an, bn} = 0 and lim

n→+∞max{an, bn, cn} = α.

Then, lim sup
n→+∞

cn = α.

Proof. First, we have cn ≤ max{an, bn, cn}, then

lim sup
n→+∞

cn ≤ α. (3)

For all n Î N, we have

0 ≤ max{an, bn, cn} − cn ≤ max{an, bn} + cn − cn = max{an, bn},
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which implies that lim sup
n→+∞

(max{an, bn, cn} − cn) ≤ 0. Having in mind that

lim sup
n→+∞

(max{an, bn, cn} − cn) ≥ lim sup
n→+∞

max{an, bn, cn} − lim sup
n→+∞

cn = α − lim sup
n→+∞

cn,

so it follows that

lim sup
n→+∞

cn ≥ α. (4)

By (3) and (4), we get that lim sup
n→+∞

cn = α. □

The aim of this paper is to prove the following theorem.

Theorem 15. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space

such that (X, G) is G-complete. Let F : X3 ® X and g : X ® X. Assume there exist ψ Î
Ψ and j Î F such that for x, y, z, a, b, c, u, v, w Î X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv

and gz ≥ gc ≥ gw, we have

ψ(G(F(x, y, z), F(a, b, c), F(u, v,w))) ≤ ψ(max{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)})
− φ(max{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)}). (5)

Assume that F and g satisfy the following conditions:

(1) F(X3) ⊆ g(X),

(2) F has the mixed g-monotone property,

(3) F is continuous,

(4) g is continuous and commutes with F.

Suppose there exist x0, y0, z0 Î X such that gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0) and

gz0 ≤ F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x,

y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, F(z, y, x) = gz.

Proof. Suppose x0, y0, z0 Î X are such that gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0), and

gz0 ≤ F(z0, y0, x0). Since F(X3) ⊆ g(X), we can choose gx1 = F(x0, y0, z0), gy1 = F(y0, x0,

y0) and gz1 = F(z0, y0, x0). Then gx0 ≤ gx1, gy0 ≥ gy1 and gz0 ≤ gz1. Similarly, define gx2
= F(x1, y1, z1), gy2 = F(y1, x1, y1) and gz2 = F(z1, y1, x1). Since F has the mixed g-mono-

tone property, we have gx0 ≤ gx1 ≤ gx2, gy2 ≤ gy1 ≤ gy0 and gz0 ≤ gz1 ≤ gz2. Continuing

this process, we can construct three sequences {xn}, {yn} and {zn} in X such that

gxn = F(xn−1, yn−1, zn−1) ≤ gxn+1 = F(xn,yn, zn),

gyn+1 = F(yn, xn, yn) ≤ gyn = F(yn−1, xn−1, yn−1),

and

gzn = F(zn−1, yn−1, xn−1) ≤ gzn+1 = F(zn, yn, xn).

If, for some integer n0, we have (gxn0+1, gyn0+1, gzn0+1) = (gxn0 , gyn0 , gzn0 ), then

F(xn0 , yn0 , zn0 ) = gxn0 , F(yn0 , xn0 , yn0 ) = gyn0, and F(zn0 , yn0 , xn0 ) = gzn0; i.e., (xn0 , yn0 , zn0 ) is

a tripled coincidence point of F and g. Thus we shall assume that (gxn+1, gyn+1, gzn+1)

≠ (gxn, gyn, gzn) for all n Î N; i.e., we assume that either gxn+1 ≠ gxn or gyn+1 ≠ gyn or

gzn+1 ≠ gzn. For any n Î N*, we have from (5)
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ψ(G(gxn+1, gxn, gxn)):=ψ(G(F(xn, yn, zn), F(xn−1, yn−1, zn−1), F(xn−1, yn−1, zn−1)))

≤ ψ(max{G(gxn, gxn−1, gxn−1),G(gyn, gyn−1, gyn−1),G(gzn−1, gzn−1)})
− φ(max{G(gxn, gxn−1, gxn−1),G(gyn, gyn−1, gyn−1),G(gzn, gzn−1, gzn−1)})

≤ ψ(max{G(gxn, gxn−1, gxn−1),G(gyn, gyn−1)gyn−1),G(gzn, gzn−1, gzn−1)}),

(6)

ψ(G(gyn, gyn, gyn+1)) := ψ(G(F(yn−1, xn−1, yn−1), F(yn−1, xn−1, yn−1), F(yn, xn, yn)))

≤ ψ(max{G(gyn−1, gyn−1, gyn),G(gxn−1, gxn−1, gxn)}
− φ(max{G(gyn−1, gyn−1, gyn),G(gxn−1, gxn−1, gxn)})

≤ ψ(max{G(gyn, gyn−1, gyn−1),G(gxn, gxn−1, gxn−1),G(gzn, gzn−1, gzn−1)}),

(7)

and

ψ(G(gzn+1, gzn, gzn)):=ψ(G(F(zn, yn, xn), F(zn−1, yn−1, xn−1), F(zn−1, yn−1, xn−1)))

≤ ψ(max{G(gzn, gzn−1, gzn−1),G(gyn, gyn−1, gyn−1),G(gxn, gxn−1, gxn−1)})
− φ(max{G(F(zn, yn, xn), F(zn−1, yn−1, xn−1), F(zn−1, yn−1, xn−1))})

≤ ψ(max{G(gzn, gzn−1, gzn−1),G(gyn, gyn−1, gyn−1),G(gxn, gxn−1, gxn−1)}).

(8)

Since ψ:[0,+∞) ® [0, +∞) is a non-decreasing function, for a, b, c Î [0,+∞), we have

ψ(max{a, b, c}) = max{ψ(a), ψ(b), ψ(c)}. Then, from (6), (7), and (8), it follows that

ψ(max{G(gxn+1, gxn, gxn),G(gyn, gyn, gyn+1),G(gzn+1, gzn, gzn)})
= max({ψ(G(gxn+1, gxn, gxn)),ψ(G(gyn, gyn, gyn+1)),ψ(G(gzn+1, gzn, gzn))})
≤ ψ(max{G(gxn, gxn−1, gxn−1),G(gyn, gyn−1, gyn−1),G(gzn, gzn−1, gzn−1)}).

The fact that ψ is non-decreasing yields that

max{G(gxn+1, gxn, gxn),G(gyn, gyn, gyn+1),G(gzn+1, gzn, gzn)}
≤ max{G(gxn, gxn−1, gxn−1),G(gyn, gyn−1, gyn−1),G(gzn, gzn−1, gzn−1)}.

(9)

Thus, {max{G(gxn+1, gxn, gxn),G(gyn, gyn, gyn+1),G(gzn+1, gzn, gzn)}} is a positive non-

increasing sequence. Hence there exists r ≥ 0 such that

lim
n→+∞max{G(gxn+1, gxn, gxn),G(gyn, gyn, gyn+1),G(gzn+1, gzn, gzn)} = r. (10)

Having in mind that j is non-decreasing, then

φ(max{G(gxn, gxn−1, gxn−1),G(gyn, gyn−1, gyn−1),G(gzn, gzn−1, gzn−1)})
≥ φ(max{G(gxn, gxn−1, gxn−1),G(gyn, gyn−1, gyn−1)}),

(11)

so from (6)-(8), we get that

ψ(max{G(gxn+1, gxn, gxn),G(gyn, gyn, gyn+1),G(gzn+1, gzn, gzn)})
= max({ψ(G(gxn+1, gxn, gxn)),ψ(G(gyn, gyn, gyn+1)),ψ(G(gzn+1, gzn, gzn))})
≤ ψ(max{G(gxn, gxn−1, gxn−1),G(gyn, gyn−1, gyn−1),G(gzn, gzn−1, gzn−1)})

− φ(max{G(gxn, gxn−1, gxn−1),G(gyn, gyn−1, gyn−1)}).

(12)

On the other hand,

0 ≤ max{G(gxn, gxn−1, gxn−1),G(gyn−1, gyn−1, gyn)}
≤ max{G(gxn, gxn−1, gxn−1),G(gyn−1, gyn−1, gyn),G(gzn, gzn−1, gzn−1)},

(13)

so by (10), the real sequence {max{G(gxn, gxn-1, gxn-1),G(gyn-1, gyn-1, gyn)}} is bounded.

Thus, there exists a real number r1 with 0 ≤ r1 ≤ r and subsequences {xn(k)} of {xn} and

{yn(k)} of {yn} such that
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lim
k→+∞

max{G(gxn(k)+1, gxn(k), gxn(k)),G(gyn(k), gyn(k), gyn(k)+1)} = r1. (14)

We rewrite (12)

ψ(max{G(gxn(k)+1, gxn(k), gxn(k)),G(gyn(k), gyn(k), gyn(k)+1),G(gzn(k)+1, gzn(k), gzn(k)})
≤ ψ(max{G(gxn(k), gxn(k)−1, gxn(k)−1),G(gyn(k), gyn(k)−1, gyn(k)−1),G(gzn(k), gzn(k)−1, gzn(k)−1)})

− φ(max{G(gxn(k), gxn(k)−1, gxn(k)−1),G(gyn(k), gyn(k)−1, gyn(k)−1)}).
(15)

Letting k ® +∞ in (15), having in mind (10), (14), the continuity of ψ and the lower

semi-continuity of j, we obtain

ψ(r) = lim sup
k→+∞

ψ(max{G(gxn(k)+1, gxn(k), gxn(k)),G(gyn(k), gyn(k), gyn(k)+1),G(gzn(k)+1, gzn(k), gzn(k))})

≤ lim sup
k→+∞

ψ(max{G(gxn(k), gxn(k)−1, gxn(k)−1),G(gyn(k), gyn(k)−1, gyn(k)−1),G(gzn(k), gzn(k)−1, gzn(k)−1)})

− lim inf
k→+∞

φ(max{G(gxn(k), gxn(k)−1, gxn(k)−1),G(gyn(k), gyn(k)−1, gyn(k)−1)})
≤ ψ(r) − φ(r1),

which implies that j(r1) = 0, and using a property of j, we find r1 = 0. Thanks to

Lemma 14 together with (10) and (14), it yields that

r =: lim
k→+∞

max{G(gxn(k), gxn(k)−1, gxn(k)−1),G(gyn(k), gyn(k)−1, gyn(k)−1),G(gzn(k), gzn(k)−1, gzn(k)−1)}
= lim sup

k→+∞
G(gzn(k), gzn(k)−1, gzn(k)−1).

(16)

For any k Î N, we rewrite (8) as

ψ(G(gzn(k)+1, gzn(k), gzn(k)))

≤ ψ(max{G(gzn(k), gzn(k)−1, gzn(k)−1),G(gyn(k), gyn(k)−1, gyn(k)−1),G(gxn(k), gxn(k)−1, gxn(k)−1)})
− φ(max{G(gzn(k), gzn(k)−1, gzn(k)−1),G(gyn(k), gyn(k)−1, gyn(k)−1),G(gxn(k), gxn(k)−1, gxn(k)−1)}).

(17)

Again, letting k ® +∞ in (17), having in mind (10), (16) and by the properties of ψ,

j, we obtain

ψ(r) = lim sup
k→+∞

ψ(G(gzn(k)+1, gzn(k), gzn(k)))

≤ lim sup
k→+∞

ψ(max{gzn(k), gzn(k)−1, gzn(k)−1),G(gyn(k), gyn(k)−1, gyn(k)−1),G(gxn(k), gxn(k)−1, gxn(k)−1)})

− lim inf
k→+∞

φ(max{G(gzn(k), gzn(k)−1, gzn(k)−1),G(gyn(k), gyn(k)−1, gyn(k)−1),G(gxn(k), gxn(k)−1, gxn(k)−1)})
≤ ψ(r) − φ(r),

which gives that j(r) = 0, so r = 0, i.e., by (10),

lim
n→+∞max{G(gxn+1, gxn, gxn),G(gyn, gyn, gyn+1),G(gzn+1, gzn, gzn)} = 0. (18)

Our next step is to show that {gxn}, {gyn} and {gzn} are G-Cauchy sequences.

Assume the contrary, i.e., {gxn}, {gyn} or {gzn} is not a G-Cauchy sequence, i.e.,

lim
n,m→+∞G(gxm, gxngxn) �= 0, or lim

n,m→+∞G(gym, gyn, gyn) �= 0,

or lim
n,m→+∞G(gzm, gzn, gzn) �= 0. This means that there exists ε > 0 for which we can

find subsequences of integers {mk} and {nk} with nk >mk >k such that

max{G(gxmk , gxnk , gxnk),G(gymk , gynk , gynk),G(gzmk , gznk , gznk)} ≥ ε. (19)

Further, corresponding to mk we can choose nk in such a way that it is the smallest

integer with nk >mk and satisfying (19). Then

max{G(gxmk , gxnk−1, gxnk−1),G(gymk , gynk−1, gynk−1),G(gzmk , gznk−1, gznk−1)} < ε. (20)
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By (G5) and (20), we have

G(gxmk , gxnk , gxnk) ≤ G(gxmk , gxnk−1, gxnk−1) + G(gxnk−1, gxnk , gxnk)

< ε + G(gxnk−1, gxnk , gxnk).

Thus, by (18) we obtain

lim
k→+∞

G(gxmk , gxnk , gxnk) ≤ lim
k→+∞

G(gxmk , gxnk−1, gxnk−1) ≤ ε. (21)

Similarly, we have

lim
k→+∞

G(gymk , gynk , gynk) ≤ lim
k→+∞

G(gymk , gynk−1, gynk−1) ≤ ε. (22)

lim
k→+∞

G(gzmk , gznk , gznk) ≤ lim
k→+∞

G(gzmk , gznk−1, gznk−1) ≤ ε. (23)

Again by (G5) and (20), we have

G(gxmk , gxnk , gxnk) ≤ G(gxmk , gxmk−1, gxmk−1)

+ G(gxmk−1, gxnk−1, gxnk−1) + G(gxnk−1, gxnk , gxnk)

≤ G(gxmk , gxmk−1, gxmk−1) + G(gxmk−1, gxmk , gxmk)

+ G(gxmk , gxnk−1, gxnk−1) + G(gxnk−1, gxnk , gxnk)

< G(gxmk , gxmk−1, gxmk−1) + G(gxmk−1, gxmk , gxmk)

+ ε + G(gxnk−1, gxnk , gxnk).

Letting k ® +∞ and using (18), we get

lim
k→+∞

G(gxmk , gxnk , gxnk) ≤ lim
k→+∞

G(gxmk−1, gxnk−1, gxnk−1) ≤ ε, (24)

lim
k→+∞

G(gymk , gynk , gynk) ≤ lim
k→+∞

G(gymk−1, gynk−1, gynk−1) ≤ ε, (25)

lim
k→+∞

G(gzmk , gznk , gznk) ≤ lim
k→+∞

G(gzmk−1, gznk−1, gznk−1) ≤ ε. (26)

Using (19) and (24)-(26), we have

lim
k→+∞

max{G(gxmk , gxnk , gxnk),G(gymk , gynk , gynk),G(gzmk , gznk , gznk)}
= lim

k→+∞
max{G(gxmk−1, gxnk−1, gxnk−1),G(gymk−1, gynk−1, gynk−1),G(gzmk−1, gznk−1, gznk−1)

= ε.

(27)

Now, using inequality (5) we obtain

ψ(G(gxmk , gxnk , gxnk)) = ψ(G(F(xmk−1, ymk−1, zmk−1), F(xnk−1, ynk−1, znk−1), F(xnk−1, ynk−1, znk−1)))

≤ ψ(max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1),G(zmk−1, znk−1, znk−1)})
− φ(max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1),G(zmk−1, znk−1, znk−1)})

(28)

ψ(G(gymk , gynk , gynk)) = ψ(G(F(ymk−1, xmk−1, ymk−1), F(ynk−1, xnk−1, ynk−1), F(ynk−1, xnk−1, ynk−1)))

≤ ψ(max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1)})
− φ(max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1)})

(29)

and

ψ(G(gzmk , gznk , gznk)) = ψ(G(F(zmk−1, ymk−1, xmk−1), F(znk−1, ynk−1, xnk−1), F(znk−1, ynk−1, xnk−1)))

≤ ψ(max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1),G(zmk−1, znk−1, znk−1)})
− φ(max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1),G(zmk−1, znk−1, znk−1)})

(30)
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We deduce from (28)-(30) that

ψ(max{G(gxmk , gxnk , gxnk),G(gymk , gynk , gynk),G(gzmk , gznk , gznk)}
= max{ψ(G(gxmk , gxnk , gxnk)),ψ(G(gymk , gynk , gynk)),ψ(G(gzmk , gznk , gznk))}
≤ ψ(max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1),G(zmk−1, znk−1, znk−1)})

− φ(max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1)}).

(31)

On the other hand, since

max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1)}
≤ max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1),G(zmk−1, znk−1, znk−1)},

(32)

then from (27),

lim sup
k→+∞

max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1)} ≤ ε.

Therefore, the real sequence {max{G(xmk−1,xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1)}} is

bounded. Thus, up to a subsequence (still denoted the same), there exists ε1 with 0 ≤

ε1 ≤ ε such that

lim
k→+∞

max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1)} = ε1. (33)

Inserting this in (31) and using (27), (33) together with the properties of ψ, j, we get

that

ψ(ε) = lim sup
k→+∞

ψ(max{G(gxmk , gxnk , gxnk),G(gymk , gynk , gynk),G(gzmk , gznk , gznk)}

≤ lim sup
k→+∞

ψ(max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1),G(zmk−1, znk−1, znk−1)})

− lim inf k → +∞φ(max{G(xmk−1, xnk−1, xnk−1),G(ymk−1, ynk−1, ynk−1)})
≤ ψ(ε) − φ(ε1),

which leads to j(ε1) = 0, so ε1 = 0. By this and (27), due to Lemma 14, we obtain

lim sup
k→+∞

G(zmk−1, znk−1, znk−1) = ε.

Combining this to (19) and (26), we find

lim sup
k→+∞

G(zmk , znk , znk) = ε.

Letting k ® ∞ in (30) and using (27), we deduce

ψ(ε) ≤ ψ(ε) − φ(ε),

i.e., ε = 0, it is a contradiction. We conclude that {gxn}, {gyn} and {gzn} are G-Cauchy

sequences in the G-metric space (X, G), which is G-complete. Then, there are x, y, z Î
X such that {gxn}, {gyn} and {gzn} are respectively G-convergent to x, y and z, i.e., from

Proposition 4, we have

lim
n→+∞G(gxn, gxn, x) = lim

n→+∞G(gxn, x, x) = 0, (34)

lim
n→+∞G(gyn, gyn, y) = lim

n→+∞G(gyn, y, y) = 0, (35)

lim
n→+∞G(gzn, gzn, z) = lim

n→+∞G(gzn, z, z) = 0. (36)
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From (34)-(36) and the continuity of g, we get thanks to Proposition 8

lim
n→+∞G(g(gxn), g(gxn), gx) = lim

n→+∞G(g(gxn), gx, gx) = 0, (37)

lim
n→+∞G(g(gyn), g(gyn), gy) = lim

n→+∞G(g(gyn), gy, gy) = 0, (38)

lim
n→+∞G(g(gzn), g(gzn), gz) = lim

n→+∞G(g(gzn), gz, gz) = 0. (39)

Since gxn+1 = F(xn, yn, zn), gyn+1 = F(yn, xn, yn) and gzn+1 = F(zn, yn, xn), so the com-

mutativity of F and g yields that

g(gxn+1) = g(F(xn, yn, zn)) = F(gxn, gyn, gzn), (40)

g(gyn+1) = g(F(yn, xn, yn)) = F(gyn, gxn, gyn), (41)

g(gzn+1) = g(F(zn, yn, xn)) = F(gzn, gyn, gxn). (42)

Now we show that F(x, y, z) = gx, F(y, x, y) = gy and F(z, y, x) = gz.

The mapping F is continuous, so since the sequences {gxn}, {gyn} and {gzn} are,

respectively, G-convergent to x, y and z, hence using Definition 8, the sequence {F(gxn,

gyn, gzn)} is G-convergent to F(x, y, z). Therefore, from (40), {g(gxn+1)} is G-convergent

to F(x, y, z). By uniqueness of the limit, from (37) we have F(x, y, z) = gx.

Similarly, one finds F(y, x, y) = gy and F(z, y, x) = gz, and this makes end to the

proof. □
Corollary 16. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space

such that (X, G) is G-complete. Let F : X3 ® X and g : X ® X. Assume there exists k Î
[0,1) such that for x, y, z, a, b, c, u, v, w Î X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv and gz ≥

gc ≥ gw, we have

G(F(x, y, z), F(a, b, c), F(u, v,w)) ≤ kmax{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)}.

Assume that F and g satisfy the following conditions:

(1) F(X3) ⊂ g(X),

(2) F has the mixed g-monotone property,

(3) F is continuous,

(4) g is continuous and commutes with F.

Suppose there exist x0, y0, z0 Î X such that gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0) and

gz0 ≤ F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x,

y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, F(z, y, x) = gz.

Proof. If follows by taking ψ(t) = t and j(t) = (1 - k)t for all t ≥ 0. □
Corollary 17. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space

such that (X, G) is G-complete. Let F : X3 ® X and g : X ® X. Assume there exists k Î
[0,1) such that for x, y, z, a, b, c, u, v, w Î X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv and gz ≥

gc ≥ gw, we have
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G(F(x, y, z), F(a, b, c), F(u, v,w)) ≤ k
3
(G(gx, ga, gu) + G(gy, gb, gv) + G(gz, gc, gw)).

Assume that F and g satisfy the following conditions:

(1) F(X3) ⊆g(X),
(2) F has the mixed g-monotone property,

(3) F is continuous,

(4) g is continuous and commutes with F.

Suppose there exist x0, y0, z0 Î X such that gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0) and

gz0 ≤ F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x,

y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, F(z, y, x) = gz.

Proof. It suffices to remark that

k
3 (G(gx, ga, gu) + G(gy, gb, gv) + G(gz, gc, gw))

≤ kmax{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)}. (43)

□
In the next theorem, we omit the continuity hypothesis of F. We need the following

definition.

Definition 18. Let (X, ≼) be a partially ordered set and G be a G-metric on X. We

say that (X, G, ≤) is regular if the following conditions hold:

(i) if a non-decreasing sequence {xn} is such that xn ® x, then xn ≤ x for all n,

(ii) if a non-increasing sequence {yn} is such that yn ® y, then y ≤ yn for all n.

Theorem 19. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space.

Let F : X3 ® X and g: X ® X. Assume there exist ψ Î Ψ and j Î F such that for x, y,

z, a, b, c, u, v, w Î X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv and gz ≥ gc ≥ gw, we have

ψ(G(F(x, y, z), F(a, b, c), F(u, v,w))) ≤ ψ(max{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)})
− φ(max{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)}). (44)

Assume that (X, G, ≤) is regular. Suppose that (g(X),G) is G-complete, F has the

mixed g-monotone property and F(X × X × X) ⊆ g(X). Also, assume there exist x0, y0, z0
Î X such that gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0) and gz0 ≤ F(z0, y0, x0), then F and g

have a tripled coincidence point in X, i.e., there exist x, y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, F(z, y, x) = gz.

Proof. Proceeding exactly as in Theorem 15, we have that {gxn}, {gyn} and {gzn} are G-

Cauchy sequences in the G-complete G-metric space (g(X), G). Then, there exist x, y, z

Î X such that gxn ® gx, gyn ® gy and gzn ® gz. Since {gxn} and {gzn} are non-decreas-

ing and {gyn} is non-increasing, using the regularity of (X, G, ≤), we have gxn ≤ gx, gzn
≤ gz and gy ≤ gyn for all n ≥ 0. Using (5), we get

ψ(G(F(x, y, z), gxn+1, gxn+1) = ψ(G(F(x, y, z), F(xn, yn, zn), F(xn, yn, zn)))

≤ ψ(max{G(gx, gxn, gxn),G(gy, gyn, gyn),G(gz, gzn, gzn)})
− φ(max{G(gx, gxn, gxn),G(gy, gyn, gyn),G(gz, gzn, gzn)}).

(45)
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Letting n ® +∞ in the above inequality, we obtain that

ψ(G(F(x, y, z), gx, gx)) ≤ ψ(0) − φ(0) = 0,

which implies that G(F(x, y, z), gx, gx) = 0, i.e., gx = F(x, y, z).

Similarly, one can show that gy = F(y, x, y) and gz = F(z, y, x). Thus we proved that

(x, y, z) is a tripled coincidence point of F and g. □
Similarly, we can state the following corollary.

Corollary 20. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space.

Let F : X3 ® X and g: X ® X. Assume there exists k Î [0, 1) such that for x, y, z, a, b,

c, u, v, w Î X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv and gz ≥ gc ≥ gw, we have

G(F(x, y, z), F(a, b, c), F(u, v,w)) ≤ kmax{G(gx, ga, gy),G(gy, gb, gv),G(gz, gc, gw)}.

Assume that (X, G, ≤) is regular. Suppose that (g(X),G) is G-complete, F has the

mixed g-monotone property and F(X × X × X) ⊆ g(X). Also, assume there exist x0, y0, z0
Î X such that gx0 ≤ F(x0, y0, z0), gy 0 ≥ F(y0, x0, y0) and gz0 ≤ F(z0, y0, x0), then F and

g have a tripled coincidence point in X, i.e., there exist x, y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, F(z, y, x) = gz.

Corollary 21. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space.

Assume that (X, G, ≤) is regular. Let F : X3 ® X and g : X ® X. Assume there exists k

Î [0, 1) such that for x, y, z, a, b, c, u, v, w Î X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv and gz

≥ gc >gw, we have

G(F(x, y, z), F(a, b, c), F(u, v,w)) ≤ k
3
(G(gx, ga, gu) + G(gy, gb, gv) + G(gz, gc, gw)).

Suppose that (g(X),G) is G-complete, F has the mixed g-monotone property and F(X ×

X × X) ⊆ g(X). Also, assume there exist x0, y0, z0 Î X such that gx0 ≤ F(x0, y0, z0), gy0 ≥

F(y0, x0, y0) and gz0 <F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.

e., there exist x, y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, F(z, y, x) = gz.

Remark 22. Other corollaries could be derived from Theorems 15 and 19 by taking g

= Idx.

Now, form previous obtained results, we will deduce some tripled coincidence point

results for mappings satisfying a contraction of integral type in G-metric space. Let us

introduce first some notations.

We denote by Γ the set of functions a: [0, +∞) ® [0, +∞) satisfying the following

conditions:

(i) a is a Lebesgue integrable mapping on each compact subset of [0, +∞),

(ii) for all ε > 0, we have

ε∫
0

α(s)ds >0.

Let N Î N* be fixed. Let {ai}1 ≤ i ≤ N be a family of N functions that belong to Γ. For

all t ≥ 0, we denote (Ii)i = 1,...,N as follows:
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I1(t) =

t∫
0

α1(s)ds,

I2(t) =

I1(t)∫
0

α2(s)ds =

t∫
0

α1(s)ds∫
0

α2(s)ds,

...

IN(t) =

IN−1(t)∫
0

αN(s)ds.

We have the following result.

Theorem 23. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space

such that (X, G) is G-complete. Let F : X3 ® X and g : X ® X. Assume there exist ψ Î
Ψ and j Î F such that for x, y, z, a, b, c, u, v, w Î X, wth gx ≥ ga ≥ gu, gy ≤ gb ≤ gv

and gz ≥ gc ≥ gw, we have

IN(ψ(G(F(x, y, z), F(a, b, c), F(u, v,w)))) ≤ IN(ψ(max{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)}))
− IN(φ(max{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)})). (46)

Assume that F and g satisfy the following conditions:

(1) F(X3) ⊆ g(X),

(2) F has the mixed g-monotone property,

(3) F is continuous,

(4) g is continuous and commutes with F.

Suppose there exist x0, y0, z0 Î X such that gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0) and

gz0 ≤ F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x,

y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, F(z, y, x) = gz.

Proof. Take

φ̃ = IN◦ϕ and ψ̃ = IN◦ψ .

It is easy to show that ψ̃ ∈ � and φ̃ ∈ �. From (46), we have

ψ̃(G(F(x, y, z), F(a, b, c), F(u, v,w)) ≤ ψ̃(max{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)})
− φ̃(max{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)}). (47)

Now, applying Theorem 15, we obtain the desired result. □
Similarly, we have

Theorem 24. Let (X, ≤) be partially ordered set and (X, G) be a G-metric space. Let

F : X3 ® X and g: X ® X. Assume there exist ψ Î Ψ and j Î F such that for x, y, z,

a, b, c, u, v, w Î X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv and gz ≥ gc ≥ gw, we have

IN(ψ(G(F(x, y, z), F(a, b, c), F(u, v,w)))) ≤ IN(ψ(max{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)}))
− IN(φ(max{G(gx, ga, gu),G(gy, gb, gv),G(gz, gc, gw)})).

Assume that (X, G, ≤) is regular. Suppose that (g(X),G) is G-complete, F has the

mixed g-monotone property and F(X × X × X) ⊆ g(X). Also, assume there exist x0, y0, z0
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Î X such that gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0) and gz0 ≤ F(z0, y0, x0), then F and g

have a tripled coincidence point in X, i.e., there exist x, y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, F(z, y, x) = gz.

Application to integral equations
In this section, we study the existence of solutions to nonlinear integral equations

using the results proved in section “Main results”.

Consider the integral equations in the following system

x(t) = p(t) +

T∫
0

S(t, s)[f (s, x(s)) + k(s, y(s)) + h(s, z(s))]ds

y(t) = p(t) +

T∫
0

S(t, s)[f (s, y(s)) + k(s, x(s)) + h(s, y(s))]ds

z(t) = p(t) +

T∫
0

S(t, s)[f (s, z(s)) + k(s, y(s)) + h(s, x(s))]ds.

(48)

We will analyze the system (48) under the following assumptions:

(i) f, k, h: [0, T] × ℝ ® ℝ are continuous,

(ii) p : [0, T] ® ℝ is continuous,

(iii) S: [0, T] × ℝ ® [0, ∞) is continuous,

(iv) there exists q > 0 such that for all x, y Î ℝ, y ≥ x,

0 ≤ f (s, y) − f (s, x) ≤ q(y − x)

0 ≤ k(s, x) − k(s, y) ≤ q(y − x)

0 ≤ h(s, y) − h(s, x) ≤ q(y − x).

(v) We suppose that

3q sup
t∈[0,T]

T∫
0

S(t, s)ds < 1.

(vi) There exist continuous functions a, b, g : [0, T] ® ℝ such that

α(t) ≤ p(t) +

T∫
0

S(t, s)[f (s,α(s)) + k(s,β(s)) + h(s, γ (s))]ds

β(t) ≥ p(t) +

T∫
0

S(t, s)[f (s,β(s)) + k(s,α(s)) + h(s,β(s))]ds

γ (t) ≤ p(t) +

T∫
0

S(t, s)[f (s, γ (s)) + k(s,β(s)) + h(s,α(s))]ds.

We consider the space X = C([0,T],ℝ) of continuous functions defined on [0,T]

endowed with the (G-complete) G-metric given by
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G(u, v,w) = max
t∈[0,T]

∣∣u(t) − v(t)
∣∣+max

t∈[0,T]
∣∣u(t) − w(t)

∣∣+max
t∈[0,T]

∣∣v(t) − w(t)
∣∣ for all u, v,w ∈ X.

We endow X with the partial ordered ≤ given by: x, y Î X, x ≤ y ⇔ x(t) ≤ y(t) for all

t Î [0, T].

On the other hand, we may adjust as in [37] to prove that (X, G, ≤) is regular.

Our result is the following.

Theorem 25. Under assumptions (i)-(vi), the system (48) has a solution in X3 = (C([0,

T], ℝ))3.

Proof. We consider the operators F : X3 ® X and g : X ® X defined by

F(x1, x2, x3)(t) = p(t)+

T∫
0

S(t, s)[f (s, x1(s)) + k(s, x2(s)) + h(s, x3(s))]ds, g(x) = x t ∈ [0,T],

for all x1, x2, x3, x Î X.

First, we will prove that F has the mixed monotone property (since g is the identity

on X).

In fact, for x1 ≤ y1 and t Î [0, T], we have

F(y1, x2, x3)(t) − F(x1, x2, x3)(t) =

T∫
0

S(t, s)[f (s, y1(s)) − f (s, x1(s))]ds.

Taking into account that x1(t) ≤ y1(t) for all t Î [0, T], so by (iv), f(s, y1 (s)) ≥ f(s, x1
(s)). Then F(y1, x2, x3)(t) ≥ F(x1, x2, x3)(t) for all t Î [0,T],i.e.,

F(x1, x2, x3) ≤ F(y1, x2, x3).

Similarly, for x2 ≤ y2 and t Î [0, T], we have

F(x1, x2, x3)(t) − F(x1, y2, x3)(t) =

T∫
0

S(t, s)[k(s, x2(s)) − k(s, y2(s))]ds.

Having x2(t) ≤ y2(t), so by (iv), k(s, x2(s)) ≥ k(s, y2(s)). Then F(x1, x2, x3)(t) ≥ F(x1, y2,

x3)(t) for all t Î [0,T], i.e.,

F(x1, x2, x3) ≥ F(x1, y2, x3).

Now, for x3 ≤ y3 and t Î [0, T], we have

F(x1, x2, x3)(t) − F(x1, y2, x3)(t) =

T∫
0

S(t, s)[k(s, x2(s)) − k(s, y2(s))]ds.

Taking into account that x3(t) ≤ y3(t) for all t Î [0, T], so by (iv), h(s, x3(s)) ≥ h(s, y3
(s)). Then F(x1, x2, x3)(t) ≥ F(x1, x2, y3)(t) for all t Î [0, T], i.e.,

F(x1, x2, x3) ≥ F(x1, x2, y3).

Therefore, F has the mixed monotone property.

In what follows we estimate the quantity G(F(x, y, z), F(a, b, c), F(u, v, w)) for all x, y,

z, a, b, c, u, v, w Î X, with x ≥ a ≥ u, y ≤ b ≤ v and z ≥ c ≥ w. Since F has the mixed

monotone property, we have
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F(u, v,w) ≤ F(a, b, c) ≤ F(x, y, z).

We obtain

G(F(x, y, z), F(a, b, c), F(u, v,w)

= max
t∈[0,T]

∣∣F(x, y, z)(t) − F(a, b, c)(t)
∣∣ + max

t∈[0,T]
∣∣F(x, y, z)(t) − F(u, v, z)(t)

∣∣
+ max

t∈[0,T]
∣∣F(u, v,w)(t) − F(a, b, c)(t)

∣∣
= max

t∈[0,T]
(F(x, y, z)(t) − F(a, b, c)(t)) + max

t∈[0,T]
(F(x, y, z)(t) − F(u, v, z)(t))

+ max
t∈[0,T]

(F(a, b, c)(t) − F(u, v,w)(t)).

Note that for all t Î [0, T], from (iv), we have

F(x, y, z)(t) − F(a, b, c) =

T∫
0

S(t, s)[f (s, x(s)) − f (s, a(s))]ds

+

T∫
0

S(t, s)[k(s, y(s)) − k(s, b(s))]ds

+

T∫
0

S(t, s)[h(s, z(s)) − h(s, c(s))]

≤ q
[
max
s∈[0,T]

∣∣x(s) − a(s)
∣∣ + max

s∈[0,T]
∣∣y(s) − b(s)

∣∣

+ max
s∈[0,T]

∣∣z(s) − c(s)
∣∣]

⎛
⎝

T∫
0

S(t, s)ds

⎞
⎠ .

Thus,

max
t∈[0,T]

(F(x, y, z)(t) − F(a, b, c)(t))

≤ q
[
max
s∈[0,T]

∣∣x(s) − a(s)
∣∣ + max

s∈[0,T]
∣∣y(s) − b(s)

∣∣ + max
s∈[0,T]

∣∣z(s) − c(s)
∣∣]

⎛
⎝ sup

t∈[0,T]

T∫
0

S(t, s)ds

⎞
⎠ .

(49)

Repeating this idea, we may get using definition of the the G-metric G

max
t∈[0,T]

(F(x, y, z)(t) − F(a, b, c)(t) + max
t∈[0,T]

(F(x, y, z)(t) − F(u, v, z)(t))

+ max
t∈[0,T]

(F(a, b, c)(t) − F(u, v,w)(t)

≤ q[G(x, a, u) + G(y, b, v) + G(z, c,w)]

⎛
⎝ sup

t∈[0,T]

T∫
0

S(t, s)ds

⎞
⎠

≤ 3q

⎛
⎝ sup

t∈[0,T]

T∫
0

S(t, s)ds

⎞
⎠max{G(x, a, u),G(y, b, v),G(z, c,w)}.

From (v), we have 3q( sup
t∈[0,T]

∫ T

0
S(t, s)ds) < 1 . This proves that the operator F satis-

fies the contractive condition appearing in Corollary 20.
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Let a, b, g be the functions appearing in assumption (vi), then by (vi), we get

α ≤ F(α,β , γ ), β ≥ F(β ,α,β), γ ≤ F(γ ,β ,α).

Applying Corollary 20, we deduce the existence of x1, x2, x3 Î X such that

x1 = F(x1, x2, x3), x2 = F(x2, x1, x2), x3 = F(x3, x2, x1),

i.e., (x1, x2, x3) is a solution of the system (48). □

Examples
In this section, we state two examples to support the usability of our results. Before we

present our first example we worth to mention the following remark.

Remark 26. All our results still valid if (u, v, w) = (a, b, c).

Example 27. Let X = [0, 1] with usual order. Define G : X × X × X ® X by

G(x, y, z) = max
{∣∣x − y

∣∣ , |x − z| , ∣∣y − z
∣∣} .

Define F: X × X × X ® X by

F(x, y, z) =

⎧⎨
⎩
0, y ≥ min{x, z};
z−y
4 , x ≥ z ≥ y;

x−y
4 , z ≥ x ≥ y.

Also, define ψ, j : [0, +∞) ® [0, +∞) by ψ(t) = t and φ(t) =
1
2
t. Then:

a. (X, G, ≤) is a G-complete regular G-metric space.

b. For x, y, z, u, v, w Î X with x ≥ u ≥ u, y ≤ v ≤ v and z ≥ w ≥ w, we have

ψ(G(F(x, y, z), F(u, v,w), F(u, v,w))) ≤ ψ(max{G(x, u, u),G(y, v, v),G(z,w,w)})
− φ(max{G(x, u, u),G(y, v, v),G(z,w,w)}).

c. F has the mixed monotone property.

Proof. To prove (b), given x, y, z, u, v, w Î X with x ≥ u, y ≤ v and z ≥ w. Then:

Case 1: y > min{x, z} and v ≥ min{u, w}. Here, we have

ψ(G(F(x, y, z), F(u, v,w), F(u, v,w))) = 0

≤ ψ(max{G(x, u, u),G(y, v, v),G(z,w,w)})
− φ(max{G(x, u, u),G(y, v, v),G(z,w,w)}).

Case 2: y ≥ min{x, z} and u ≥ w ≥ v. Here, we have y ≤ v ≤ w ≤ u ≤ x and y ≤ v ≤ w

≤ z. Hence y = v = w = u = x or y = v = w = z. Therefore

ψ(G(F(x, y, z), F(u, v,w), F(u, v,w))) = 0

≤ ψ(max{G(x, u, u),G(y, v, v),G(z,w,w)})
− φ(max{G(x, u, u),G(y, v, v),G(z,w,w)}).

Case 3: y ≥ min{x, z} and w ≥ u ≥ v. Here, we have y ≤ v ≤ u ≤ w ≤ z and y ≤ v ≤ u

≤ x. Thus y = v = u = w = z or y = v = u = x. Therefore
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ψ(G(F(x, y, z), F(u, v,w), F(u, v,w))) = 0

≤ ψ(max{G(x, u, u),G(y, v, v),G(z,w,w)})
− φ(max{G(x, u, u),G(y, v, v),G(z,w,w)}).

Case 4: x ≥ z ≥ y and v ≥ min{u, w}.

Suppose w ≤ v, then w - y ≤ v - y and hence

z − y = z − w + w − y ≤ z − w + v − y = G(z,w,w) + G(y, v, y)

≤ 2max{G(x, u, u),G(y, v, v),G(z,w,w)}.

Then

G(F(x, y, z), F(u, v,w), F(u, v,w)) = G
(
z − y
4

, 0, 0
)
=
z − y
4

≤ 2
4
max{G(x, u, u),G(y, v, v),G(z,w,w)}

= max{G(x, u, u),G(y, v, v),G(z,w,w)}
− 1

2
max{G(x, u, u),G(y, v, v),G(z,w,w)}.

Suppose v <w, then u ≤ v <w and hence u ≤ v ≤ w ≤ z ≤ x. So

z − y ≤ x − y = x − u + u − y

≤ (x − u) + (v − y) = G(x, u, u) + G(v, y, y)

≤ 2max{G(x, u, u),G(y, v, v),G(z,w,w)}.

Therefore,

G(F(x, y, z), F(u, v,w), F(u, v,w)) = G
(
z − y
4

, 0, 0
)
=
z − y
4

≤ 2
4
max{G(x, u, u),G(y, v, v),G(z,w,w)}

= max{G(x, u, u),G(y, v, v),G(z,w,w)}
− 1

2
max{G(x, u, u),G(y, v, v),G(z,w,w)}.

Case 5: z ≥ x ≥ y and v ≥ min{u, w}.

Suppose u ≤ v, then u - y ≤ v - y and hence

x − y = x − u + u − y ≤ (x − u) + (v − y) = G(x, u, u) + G(v, y, y)

≤ 2max{G(x, u, u),G(y, v, v),G(z,w,w)}.

Therefore,

G(F(x, y, z), F(u, v,w), F(u, v,w)) = G
(
x − y
4

, 0, 0
)

=
1
4
(x − y)

≤ 2
4
max{G(x, u, u),G(y, v, v),G(z,w,w)}

= max{G(x, u, u),G(y, v, v),G(z,w,w)}
− 1

2
max{G(x, u, u),G(y, v, v),G(z,w,w)}.
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Suppose v <u, then w ≤ v <u and hence w ≤ v <u ≤ x ≤ z. So

x − y ≤ z − y = z − w + w − y ≤ (z − w) + (v − y) = d(z,w) + d(y, v)

≤ 2max{d(x, u), d(y, v), d(z,w)}.

Therefore,

G(F(x, y, z), F(u, v,w), F(u, v,w)) = G
(
x − y
4

, 0, 0
)
=
1
4
(x − y)

≤ 2
4
max{G(x, u, u),G(y, v, v),G(z,w,w)}

= max{G(x, u, u),G(y, v, v),G(z,w,w)}
− 1

2
max{G(x, u, u),G(y, v, v),G(z,w,w)}.

Case 6: x ≥ z ≥ y and u ≥ w ≥ v. Here, we have

G(F(x, y, z), F(u, v,w), F(u, v,w)) = G
(
z − y
4

,
w − v
4

,
w − v
4

)

=
1
4

∣∣(z − w) + (v − y)
∣∣

≤ 2
4
max{G(x, u, u),G(y, v, v),G(z,w,w)}

= max{G(x, u, u),G(y, v, v),G(z,w,w)}
− 1

2
max{G(x, u, u),G(y, v, v),G(z,w,w)}.

Case 7: x ≥ z ≥ y and w ≥ u ≥ v. Here, we have y ≤ v ≤ u ≤ w ≤ z ≤ x. Thus,

G(F(x, y, z), F(u, v,w), F(u, v,w)) = G
(
z − y
4

,
u − v
4

,
u − v
4

)

=
1
4

∣∣(z − u) + (v − y)
∣∣

=
1
4

[
(z − u) + (v − y)

]

=
1
4

[
(x − u) + (v − y)

]

=
1
4
(G(x, u, u) + G(y, v, v))

≤ 2
4
max{G(x, u, u),G(y, v, v),G(z,w,w)}

= max{G(x, u, u),G(y, v, v),G(z,w,w)}
− 1

2
max{G(x, u, u),G(y, v, v),G(z,w,w)}.

Case 8: z ≥ x ≥ y and u ≥ w ≥ v. Here, we have y ≤ v ≤ w ≤ u ≤ x ≤ z. Therefore, we

have
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G(F(x, y, z), F(u, v,w), F(u, v,w))

= G
(
x − y
4

,
w − v
4

,
w − v
4

)
=
1
4

∣∣x − y − w + v
∣∣

≤ 1
4

(|x − w| + ∣∣v − y
∣∣)

≤ 1
4
(z − w +

∣∣v − y
∣∣)

=
1
4
(G(z,w,w) + G(y, v, v))

≤ 2
4
max{G(x, u, u),G(y, v, v),G(z,w,w)}

= max{G(x, u, u),G(y, v, v),G(z,w,w)}
− 1

2
max{G(x, u, u),G(y, v, v),G(z,w,w)}.

Case 9: z ≥ x ≥ y, w ≥ u ≥ v. Here, we have y ≤ v ≤ u ≤ w ≤ z. Therefore, we have

G(F(x, y, z), F(u, v,w), F(u, v,w)) = G
(
x − y
4

,
u − v
4

,
u − v
4

)

=
1
4

∣∣x − y − u + v
∣∣

≤ 1
4
(|x − u| + ∣∣v − y

∣∣)
=
1
4
(G(x, u, u) + G(y, v, v))

≤ 2
4
max{G(x, u, u),G(y, v, v),G(z,w,w)}

= max{G(x, u, u),G(y, v, v),G(z,w,w)}
− 1

2
max{G(x, u, u),G(y, v, v),G(z,w,w)}.

To prove (c), let x, y, z Î X. To show that F(x, y, z) is monotone non-decreasing in x,

let x1, x2 Î X with x1 ≤ x2. If y ≥ min{x1, z}, then F(x1, y, z) = 0 ≤ F(x2, y, z).

If y < min{x1, z}, then

F(x1, y, z) =
min(x1, z) − y

3
≤ min{x2, z} − y

3
= F(x2, y, z).

Therefore, F(x, y, z) is monotone non-decreasing in x. Similarly, we may show that F

(x, y, z) is monotone non-decreasing in z and monotone non-increasing in y. Thus, by

Theorem 19 and Remark 26, F has a tripled fixed point. Here, (0, 0,0) is the unique

tripled fixed point of F.

□
Now, we state our second example to support the usability of our results for non-

symmetric G-metric spaces.

Example 28. Let X = {0, 1, 2, 3,...}. Define G : X × X × X ® X by

G(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x + y + z, if x, y, z are all distinct and different from zero;
x + z, if x = y �= z and all are different from zero;
y + z + 1, if x = 0, y �= z and y, z are different from zero;
y + 2, if x = 0, z = y �= 0;
z + 1, if x = 0, y = 0, z �= 0;
0, if x = y = x,
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F: X × X × X ® X by

F(x, y, z) =
{
0, if x ≤ 3 ∨ z ≤ 3;
1, if x ≥ 4 ∧ z ≥ 4,

and g: X ® X by gx = x2. Also, define ψ, j: [0, +∞) ® [0, +∞) by ψ(t) = t2 and j(t) =
t. Then

a. (X, G, ≤) is a complete nonsymmetric G-metric space.

b. For x, y, z, u, v, w Î X with gx ≥ gu ≥ gu, gy ≤ gv ≤ gv and gz ≥ gw ≥ gw, we have

ψ(G(F(x, y, z), F(u, v,w), F(u, v,w))) ≤ ψ(max{G(gx, gu, gu),G(gy, gv, gv),G(gz, gw, gw)})
− φ(max{G(gx, gu, gu),G(gy, gv, gv),G(gz, gw, gw)}).

c. F has the mixed g-monotone property.

d. F(X × X × X) ⊆ gX.

e. (X, G, ≤) is regular.

Proof. For (a) see Example 3.5 of Choudhury and Maity [17]. To prove (b), given x, y,

z, u, v, w Î X with gx ≥ gu, gy ≤ gv and gz ≥ gw. Then: □
Case 1: (x ≤ 3 ⋁ z ≤ 3) ⋀ (u ≤ 3 ⋁ w ≤ 3). Here, we have F(x, y, z) = 0 and F(u, v, w)

= 0. Thus

ψ(G(F(x, y, z), F(u, v,w), F(u, v,w))) = 0

≤ ψ(max{G(gx, gu, gu),G(gy, gv, gv),G(gz, gw, gw)})
− φ(max{G(gx, gu, gu),G(gy, gv, gv),G(gz, gw, gw)}).

Case 2: (x ≤ 3 ⋁ z ≤ 3) ⋀ (u ≥ 4 ⋀ w ≥ 4). Here, x <u or z <w which is impossible

because gx ≥ gu and gz ≥ gw.

Case 3: (x ≥ 4 ⋀ z ≥ 4) ⋀ (u ≤ 3 ⋁ w ≤ 3). Here, we have F(x, y, z) = 1 and F(u, v, w)

= 0. Thus

ψ(G(F(x, y, z), F(u, v,w), F(u, v,w)) = ψ(G(1, 0, 0)) = ψ(2) = 4.

Also,

G(gx, gu, gu) = G(x2, u2, u2) =
{
x2 + 1, if u = 0;
x2 + u2, if u �= 0.

In both cases, we have

3 ≤ G(x2, u2, u2) ≤ max{G(x2, u2, u2),G(y2, v2, v2),G(z2,w2,w2)}.

Using the fact that if a, b Î N with a ≤ b, then a2 - a ≤ b2 - b, we deduce that

32−3 = 6 ≤ (max{G(x2, u2, u2),G(y2, v2, v2),G(z2,w2,w2)})2−max{G(x2, u2, u2),G(y2, v2, v2),G(z2,w2,w2)}.

Therefore,

ψ(G(F(x, y, z), F(u, v,w), F(u, v,w))) = 4 ≤ 6

≤ ψ(max{G(x2, u2, u2),G(y2, v2, v2),G(z2,w2,w2)})
− φ(max{G(x2, u2, u2),G(y2, v2, v2),G(z2,w2,w2)}).

= ψ(max{G(gx, gu, gu),G(gy, gv, gv),G(gz, gw, gw)})
− φ(max{G(gx, gu, gu),G(gy, gv, gv),G(gz, gw, gw)}).
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Case 4: (x ≥ 3 ⋀ z ≥ 3) ⋀ (u ≥ 3 ⋀ w ≥ 3). Here, we have F(x, y, z) = 1 and F(u, v, w)

= 1. Thus,

ψ(G(F(x, y, z), F(u, v,w), F(u, v,w))) = 0

≤ ψ(max{G(gx, gu, gu),G(gy, gv, gv),G(gz, gw, gw)})
− φ(max{G(gx, gu, gu),G(gy, gv, gv),G(gz, gw, gw)}).

The proof of (c) and (d) are easy. To prove (e), let {xn} be a non-decreasing sequences

in X such that {xn} G-converges to x. Then G(xn, x, x) ® 0. By definition of G, we con-

clude that xn = x for all n except finitely many. Thus xn ≤ x for all n Î N. Similarly,

we show that if {yn} is a non-increasing sequence in X such that {yn} G-converges to y,

then yn ≥ y for all n Î N. Thus, (X, G, ≤) is regular.

By Theorem 19 and Remark 26, F and g have a tripled coincidence point in X. Here,

(0, 0, 0) is the tripled coincidence point of F and g.
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