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Abstract

In this article, we introduce a new approach to common fixed point theory for a
weak compatible pair. We first introduce the concepts of R-pair and NR-pair and
establish some new common fixed point theorems for a weak compatible pair in
hyperconvex metric spaces and uniformly convex metric spaces. We shall also
establish the well-known De Marr’s theorem for a family of weak compatible pairs in
a hyperconvex metric space [0,1] and show by an example that it fails to hold in
general hyperconvex metric spaces.
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Introduction
The celebrated result on the existence of a common fixed point for nonexpansive com-

mutative family was first established by DeMarr [1] under the assumption that C is a

compact convex subset of a normed space X. In 1992, Khamsi et al. [2] established

above-mentioned results for a finite as well as an arbitrary commutative family of

maps in hyperconvex metric spaces. More recently, Hussain et al. [3] have extended

the results in [2] to the family of symmetric Banach operator pairs. In this article, we

first introduce the concepts of R-pair and NR-pair and establish some new common

fixed point theorems for a weak compatible pair in hyperconvex metric spaces and

uniformly convex metric spaces. We shall also establish the well-known De Marr’s the-

orem for a family of weak compatible pairs in a special hyperconvex metric space.

Basic definitions and results
A metric space H is said to be hyperconvex [4] if given any family {xa} of points of H

and any family {ra} of nonnegative real numbers satisfying

d(xα , xβ) ≤ rα + rβ

it is the case that ∩αB (xα ; rα) �= ∅ .
Definition 2.1. The ordered pair (S, T) of two self-maps of a metric space H is called

a Banach operator pair, if the set Fix(T) is S-invariant, namely S(Fix(T)) ⊆ Fix(T).

Obviously a commuting pair (S, T) is a Banach operator pair but not conversely in

general, see [5-8].
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Definition 2.2. Let T and S be two self-maps of a metric space H. The pair (S, T) is

called symmetric Banach operator pair if both (S, T) and (T, S) are Banach operator

pairs, i.e., T (Fix(S)) ⊆ Fix(S) and S(Fix(T)) ⊆ Fix(T).

It is easy to see that the pair (S, T) is a symmetric Banach operator pair if and only if

T and S are commuting on Fix(T) ∪ Fix(S).

Definition 2.3. Let X be a metric space and S, T self-maps of X. A point x is called a

coincidence point of S and T iff Sx = Tx. We shall call w = Sx = Tx a point of coinci-

dence of S and T. Let C(S, T) = {x : Sx = Tx} and PC(S, T) = {w : ∃ x Î X, with w =

Sx = Tx} denote the sets of coincidence points and points of coincidence, respectively,

of the pair (S, T). Clearly, PC(S, T) = T(C(S, T)) = S(C(S, T)). The maps S and T are

called weakly compatible [9,10] if they commute at their coincidence points, i.e., STx =

TSx for each x in C(S, T); equivalently, S and T are weakly compatible if the set C(S,

T) is S- and T-invariant, namely, S(C(S, T)) ⊆ C(S, T) and T (C(S, T)) ⊆ C(S, T). We

say S and T are nontrivially weakly compatible if and only if they are weakly compati-

ble and C(S, T) ≠ j. The maps S and T are called compatible if limn d(TSxn, STxn) = 0

whenever {xn} is a sequence such that limn Txn = limn Sxn = t for some t in X.

Example 2.1. Let S, T : [0,1] ® [0,1] be defined by T (x) = 1-x, S(x) = 1-x2 on [0,1].

Then the pair (S, T) is weakly compatible (in fact, compatible), but not a Banach

operator pair.

Example 2.2. Let S, T : [0,1] ® [0,1] be defined by T(x) = (1 + x)/2, S(x) = (1 + 2x -

x2)/2 on [0,1]. Then the pair (S, T) is a symmetric Banach operator pair but not weakly

compatible.

Example 2.3. Note that [0,1] is a compact hyperconvex metric space. Let T : [0,1] ®
[0,1] and S : [0,1] ® [0,1] defined as

T(x) = x2 and S(x) = 2x − x2.

Then T and S do not commute but since T and S commute on C(S, T) = {0, 1} = PC

(S, T), so T and S are weakly compatible. It is worth mentioning that PC(S, T) is not a

continuous retract of [0,1].

Definition 2.4. A geodesic metric space (M, d) is said to be uniformly convex if for

any r > 0 and any ε Î (0, 2] there exists δ Î (0, 1] such that for all a, x, y Î M with d

(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ εr it is the case that

d(m, a) ≤ (1 − δ)r,

where m stands for any midpoint of any geodesic segment [x, y]. A mapping δ : (0,

+∞) × (0, 2] ® (0, 1] providing such a δ = δ(r, ε) for a given r > 0 and ε Î (0, 2] is

called a modulus of uniform convexity.

Notice that this definition of uniform convex metric spaces is weaker than the one

used in [11] in two ways. First, we do not impose that the metric is convex and, sec-

ond, our modulus of convexity does depend on the two variables r and ε while it is

assumed to depend only on ε in [11].

Definition 2.5. Let (M, d) be a metric space, then the metric is said to be convex if

for any x, y and z in M, and m a midpoint in between x and y,

d(z,m) ≤ 1/2(d(z, x) + d(z, y)).
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It is easy to see that uniformly convex metric spaces are uniquely geodesic, that is,

for each two points there is just one geodesic joining them. Therefore, midpoints and

geodesic segments [x, y] joining two points are unique. In this case, there is a natural

way to define convexity. A subset C of a (uniquely) geodesic space is said to be convex

if [x, y] ⊆ C for any x, y Î C. For more about geodesic spaces the reader may check

[12].

To obtain our results we will need to impose additional conditions on the modulus

of convexity (see [12,13]).

Definition 2.6. If a uniformly convex metric space M admits a modulus of convexity

δ such that it decreases with r (for each fixed ε) then we say δ is a monotone modulus

of convexity for M.

In the same way, we define a lower semicontinuous from the right modulus of con-

vexity as follows.

Definition 2.7. If a uniformly convex metric space M admits a modulus of convexity

δ such that it is lower semicontinuous from the right with respect to r (for each fixed

ε) then we say δ is a lower semicontinuous from the right modulus of convexity for X.

Definition 2.8. [13,14] Let (M, d) be a metric space and f : M ® M. Then f satisfies

condition (C) if, 1/2d(x, f(x)) ≤ d(x, y) ⇒ d(f(x), f(y)) ≤ d(x, y), for all x, y Î M;

condition (D) if, 1/2d(x, f(x)) ≥ d(x, y) ⇒ d(f(x), f(y)) ≤ d(x, y), for all x, y Î M.

Obviously, every nonexpansive mapping meets condition (C). Any 2-Lipschitz mapping

satisfies condition (D). Notice also that these conditions do not imply continuity and that

condition (D) is implied by condition (C) for x, y such that (1/2)d(x, T(x)) = d(x, y).

Definition 2.9. Let (M, d) be a metric space. T : M ® M will be said to be an

asymptotic pointwise nonexpansive mapping if there exists a sequence of mappings an

: M ® [0, ∞) such that

d(Tn(x),Tn(y)) ≤ αn(x)d(x, y)

and

lim sup
n→∞

αn(x) ≤ 1

for any x, y Î M. For more details on it we refer [15].

Common fixed points for weak compatible pairs
The systematic study of a common fixed point of a pair of commuting mappings in the

setting of complete metric spaces was initiated by Jungck [16], which yields a generali-

zation of the Banach contraction principle as a corollary. Since then, many fixed point

theorists have attempted to find weaker forms of commutativity that may ensure the

existence of a common fixed point for a pair of self-mappings on a metric space. In

this context, the notions of weakly compatible mappings [10] and Banach operator

pairs [5,7] have been of significant interest for generalizing results in metric fixed point

theory for single valued mappings.

We shall need the following fixed point result.

Lemma 3.1. [3]Let H be a hyperconvex metric space. Let T : H ® H be continuous

such that T(H)is compact. Then there exists K ⊂ H compact hyperconvex such that T

(K) ⊂ K. Moreover Fix(T) is not empty and compact.
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We know that if S and T are weakly compatible and have a unique point of coinci-

dence w = Sx = Tx, then w is the unique common fixed point of S and T (see Proposi-

tion 1.4 in [17]). In this instance, if S or T is injective, we have PC(S, T) = C(S, T),

since x = w. However, even though S and T are continuous, weakly compatible, and

have a unique point of coincidence and therefore a unique common fixed point, S and

T may have more than one coincident point. For this we consider the following

example.

Example 3.1. Let S(x) = 1 and T(x) = 4(x − 1
2)

2 for all x Î [0,1]. Then 1 is the

unique point of coincidence, but 1 and 0 are coincidence points; i.e., C(S, T) = {0, 1},

whereas PC(S, T) = S(C(S, T)) = T (C(S, T)) = {1}.

The above example suggests the following definition.

Definition 3.1. The pair S, T : H ® H is called an R-pair if PC(S, T) is a continuous

retract of H.

Example 3.2. Let M be a nonempty subset of a metric space (X, d), and S and T be

self-maps of M. Assume that cl(T(M)) ⊂ S(M), cl(T(M)) is complete, and S and T

satisfy for all x, y Î M and for some k, 0 ≤ k < 1,

d(Tx,Ty) ≤ k max {d(Sx, Sy), d(Tx, Sx), d(Ty, Sy), d(Tx, Sy), d(Ty, Sx)}.

Then by Corollary 2.2 in [18], PC(S, T) is a singleton and hence a continuous retract

of M. Thus the pair (S, T) is an R-pair.

Note that the set of coincidence points and the set of points of coincidence of two

continuous functions defined on any compact hyperconvex metric space may not be

continuous retract (see Example 2.3).

Theorem 3.1. Let H be a hyperconvex metric space and let S and T be continuous

self-maps of H such that PC(S,T) is compact. If (S, T) is an R-pair which is weakly

compatible, then S and T have a common fixed point.

Proof. Since S and T are weakly compatible, (i) S(PC(S, T)) ⊂ PC(S, T) ⊂ C(S, T).

Moreover, (S, T) is an R-pair, so there is a continuous retract R : H ® PC(S, T) such

that (ii) R(x) = x for x Î PC(S, T). Thus, PC(S, T) is not empty and S ○ R : H ® H is

a continuous map such that S ○ R(H) = S(R(H)) ⊂ S(PC(S, T)). Therefore, (i) implies

that (iii) S ◦ R(H) ⊂ PC(S,T) ⊂ C(S,T) , since S and T are continuous and C(S, T) is

thus closed. But PC(S,T) is compact by hypothesis, so that S ◦ R(H) is compact by

(iii). Lemma 3.1 thus implies that S ○ R has a fixed point z in PC(S, T); i.e., (S ○ R)(z)

= S(R(z)) = S(z) = z, by (ii). Since z is in C(S, T) by (i), T (z) = S(z) = z, as desired.

Corollary 3.1. Let H be a hyperconvex metric space and S, T : H ® H be a continu-

ous R-pair such that T(H)is compact. If (S, T) is a weakly compatible pair, then Fix(S)

∩ Fix(T) is not empty.

Proof. Since the pair (S, T) is weakly compatible, so PC(S,T) = T(C(S,T)) ⊂ T(H)

which implies that PC(S,T) is compact. The result now follows from Theorem 3.1.

Corollary 3.2. Let H be a compact hyperconvex metric space. Let S, T : H ® H be a

continuous R-pair. If (S, T) is a weakly compatible pair, then Fix(S) ∩ Fix(T) is not

empty.

Theorem 3.2. Let H be a hyperconvex metric space and S, T : H ® H be a weak

compatible pair. Suppose that PC(S, T) is a nonempty bounded and hyperconvex subset
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of H. If S : H ® H satisfies condition (C) and (D), then S and T have a common fixed

point.

Proof. Since S and T are weakly compatible, S(PC(S, T)) ⊂ PC(S, T) ⊂ C(S, T). Also S

satisfies condition (C) and (D) on PC(S, T) and S maps PC(S, T) into itself which is

bounded and hyperconvex. Thus, by Theorem 3.23 [13], S has a fixed point z in PC(S,

T). As PC(S, T) ⊂ C(S, T), so z is in C(S, T). Thus T(z) = S(z) = z, as desired.

Example 3.3. Let T, S : [0,1] ® [0,1] be defined as

T(x) = 1 − x and S(x) = (1 − x)2.

Then T and S commute on C(S, T) = {0, 1} = PC(S, T), so T and S are weakly com-

patible. All the conditions of Theorem 3.1 are satisfied except the pair (S, T) is an R-

pair and T and S have no common fixed point.

Example 3.4. Let T, S : [0,1] ® [0,1] be defined as

T(x) = 1 and S(x) = 1 − x.

Then T and S satisfy all aspects of the hypothesis of Theorem 3.1 except weak com-

patibility. Note that C(S, T) = {0}, PC(S, T) = {1} and TS0 = 1 ≠ 0 = ST0 and T and S

have no common fixed point. We also notice here that C(S, T) = {0} is not a subset of

T([0, 1])

If S, T are continuous functions on a metric space X, then C(S, T) is obviously a

closed subset of X. We provide an example of continuous functions S, T : Y ® Y with

Y closed in X, S(Y) = T(Y) compact, but PC(S, T) is not closed.

Example 3.5. Let X = {-2, -1} ∪ [0, ∞), S(-2) = T(-1) = 1, S(-1) = T(-2) = 0, S(x) = T

(x) = x(1+ x)-1 for all x Î [0, ∞). Then PC(S, T) = [0, 1), not closed in X.

Recall that A ⊂ X is a nonexpansive retract of X if there exists a nonexpansive map R

: X ® A such that R(a) = a for every a Î A.

Definition 3.2. The pair S, T : M ® M is called NR-pair if PC(S, T) is a nonexpan-

sive retract of M.

It is well-known that if H is a bounded hyperconvex metric space and T : H ® H is

nonexpansive, then Fix(T) is hyperconvex and consequently is a nonexpansive retract

of H. Note that if S, T are both nonexpansive and H is a bounded hyperconvex metric

space, then C(S, T) as well as PC(S, T) need not be hyperconvex.

Example 3.6. Consider ℝ2 with the supremum norm, M as the square, with its inter-

ior, of vertices (1, 1), (1, -1), (-1, 1) and (-1, -1) and with the induced metric. Let

X1 = {(x, y) : x ∈ [−1, 1] and y = 1 + x if x ∈ [−1, 0] and y = 1 − x otherwise}

and

X2 = {(x, y) : (x,−y) ∈ X1}

Define S : M ® X1 and T : M ® X2 to be nonexpansive projections as follows. Let S

(resp. T) send each vertical segment in M into its intersection with X1(resp. X2). Then

C(S, T) would coincide with the vertical segments of M passing through (-1, 0) and (1,

0), and PC(S, T) = {(-1, 0), (1, 0)}. Note that both X1 and X2 are hyperconvex, but

neither C(S, T) nor PC(S, T) is hyperconvex. Moreover, S and T are weakly compatible.

To see this, first note that the points (-1, 0) and (1, 0) of PC(S, T) are also common

fixed points of S and T. Therefore, if y is a point of coincidence of S and T, y = Sy =

Hussain et al. Fixed Point Theory and Applications 2012, 2012:100
http://www.fixedpointtheoryandapplications.com/content/2012/1/100

Page 5 of 10



Ty. Now suppose Sx = Tx. Then Sx = Tx = y for some y in PC(S, T), and we have Sx =

Tx = y = Sy = Ty. Therefore, TSx = Ty = y, and STx = Sy = y; i.e., STx = TSx, and S

and T are weakly compatible.

Throughout this article, we will denote a uniformly convex metric space with mono-

tone (or lower semi-continuous from the right) modulus of uniform convexity as a UC

space(see for details [12,13,19,20]).

We shall need the following results;

Lemma 3.2. [12]Let X be a complete UC space. Suppose X is bounded, then any non-

expansive mapping T : X ® X has a fixed point.

Lemma 3.3. [13]Let X be a complete UC space with convex metric and suppose K is

a nonempty bounded closed convex subset of X. If f : K ® K is nonexpansive, then Fix

(f) is nonempty, closed and convex.

Lemma 3.4. ([13], Theorem 2.6) Let X be a complete UC space with convex metric

and suppose K is a nonempty bounded closed convex subset of X. If f : K ® K satisfies

condition (C), then Fix(f) is nonempty, closed and convex.

Theorem 3.3. Let M be a bounded complete UC space. Let S, T : M ® M be a NR-

pair. Let S : M ® M be nonexpansive such that (S, T) be a weakly compatible pair.

Then S and T have a common fixed point.

Proof. Since the retract of a nonempty space is nonempty, PC(S, T) is nonempty.

Since S and T are weakly compatible, S(PC(S, T)) ⊂ PC(S, T) ⊂ C(S, T). Since (S, T) is

an NR-pair, then there exists a nonexpansive retract R : M ® PC(S, T). Hence S ○ R :

M ® M is nonexpansive map such that S ○ R(M) ⊂ PC(S, T). Lemma 3.2 implies that

S ○ R has a fixed point z in PC(S, T); i.e., (S ○ R)(z) = S(R(z)) = S(z) = z. As PC(S, T) ⊂
C(S, T), so z is in C(S, T). Thus, T(z) = S(z) = z, as desired.

Theorem 3.4. Let M be a complete UC space with convex metric and S, T be a NR-

pair on a closed bounded convex subset C of M. Let S : C ® C be nonexpansive such

that (S, T) be a weakly compatible pair. Then S and T have a common fixed point.

Proof. Proof is similar to that of Theorem 3.3, instead of using Lemma 3.2 we use

Lemma 3.3 here.

Fixed point theory in CAT(0) spaces was first studied by Kirk [21]. He showed that

every nonexpansive (single-valued) mapping defined on a bounded closed convex sub-

set of a complete CAT(0) space always has a fixed point. Utilizing this observation and

proof of Theorem 3.3, we obtain the following result.

Theorem 3.5. Let S, T be a NR-pair on a closed bounded convex subset C of a com-

plete CAT (0) space M. Let S : C ® C be nonexpansive such that (S, T) be a weakly

compatible pair. Then S and T have a common fixed point.

Theorem 3.6. Let M be a complete UC space with convex metric and S, T : M ® M

be a weak compatible pair. Suppose that PC(S, T) is a nonempty closed bounded and

convex subset of M. If S : M ® M satisfies condition (C), then S and T have a common

fixed point.

Proof. Since S and T are weakly compatible, S(PC(S, T)) ⊂ PC(S, T) ⊂ C(S, T). Also S

satisfies condition (C) on PC(S, T) and S maps PC(S, T) into itself which is closed

bounded and convex. Thus by Lemma 3.4, S has a fixed point z in PC(S, T). As PC(S,

T) ⊂ C(S, T), so z is in C(S, T). Thus, T (z) = S(z) = z, as desired.
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Corollary 3.3. Let M be a complete CAT(0) space and S, T : M ® M be a weak com-

patible pair. Suppose that PC(S, T) is a nonempty closed bounded and convex subset of

M. If S : M ® M satisfies condition (C), then S and T have a common fixed point.

Notice that the classes of asymptotic pointwise nonexpansive mappings and the maps

satisfying condition (C) contain properly the class of nonexpansive mappings. Hussain

and Khamsi [15], proved that if M is a complete CAT(0) space and K is a bounded

closed nonempty convex subset of M, then any T : K ® K pointwise asymptotically

nonexpansive has a fixed point. Utilizing this fact in the proof of Theorem 3.6, we

obtain the following result.

Theorem 3.7. Let M be a complete CAT(0) space and S, T : M ® M be a weak com-

patible pair. Suppose that PC(S, T) is a nonempty closed bounded and convex subset of

M. If S : M ® M is pointwise asymptotically nonexpansive, then S and T have a com-

mon fixed point.

Definition 3.3. [22] A mapping T : N ® M between two metric spaces is said to be

a universal nonexpansive map if T is nonexpansive and if given any nonexpansive map-

ping S : N ® M there exists x Î N such that S(x) = T (x), i.e. C(S, T) and hence PC(S,

T) is nonempty.

We shall need the following result of Kirk [22].

Theorem 3.8. Suppose M is a compact subset of a metric space N and suppose f : N

® M is a universal nonexpansive map for which f(M) = M. Then M is a nonexpansive

retract of N.

Theorem 3.9. Let M be a bounded and complete UC space. Let S : M ® M be non-

expansive and T : M ® PC(S, T) be universal nonexpansive map such that PC(S, T) ⊂
T(PC(S, T)). Assume that S, T : M ® M be weakly compatible pair such that PC(S, T)

is compact. Then Fix(S) ∩ Fix(T) is not empty.

Proof. As (S, T) is a nontrivially weak compatible pair, so PC(S, T) is nonempty and

PC(S, T) ⊂ C(S, T) which implies T(PC(S, T)) ⊂ T(C(S, T)) = PC(S, T).

Hence, PC(S, T) = T (PC(S, T)). Thus by Theorem 3.8, PC(S, T) is a nonexpansive

retract of M and hence the pair (S, T) is an NR-pair. Now the conclusion follows from

Theorem 3.3.

Corollary 3.4. Let M be a bounded and complete UC space. Let T : M ® M be uni-

versal nonexpansive map such that T(M) is compact. Assume that S : M ® M is nonex-

pansive such that T(M) ⊂ PC(S, T) ⊂ T(PC(S, T)). If (S, T) is a weak compatible pair.

Then Fix(S) ∩ Fix(T) is not empty.

Proof. As T is universal nonexpansive and S is nonexpansive, so C(S, T) and hence

PC(S, T) are nonempty. Since (S, T) is a weak compatible pair, PC(S, T) ⊂ C(S, T),

which implies T (PC(S, T)) ⊂ T (C(S, T)) = PC(S, T). Thus, PC(S, T) = T(PC(S, T)). As

T being universal mapping is surjective, M = T (M) ⊂ PC(S, T) = T(C(S, T)) ⊂ T(M) =

M and hence PC(S, T) is compact subset of M. Now the conclusion follows from The-

orem 3.9.

Corollary 3.5. Under the same conditions of Theorem 3.9 (or Corollary 3.4), if the

condition PC(S, T) ⊂ T(PC(S, T)) is replaced with C(S, T) ⊂ PC(S, T), then the same

conclusion follows.

Notice that in Example 3.3, PC(S, T) = C(S, T). We now give an example of continu-

ous self-maps S and T of the unit interval I = [0,1] which are injective, surjective in
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fact, homeomorphisms, universal, and weakly compatible for which PC(S, T) is a

proper subset of C(S, T).

Example 3.7. Let T (x) = x1/2 for x in [0,1]. To construct S, let a be an interior point

of [0,1]; i.e., 0 <a < 1. Let S be the piecewise linear function determined by the set {0,

a, Ta, T2a, ..., Tna, ..., 1}. Thus the graph of S consists of the union of the straight line

segments connecting (0, 0), (a, Ta), ..., (Tn-1a, Tna), ..., (1, 1). Therefore, C(S, T) = {0,

a, Ta = Sa, T2a = S2a, ..., Tna = Sna, ..., 1} and PC(S, T) = T (C(S, T)) = C(S, T) \ {a}.

Common fixed point of weak compatible family
The aim of this section is to further study the class of weakly compatible maps which

properly contains the class of commuting and compatible maps and is different from

the class of symmetric Banach operator pairs [3]. We will show by an example that De

Marr’s result for the weakly compatible family does not hold in the setting of general

hyperconvex metric space.

Let H be a hyperconvex metric space and T be a family of mappings defined on H.

Then the family T has a common fixed point if it is the fixed point of each member

of T . Hussain et al. [3] proved the following De Marr’s result for symmetric Banach

operator family in the setting of hyperconvex metric space without the compactness of

the domain.

Theorem 4.1. Let H be a hyperconvex metric space. Let T be a family of nonexpan-

sive mappings defined on H. Assume any two mappings from T form a symmetric

Banach operator pair. Then the family T has a common fixed point provided one map

from T has a bounded nonempty fixed point set. Moreover the common fixed point set

Fix(T ) is hyperconvex.

For the remaining portion of this article, we will use the following notation. N will

denote the set of positive integers, and Nn the set of all k Î N such that k ≤ n. If g is a

self-map of a set X, P(g) will denote the set of periodic points of g. Notice that x is a

periodic point of g if gkx = x for some k Î N. Also note that in a compact metric

space, the concepts of “compatible” and “weakly compatible” are equivalent [9]. Further

note that Fix(g) is a nonempty closed interval if g is a nonexpansive self-map of [0,1].

We shall need the following result.

Theorem 4.2. [23]A continuous self-map g of [0,1] has a common fixed point with

each self-map f of [0,1] which is nontrivially compatible with g iff g has no nontrivial

periodic points (i.e., P (g) = Fix(g)).

Regarding our desire to obtain a result analogous to above Theorem 4.1, we have the

following partial result in this direction.

Theorem 4.3. Let F be a family of nonexpansive self-maps of [0,1] which have no

nontrivial periodic points. Suppose that any pair {f, g} in F is nontrivially weakly com-

patible. Then the family F has a common fixed point. In fact, the set of common fixed

points of F is a closed interval.

Proof. We first consider the finite case. For n Î N, let P(n) denote, “Any subset of F
containing n functions has a common fixed point.” P(1) is immediate, and P(2) follows

from Theorem 4.2 above. Now let n be an element of N such that P(n) is true, and

suppose that P (n + 1) is false. (Note that by the above, n + 1 ≥ 3.) Then there is a

subset G of F having n + 1 functions fi such that G has no common fixed point.

Therefore, since P(n) is true, for each i in Nn + 1, we can let ci be a common fixed
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point of the subset of G obtained by deleting fi. Thus, fk(ci) = ci if and only if i ≠ k.

Clearly, all the ci are distinct. For if there exist i, k(i ≠ k) such that ci = ck, we have the

contradiction: fk(ck) = fk(ci) = ci = ck. Consequently, since n + 1 ≥ 3 we have distinct i,

k, j such that ci <ck <cj, so that fk(ci) = ci and fk(cj) = cj. But then [ci, cj] is a subset of

Fix(fk) since fk is nonexpansive and Fix(fk) is an interval; therefore, fk(ck) = ck a

contradiction.

We have proved that the family {Fix(f ) : f ∈ F} has the finite intersection property.

Since each f is continuous, the sets Fix(f) are compact and therefore

M = ∩{Fix(f ) : f ∈ F} is nonempty and compact. As such, M has a minimum element

a and a maximum element b; so M ⊂ [a, b]. But for f ∈ F , a and b are fixed points

of f; therefore, [a, b] ⊂ Fix(f) since Fix(f) is an interval. But then [a, b] ⊂ M since f was

an arbitrary element of F . We conclude, M = [a, b].

Example 4.1. Let E be the rectangle [-1, 1] × [0,1] in the plane (ℝ2, d) and let A =

(0, 1), B = (1, 0) and C = (-1, 0). Let [A, B], [C, B], and [C, A] denote the sides of the

triangle ABC. We shall use the “maximum” metric d((x1, y1), (x2, y2)) = max{|x1 - x2|, |

y1 - y2|} so that ℝ2 and therefore E is hyperconvex. Now define f : E ® [A, B] and g :

E ® [C, A] as follows;

f(g) sends the point (c, d) of E into the point of intersection of the line y = d with the

line segment [A, B]([C, A]). Define h : E ® [C, B] by h((c, d)) = (c, 0). Then f, g and h

are nonexpansive self-maps of E having the segments [A, B], [C, A], and [C, B] as their

respective fixed point sets. The point A is the only point of coincidence, coincidence

point, and fixed point of f and g. Consequently, as is easy to show, f and g commute at

A; i.e., f and g are nontrivially weakly compatible. Similarly, the pairs {g, h} and {h, f}

have the points C and B as their respective unique common fixed points and are thus

weakly compatible pairs. However, the family {f, g, h} has no common fixed point. The

functions f, g, h clearly have no nontrivial periodic points. Consequently, the likelihood

of extending Theorem 4.3 to hyperconvex spaces more general than [0,1] is small. It

should be noted that the pairs {f, g}, {g, h} and {h, f} are all R-pairs, and that they pro-

vide examples satisfying the hypothesis of Theorem 3.1.
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