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Abstract

In this article, we prove strong convergence of sequence generated by the following
iteration sequence for a class of Lipschitzian pseudocontractive mapping T:

xn+1 = βnu + (1 − βn)[αnTxn + (1 − αn)xn]

whenever {an} and {bn} satisfy the appropriate conditions.
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1. Introduction
Let T be a pseudocontractive mapping defined on a real smooth Banach space E. We

consider the problem of finding a solution z Î E of the fixed point equation x = Tx.

One classical way to study pseudocontractive mappings is to use a strong pseudocon-

traction to approximate a pseudocontractive mapping T. More precisely take t Î (0, 1)

and u Î E define a strong pseudocontraction Tt by Ttx = tu + (1 - t)Tx. In [1, Corol-

lary 2],Deimling proves that Tt has a unique fixed point xt, i.e.,

xt = tu + (1 − t)Txt. (1:1)

This implicit iteration was introduced by Browder [2] for a nonexpansive mapping T

in Hilbert space. Halpern [3] was the first who introduced the following explicit itera-

tion scheme for a nonexpansive mapping T which was referred to as Halpern iteration:

for u, x0 Î K, an Î [0, 1],

xn+1 = αnu + (1 − αn)Txn. (1:2)

Convergence of this two schemes have been studied by many researchers with var-

ious types of additional conditions. For the studies of a nonexpansive mapping T, see

Bruck [4,5], Reich [6,7], Song-Xu [8], Takahashi-Ueda [9], Suzuki [10], and many

others. For the studies of a continuous pseudocontractive mapping T, see Morales-

Jung [11], Schu [12], Chidume-Zegeye [13], Chidume-Udomene [14], Udomene [15],

Chidume-Ofoedu [16], Chen-Song-Zhou [17,18], Song [19-21], Song-Chen [22,23] and

others. The following results play a key role in proving strong convergence of Halpern

iteration.
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Theorem 1.1 [11,22,23]Let E be a reflexive Banach space which has both the fixed

point property for nonexpansive self-mappings and a uniformly Gâteaux differ-entiable

norm or be a reflexive and strictly convex Banach space with a uniformly Gâteaux dif-

ferentiable norm. Assume that K is a nonempty, closed and convex subset of E. Suppose

that T is a continuous pseudocontractive mapping from K into E with F(T) �= ∅. Then,
as t ® 0, xt, defined by (1.1) converges strongly to a fixed point of T.

Theorem 1.2. [22]Let K be nonempty, closed and convex subset of a Banach space E

with a uniformly Gâteaux differentiable norm and let T : K ® K be a continuous pseu-

docontractive mapping with a fixed point. Assume that there exists a bounded sequence

{xn} such that limn®∞ ∥xn - Txn∥ = 0 and p = limt®0 zt exists, where {zt} is defined by

(1.1). Then,

lim sup
n→∞

〈u − p, J(xn − p)〉 ≤ 0.

Mann [24] introduced the following iteration for T in a Hilbert space:

xn+1 = αnxn + (1 − αn)Txn, (1:3)

where {an} is a sequence in [0, 1]. Latterly, Reich [25] studied this iteration in a uni-

formly convex Banach space with a Fréchet differentiable norm, and obtained that if T

has a fixed point and
∑∞

n=0 αn(1 − αn) = ∞, then the sequence {xn} converges weakly

to a fixed point of T. This Mann’s iteration process has extensively been studied over

the last 20 years for constructions of fixed points of nonlinear mappings and for sol-

ving nonlinear operator equations involving monotone, accretive and pseudocontrac-

tive operators (see, e.g., [16,26-34] and others). In an infinite-dimensional Hilbert

space, the classical Mann’s iteration algorithm (1.3) has, in general, only weak conver-

gence, even for nonexpansive mappings. In order to get strong convergence result, one

has to modify the Mann’s iteration algorithm. Several attempts have been made and

many important results have been reported (see, e.g., [12-16,35-37] and others).

Recently, Zhou [37] obtained strong convergence theorem for the following iterative

sequence in a 2-uniformly smooth Banach space: for u, x0 Î E and l-strict pseudocon-
traction T,

xn+1 = βnu + γnxn + (1 − βn − γn)[αnTxn + (1 − αn)xn], (1:4)

where {an}, {bn} and {gn} in (0, 1) satisfy:

(i) a ≤ αn ≤ λ

K2
for some a > 0 and for all n ≥ 0;

(ii) lim
n→∞ βn = 0 and

∞∑
n=1

βn = ∞;

(iii) lim
n→∞ |αn+1 − αn| = 0;

(iv) 0 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < 1.

Very recently, Zhang and Su [38] extended Zhou’s results to q-uniformly smooth

Banach space. However, the above results excluded gn ≡ 0 and γn ≡ 1
n + 1

.

In this article, we deal with iterative schemes generated by the following iterative

sequence (in (1.4), gn ≡ 0) for l-strict pseudocontraction T:
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xn+1 = βnu + (1 − βn)[αnTxn + (1 − αn)xn], (1:5)

and obtain its strong convergence whenever {an} and {bn} satisfy the following

conditions:

(i) αn ∈
[
a,

λ

K2

]
such that

∞∑
n=1

|αn+1 − αn| < ∞;

(ii) lim
n→∞ βn = 0,

∞∑
n=1

βn = ∞ and
∞∑
n=1

|βn+1 − βn| < ∞.

Our result not only complements and develops corresponding ones of Zhou [37,

Theorem 2.3] (see also Zhang and Su [38, Theorem 4.1], where gn ≡ 0), but also extend

main result of Chidume-Chidume [35] and Kim-Xu [36] from nonexpansive mappings

to l-strict pseudocontractions.

2. Preliminaries
Throughout this article, a Banach space E will always be over the real scalar field. We

denote its norm by ∥ · ∥ and its dual space by E*. The value of x* Î E* at y Î E is

denoted by 〈y, x〉 and the normalized duality mapping from E into 2E* is denoted by J,

that is, J(x) = {f Î E* : 〈x, f〉 = ∥x∥∥f∥, ∥x∥ = ∥f∥}. Let F(T) = {x Î E : Tx = x} be the set

of all fixed point of a mapping T.

Recall that a mapping T with domain D(T) and range R(T) in Banach space E is

called strongly pseudo-contractive if, for all x, y Î D(T), there exist k Î (0, 1) and j(x -

y) Î J(x - y) such that

〈
Tx − Ty, j(x − y)

〉 ≤ k||x − y||2 (2:1)

or, equivalently,
〈
(x − Tx) − (y − Ty), j(x − y)

〉 ≥ (1 − k)||x − y||2 (2:2)

while T is said to be pseudo-contractive if (2.1) or (2.2) holds for k = 1. A mapping T

is said to be Lipschitzian if, for all x, y Î K, there exists L > 0 such that

||Tx − Ty|| ≤ L||x − y||.

A mapping T is called non-expansive if L = 1 and, further, T is said to be contractive

if L < 1. An important class of mappings closely related to the class of pseudo-contrac-

tive mappings is that of accretive mappings. A mapping A is accretive if and only if (I -

A) is pseudo-contractive. The accretive mappings were independently introduced by

Browder [39] and Kato [40] in 1967. The importance of these mappings is well known.

A mapping T is called l-strictly pseudocontractive, if for all x, y Î D(T), there exists l
Î (0, 1) and j(x - y) Î J(x - y) such that

〈
Tx − Ty, j(x − y)

〉 ≤ ||x − y||2 − λ||x − y − (Tx − Ty)||2. (2:3)

It is obvious that l-strictly pseudocontractive mapping is Lipschitzian with L =
λ + 1

λ
.

The class of nonexpansive mappings is a subclass of strictly pseudocontractive map-

pings in Hilbert space, but the converse implication may be false. We remark that the

class of strongly pseudo-contractive mappings is independent from the class of l-strict
pseudo-contractions. This can be seen from the existing examples (see, e.g., [30,37]).
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Let S(E) := {x Î E; ∥x∥ = 1} denote the unit sphere of a Banach space E. The space E

is said to have (i) a Gâteaux differentiable norm (we also say that E is smooth), if the

limit

lim
t→0

||x + ty|| − ||x||
t

(2:4)

exists for each x, y Î S(E); (ii) a uniformly Gâteaux differentiable norm, if for any y

in S(E), the limit (2.4) is uniformly attained for x Î S(E); (iii) a Fréchet differentiable

norm, if for any x Î S(E), the limit (2.4) is attained uniformly for y Î S(E); (iv) a uni-

formly Fréchet differentiable norm (we also say that E is uniformly smooth), if the limit

(2.4) is attained uniformly for all (x, y) Î S(E) × S(E); (v) fixed point property for non-

expansive self-mappings, if each non-expansive self-mapping defined on any bounded,

closed convex subset K of E has at least one fixed point. Let rE : [0, ∞) ® [0, ∞) be

the modulus of smoothness of E defined by

ρE(t) = sup
{
1
2
(||x + y|| + ||x − y||) − 1 : x ∈ S(E), ||y|| ≤ t

}
.

Let q > 1. A Banach space E is said to be q-uniformly smooth, if there exists a fixed

constant c > 0 such that rE(t) <ctq. It is well known that E is uniformly smooth if and

only if limt→0
ρE(t)
t

= 0. If E is q-uniformly smooth, then E is uniformly smooth, and

hence the norm of E is uniformly Fréchet differentiable, in particular, the norm of E is

Fréchet differentiable. Typical example of uniformly smooth Banach spaces is Lp (p > 1).

More precisely, Lp is min{p, 2}-uniformly smooth for every p > 1.

Lemma 2.1.(Zhou [37]) Let E be a real 2-uniformly smooth Banach space with the

best smooth constant K, C be a nonempty subset of E, and let T : C ® C be a l-strict
pseudocontraction. For any a Î (0, 1), we define Ta = (1 - a)x + aTx. Then, as

α ∈
(
0,

λ

K2

]
,Tα : C → Cis nonexpansive such that F(Ta) = F(T).

Lemma 2.2. (Liu [34] and Xu [41]) Let {an} be a sequence of nonnegative real num-

bers satisfying the property:

an+1 ≤ (1 − tn)an + bn + tncn,

where {tn}, {bn} and {cn} satisfy the restrictions:

(i)
∞∑
n=0

tn = ∞; (ii)
∞∑
n=0

bn < +∞; (iii) lim sup
n→∞

cn ≤ 0.

Then, {an} converges to zero as n ® ∞.

3. Main result
Theorem 3.1 Let E be a real 2-uniformly smooth Banach space with the best smooth con-

stant K and let C be a nonempty, closed and convex subset of E. Suppose that T : C ® C is

a l-strict pseudocontraction with F(T) �= ∅. Given u, x0 Î C, a sequence {xn} is generated by
{

yn = αnTxn + (1 − αn)xn,
xn+1 = βnu + (1 − βn)yn,

(3:1)

where {bn} and {an} in (0, 1) satisfy the following control conditions:

(i) αn ∈
[
a,

λ

K2

]
for some constant a ∈

(
0,

λ

K2

)
such that

∞∑
n=1

|αn+1 − αn| < ∞;
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(ii) lim
n→∞ βn = 0,

∞∑
n=1

βn = ∞and
∞∑
n=1

|βn+1 − βn| < ∞.

Then, {xn} converges strongly to a fixed point of T.

Proof. The proof will be divided into four steps.

Step 1. The sequence {xn} is bounded. Let Tαn = αnT + (1 − αn)I. Then, Tαn is nonex-

pansive for every n by Lemma 2.1 and so, for p Î F(T), we have

||xn+1 − p|| = ||βn(u − p) + (1 − βn)(Tαnxn − p)||
≤ βn||u − p|| + (1 − βn)||Tαnxn − p||
≤ βn||u − p|| + (1 − βn)||xn − p||
≤ max{||xn − p||, ||u − p||}
...

≤ max{||x0 − p||, ||u − p||}.

Consequently, both {xn} and {yn} are bounded. This implies the boundedness of {Txn}

from the inequality ||Txn − p|| ≤ 1 + λ

λ
||xn − p||.

Let M > 0 be a constant such that M ≥ supnÎN{∥u∥, ∥xn∥, ∥Txn∥}.
Step 2. Since yn = Tαnxn = αnTxn + (1 − αn)xn, then

||yn|| = ||αnTxn + (1 − αn)xn|| ≤ αn||Txn|| + (1 − αn)||xn|| ≤ M.

Furthermore, we have

||yn+1 − yn|| = ||Tαn+1xn+1 − Tαnxn||
≤ ||Tαn+1xn+1 − Tαn+1xn|| + ||Tαn+1xn − Tαnxn||
≤ ||xn+1 − xn|| + ||αn+1Txn + (1 − αn+1)xn − αnTxn − (1 − αn)xn||
≤ ||xn+1 − xn|| + |αn+1 − αn|||xn − Txn||
≤ ||xn+1 − xn|| + 2M|αn+1 − αn|.

(3:2)

From (3.1), it follows

||xn+2 − xn+1|| = ||βn+1u + (1 − βn+1)yn+1 − βnu − (1 − βn)yn||
≤ |βn+1 − βn|(||u|| + ||yn+1||) + (1 − βn)||yn+1 − yn||
≤ 2M|βn+1 − βn| + (1 − βn)||yn+1 − yn||.

(3:3)

Substituting (3.2) into (3.3) yields

||xn+2 − xn+1|| ≤ (1 − βn)||xn+1 − xn|| + 2M|αn+1 − αn| + 2M|βn+1 − βn|.

From the assumptions on {an} and {bn} and using Lemma 2.3, we conclude that

lim
n→∞ ||xn+1 − xn|| = 0. (3:4)

From the definition of xn and since limn®∞ bn = 0, it follows

lim
n→∞ ||xn+1 − yn|| = lim

n→∞ βn||u − Txn|| = 0.

Combining (3.4), we have

lim
n→∞ ||xn − yn|| = 0. (3:5)
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Thus, we obtain

lim
n→∞ ||xn − Txn|| = lim

n→∞
||xn − yn||

αn
= 0.

Step 3. There exists z Î F(T) such that

lim sup
n→∞

〈
u − z, J(xn+1 − z)

〉 ≤ 0.

Since E is 2-uniformly smooth, then E is a reflexive Banach space which has both the

fixed point property for non-expansive self-mappings and a uniformly Gâteaux differ-

entiable norm. Then, from Theorem 1.1, as t ® 0, xt, defined by (1.1) converges

strongly to a fixed point z of T. The desired conclusion follows from Theorem 1.2.

Step 4. limn→∞ xn = z. In fact,

||xn+1 − z||2 =
〈
βn(u − z) + (1 − βn)(yn − z), J(xn+1 − z)

〉
≤ βn

〈
u − z, J(xn+1 − z)

〉
+ (1 − βn)||Tαnxn − z||||J(xn+1 − z)||

≤ βn
〈
u − z, J(xn+1 − z)

〉
+ (1 − βn)

||xn − z||2 + ||xn+1 − z||2
2

≤ (1 − βn)
||xn − z||2

2
+

||xn+1 − z||2
2

+ βn
〈
u − z, J(xn+1 − z)

〉
,

which implies that

||xn+1 − z||2 ≤ (1 − βn)||xn − z||2 + 2βn
〈
u − z, J(xn+1 − z)

〉
, (3:6)

and hence limn®∞ ∥xn - z∥ = 0 because of Lemma 2.2. This completes the proof.

Remark 1. Theorem 3.1 is applicable to lp and Lp for all p ≥ 2, however, we do not

know whether it works for Lp for 1 <p < 2.

Remark 2. In Theorem 3.1, if the condition
∑∞

n=1 |βn+1 − βn| < ∞ is replaced by

limn→∞
βn+1

βn
= 1, the conclusion still holds.

Remark 3. Theorem 3.1 not only complements and develops corresponding result of

Zhou [37, Theorem 3.2] (see also Zhang and Su [38, Theorem 4.1] where gn ≡ 0), but

also extend main result of Chidume-Chidume [35] and Kim-Xu [36] from nonexpan-

sive mappings to l-strict pseudocontractions.
Corollary 3.2 Let E be a reflexive Banach space which has both the fixed point prop-

erty for non-expansive self-mappings and a uniformly Gâteaux differentiable norm and

let C be a nonempty, closed and convex subset of E. Suppose that T : C ® C is a non-

expansive mapping with F(T) �= ∅. Given u, x0 Î C, a sequence {xn} is generated by

(3.1), where {an} and {bn} in (0,1) satisfy the following control conditions:

(i) an Î (0, 1) such that
∞∑
n=1

|αn+1 − αn| < ∞;

(ii) lim
n→∞ βn = 0,

∞∑
n=1

βn = ∞;

(iii) either
∞∑
n=1

|βn+1 − βn| < ∞or limn→∞
βn+1

βn
= 1.

Then, {xn} converges strongly to a fixed point of T.
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Proof. Let Tαn = αnT + (1 − αn)I. Clearly, Tαn is nonexpansive and F(T) = F(Tαn) for

each n. Therefore, following the same proof technique of Theorem 3.1, the desired

result is obtained.

Remark 4. Theorem 3.1 of Chidume-Chidume [35] and Theorem 1 of Kim-Xu [36]

can be regarded as a special case of Corollary 3.2, respectively. In fact, if an ≡ δ Î (0,

1) in Corollary 3.2, then Theorem 3.1 of Chidume-Chidume [35] is reached; if in Cor-

ollary 3.2, E is a uniformly smooth Banach space and the conditions limn®∞ an = 1

and
∑∞

n=1 (1 − αn) = ∞ are added, then Theorem 1 of Kim-Xu [36] is obtained.
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