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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H. Let T: C — H be
a mapping, and let F(7) denote the set of fixed points of 7. A mapping T: C - H is
said to be nonexpansive if ||Tx - Ty|| < ||x - y|| for all x, y e C. A mapping T: C —
H is said to be quasi-nonexpansive mapping if F(T) = & and ||Tx - Ty|| < ||x - y|| for
allx e Cand ye F(T).

In 2008, Kohsaka and Takahashi [1] introduced nonspreading mapping, and obtained
a fixed point theorem for a single nonspreading mapping, and a common fixed point
theorem for a commutative family of nonspreading mappings in Banach spaces. A

mapping 7 : C — C is called nonspreading [1] if
2 T = Tl® < || Te = yl*+ | Ty —
for all x, y e C.Indeed, T: C — C is a nonspreading mapping if and only if
I Tx = Ty1* <l x—yl* + 20— Tx,y = Ty)

for all x, ye C [2].
Recently, Takahashi and Yao [3] introduced two nonlinear mappings in Hilbert

spaces. A mapping 7 : C — C is called a TY-1 mapping [3] if
2 Te = Tl* < [l x = yl*+ | Te =yl
for all x, ye C. A mapping T: C — C is called a TY-2 [3] mapping if
30 Tx—TyI* <2 || Tx—y*+ || Ty —x|f?

forall x, ye C.
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In 2010, Takahashi [4] introduced the hybrid mappings. A mapping T: C — C is
hybrid [4] if

| Tx—TylI> < | x =yl + (x— Tx,y — Ty)
for each x, y € C. Indeed, T: C — C is a hybrid mapping if and only if
30 Tx— Ty < | x—ylI*+ | Tx —yI*+ || Ty — xII?

for all x, y e C [4].

In 2010, Aoyoma et al. [5] introduced A-hybrid mappings in a Hilbert space. Note
that the class of A-hybrid mappings contain the classes of nonexpansive mappings,
nonspreading mappings, and hybrid mappings. Let A be a real number. A mapping 7T :
C — Cis called A-hybrid [5] if

| Tx — Ty)* < || x—ylI> + 2A(x — Tx,y — Ty)

forallw, ye C.

In 2010, Kocourek et al. [6] introduced (e, B)-generalized hybrid mappings, and stu-
died fixed point theorems and weak convergence theorems for such nonlinear map-
pings in Hilbert spaces. Let o, f € R. A mapping T : C — H is (¢, B)-generalized
hybrid [6] if

all Te =Tyl + (1 —a) | Ty —xI? < B Il Te = yI> + (1= B) | x—yI?

forall x, ye C.

In 2011, Aoyama and Kohsaka [7] introduced a-nonexpansive mapping on Banach
spaces. Let C be a nonempty closed convex subset of a Banach space E, and let o be a
real number such that & < 1. A mapping T : C — E is said to be o-nonexpansive if

I Tx—=TylI> <o || Te—yI? + o | Ty — ] + (1 —2¢) | x—yl?

forallx, ye C.

Furthermore, we observed that Suzuki [8] introduced a new class of nonlinear map-
pings which satisfy condition (C) in Banach spaces. Let C be a nonempty subset of a
Banach space E. Then, T : C — E is said to satisfy condition (C) if for all x, y € C,

1
yhx=Txli=llx=yll=ITx=Tyl = lx=yl.

In fact, every nonexpansive mapping satisfies condition (C), but the converse may be
false [8, Example 1]. Besides, if T': C — E satisfies condition (C) and F(T) = &, then T

is a quasi-nonexpansive mapping. However, the converse may be false [8, Example 2].

1 1y,

Motivated by the above studies, we introduced Takahashi’s (;, ,

generalized hybrid
mappings with Suzuki’s sense on Hilbert spaces.

Definition 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H,
and let T': C — H be a mapping. Then, we say T satisfies condition (B) if for all x, y €
G

1 2 2 2 2
I =Txll=lix=yl=ITe=Ty"+ lx=Tl" = I Te=ylI"+ [ x=yl"
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Remark 1.1.

(i) In fact, if T is the identity mapping, then T satisfies condition (B).
(i) Every (, ;)-generalized hybrid mapping satisfies condition (B). But the con-
verse may be false.

(iii) If T: C — C satisfies condition (B) and F(T) = &, then T is a quasi-nonexpan-
sive mapping, and this implies that F(7) is a closed convex subset of C [9].

Remark 1.2. Let H = R, let C be nonempty closed convex subset of H, and let T: C
— H be a function. In fact, we have
! [ x—=Tx| < I
x—Tx xX—
5 = Y
& (Tx)* + &% — 2xTx < 4x? + 4y* — 8xy
& (Tx)* — 2xTx < 3x% + 4y* — 8xy
& Tx(Tx — 2x) < (3x — 2y)(x — 2y),
and

ITx — >+ |x— T2 < |Tx —y|* + |x — y)?
& (Tx)? + (1) = 2TxTy + «* + (T)* — 2xTy < (Tx)* +y* — 2yTx + x> +y> — 2xy
& 2(Ty)* — 2Ty(Tx + x) < 2y — 2y(Tx + x)
 2(p)* - 2y* < 2(Ty — y)(Tx +x)
< (T =y)(Ty+y) = (Ty —y)(Tx +x)
< (T =Ty +y) — (Tx +x)] < 0.

Example 1.1. Let H=C = R, and let T: C — H be defined by Tx : = -x for each x
C. Hence, we have the following conditions:
(1) Tis (;, ;)—generalized hybrid mapping, and T satisfies condition (B).
(2) T is not a nonspreading mapping. Indeed, if x = 1 and y = -1, then
2| Tx—Ty|I> = 8> 0= Tx—y|*+ || Ty —x||°.
(3) T is not a TY-1 mapping. Indeed, if x = 1 and y = -1, then
2 Tx—Ty|> = 8>4=4+0=|x—y|>+ | Tx—yl|>
(4) T is not a TY-2 mapping. Indeed, if x = 1 and y = -1, then
3 Tx—Tyl* =12>0=2 | Tx—y|*+ || Ty — x| |*.
(5) T is not a hybrid mapping. Indeed, if x = 1 and y = -1, then
3ITe— TP =12 >4 =[x —ylP+ | Tx—yl2+ | T — x>

(6) Now, we want to show that if & = 0, then T is not a o--nonexpansive mapping.
Fora>0,letx =1andy = -1,

I Tx=TyI? =4 >4 —8a=al Tx—yI*+ o | Ty —xl+ (1 —2a) | x—yl*.
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Fora <0, letx =y =1,

| Tx —Ty||> =0>8a=a || Tx—y|I*+ o || Ty —x|I* + (1 —2a) || x—y|*

(7) Similar to (6), if & + B = 1, then T is not a (¢, §)-generalized hybrid mapping.

Example 1.2. Let H =R, C = [-1, 1], and let T: C — C be defined by

_Jx if xe[-1,0],
T(x) '_{—x if xe(0,1],

for each x € C. First, we consider the following conditions:

(a) For x € [-1, 0] and ; lx—Tx|| <| x—y |, we know that
(a); if y e [-1, 0], then Ty = y and (Ty - »)[(Ty + y) - (Tx + x)] = 0;
(a)y if y € [0,1], then Ty = -y and (Ty - y)[(Ty + y) - (Tx + x)] = 4xy < 0.

(b) For x € (0, 1] and ; lx—Tx| <| x—y |, we know that
(b); if y 2 x, thenx <y -x Tx = -x, and Ty = -y. So, (Ty - »)[(Ty + y) - (Tx +
x)] = 0;
(b), if y <x, then x < x - y and this implies that y < 0. So, (Ty - Y)[(Ty + ) - (Tx
+x)] = 0.

By these conditions and Remark 1.2, we know that T satisfies condition (B). In fact,

T'is (}, )-generalized hybrid mapping. Furthermore, we know that the following con-

ditions:

(1) T is a nonspreading mapping. Indeed, we know that the following conditions
hold.
(1); If x > 0 and y > O, then

2| Tx—=T* =2 lx—yl* <2lx+yl* =l Tx—yl*+ | Ty — x|
(1) If x < 0 and y < 0, then
2 Tx=THI* =2 x—yl* = Tx —ylI*+ || Ty — xI|;

()3 If x > 0 and y < 0, then ||Tx - Ty||> = || Tx - y||* = || x+y|| and || Ty - ||
2 = ||« - y||% Hence,

I Tx — ylI?+ | Ty —xlI> = 2 || Tx — Ty|I* = —4xy > 0.

(2) Similar to the above, we know that T is a TY-1 mapping, a TY-2 mapping, a
hybrid mapping, (¢, B)-generalized hybrid mapping, and T is a @-nonexpansive
mapping.
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On the other hand, the following iteration process is known as Mann’s type iteration
process [10] which is defined as

Xnp1 = Xy + (1 — ) Tx,, neN,

where the initial guess x, is taken in C arbitrarily and {e,} is a sequence in [0,1].
In 1974, Ishikawa [11] gave an iteration process which is defined recursively by

x1 € C chosen arbitrary,

Vn = (1 - ,Bn)xn + BnTxy,
X1 = (1 — on)xn + o Typ,

where {0} and {f,} are sequences in [0,1].

In 1995, Liu [12] introduced the following modification of the iteration method and
he called Ishikawa iteration method with errors: for a normed space E, and T: E — E
a given mapping, the Ishikawa iteration method with errors is the following sequence

x1 € E chosen arbitrary,
Vn = (1 - ,Bn)xn + BnTxn + Uy,
X1 o= (1 — o)y + oy Ty + vy,

where {c,,} and {§,;} are sequences in [0,1], and {u,} and {v,} are sequences in E with
Yo lun |l <ocoand Y 02 [l vn |l < 0.

In 1998, Xu [13] introduced an Ishikawa iteration method with errors which appears
to be more satisfactory than the one introduced by Liu [12]. For a nonempty convex
subset C of E and T : C — C a given mapping, the Ishikawa iteration method with
errors is generated by

x1 € C chosen arbitrary,
Vn i= AnXy + by Txy + Cylly,
Xpi1 = @' pXn + U Ty + vy,

where {a,}, (b}, {c.}, {a,}, {U,}, {c} are sequences in [0,1] with a,, + b, + ¢, + = 1
and a,, + b}, + ¢, = 1, and {u,} and {v,} are bounded sequences in C.

Motivated by the above studies, we consider an Ishikawa iteration method with
errors for mapping with condition (B).

We also consider the following iteration for mappings with condition (B). Let C be a
nonempty closed convex subset of a real Hilbert space H. Let G: C x C — R be a
function. Let 7': C — H be a mapping. Let {a,}, {b,}, and {0,} be sequences in [0,1]
with a,, + b, + 6,, = 1. Let {w,} be a bounded sequence in C. Let {r,} be a sequence of
positive real numbers. Let {x,} be defined by u; € H

1

xn € Csuch that G(x,, y) + . (Y — Xn, Xy — Uy) = 0OVy € G
n

Ups1 = ApXp + b Ty + Oy,

Furthermore, we observed that Phuengrattana [14] studied approximating fixed
points of for a nonlinear mapping 7 with condition (C) by the Ishikawa iteration
method on uniform convex Banach space with Opial property. Here, we also consider
the Ishikawa iteration method for a mapping 7 with condition (C) and improve some
conditions of Phuengrattana’s result.
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In this article, a new type of mappings that satisfies condition (B) is introduced. We
study Pazy’s type fixed point theorems, demiclosed principles, and ergodic theorem for
mappings with condition (B). Next, we consider the weak convergence theorems for
equilibrium problems and the fixed points of mappings with condition (B).

2 Preliminaries

Throughout this article, let N be the set of positive integers and let R be the set of real
numbers. Let H be a (real) Hilbert space with inner product (-, -) and norm || - ||,
respectively. We denote the strongly convergence and the weak convergence of {x,} to
x € Hbyx, > xand x, ~ x, respectively. From [15], for each x, y € H and A € [0,1],
we have

|2+ (L =Ayl2 =2 xl®+ (L=2) [ yl* = A1 —2) [ x—yl*

Hence, we also have

2c—yu—v) =l x—vll’+ |y —ul>= [ x—ul>~ | y—vl?

for all w, y, u, v € H. Furthermore, we know that
| ax+By+yzal® = o || x> +B I yIP+y || 21— || x—y|* —ay | x—2|> =By || y—zl?

for eachx, y,ze Hand o, 8, ye [0,1] with o + B + y =1 [16].

Let £ be the Banach space of bounded sequences with the supremum norm. Let u
be an element of (£7)*(the dual space of £). Then, we denote by u(f) the value of y at
f=(x1, %3, x3, . . .) € £7. Sometimes, we denote by yu,x, the value y(f). A linear func-
tional # on €7 is called a mean if u(e) = ||u|| = 1, where e = (1, 1, 1, . . .). For x = (xy,
X9, X3, . . .), A Banach limit on £ is an invariant mean, that is, y,x, = y,x,.,; for any n
e N. If 4 is a Banach limit on £7, then for f = (%1, x5, %3, . . .) € €7,

liminfx, < uux, < limsup x,.
n—00 n—o0

In particular, if f= (x}, x5, x3, . . .) € €7 and x,, > a € R, then we have u(f) = y,x, =
a. For details, we can refer [17].

Lemma 2.1. [17]Let C be a nonempty closed convex subset of a Hilbert space H, {x,}
be a bounded sequence in H, and y be a Banach limit. Let g : C — R be defined by g
(2): = pn||xn - 2||* for all z € C. Then there exists a unique zo € C such that
8(z0) = ming(z).

zeC

Lemma 2.2. [17]Let C be a nonempty closed convex subset of a Hilbert space H. Let
Pc be the metric projection from H onto C. Then for each x € H, we have (x - Pcx, Pcx
-yy20forallye C.

Lemma 2.3. [17]Let D be a nonempty closed convex subset of a real Hilbert space H.
Let Pp, be the metric projection from H onto D, and let {x,},c nbe a sequence in H. If x,
- %o and Ppx,, — ¥, then Ppxg = yo.

Lemma 2.4. [18]Let D be a nonempty closed convex subset of a real Hilbert space H.
Let Pp, be the metric projection from H onto D. Let {x,},.nbe a sequence in H with ||x,
a-ullP< @ +A) ||%-ul|> + 0, forallue D and ne N, where {A,} and {6,} are
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o0 o0
sequences of nonnegative real numbers such that ) i, <00 and ) 8, < 00. Then
n=1 n=1

{Ppx,} converges strongly to an element of D.
Lemma 2.5. [19]Let {s,} and {t,} be two nonnegative sequences satisfying s,,1 < S, +

o0
t, for each ne N. If Zl tn < 00, then nlggo Snexists.
n=

The equilibrium problem is to find z € C such that

G(z,y) =0 foreach yeC. (2.1)

The solution set of equilibrium problem (2.1) is denoted by (EP). For solving the
equilibrium problem, let us assume that the bifunction G : C x C — R satisfies the fol-
lowing conditions:

(A1) G(x, x) = 0 for each x € C;

(A2) G is monotone, ie., G(x, ¥) + G(y, x) < 0 for any x, y € C;

(A3) for each x, y, ze C, ltig)l Gz + (1 —1)x,y) = G(x,y),

(A4) for each x € C, the scalar function y — G(x, y) is convex and lower
semicontinuous.

Lemma 2.6. [20]Let C be a nonempty closed convex subset of a real Hilbert space H.
Let G: C x C — R be a bifunction which satisfies conditions (Al1)-(A4). Let r > 0 and
x € H. Then there exists z € C such that

G(z,y) + i(y—z,z—x) >O0forallyeC.
Furthermore, if

Tr(x) :={z € C:G(z,y) + 1(y—z,z—x) >0 forally € C},
then we have:

(i) T, is single-valued;

(ii) T, is firmly nonexpansive, that is, || T.x - T,y||* < (Tx - T,y, x - y) for each x, y
€ H;

(iii) (EP) is a closed convex subset of C;

(iv) (EP) = K(T)).

3 Fixed point theorems
Proposition 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C — C be a mapping with condition (B). Then for each x, y € C, we have:

M [T - T[> + [|x - T[] < ||« - Tx ||
(i) ||Tx - T*x|| < ||x - Tx || and ||x - T¢|| < ||x - Tx ||;
(iii) either 5 Ix—Tx||<||x—vy|or é | Tx — T2x ||<|| Tx — y || holds;

(iv) either

ITx =Ty | P+ I x=Ty [ 1> < Tx=y| >+ I x=y|
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I T2x =Ty | P+ | Tx =Ty | 1> < T2 —yl1?+ | Tx—y | |?

holds;
(v) lim || T" — T"2x ||= 0.

n—oo

Proof Since ; | x—Tx ||<|| x— Tx |, it is easy to see (i) and (ii) are satisfied. (iii)

Suppose that
ylx=Txl>]x—yll and ; || Tx— T [|>|| Tx—y |

holds. So,

[x=TxlI<llx=yl + [ly—Tx]|
2 Tx =T ||

1 1
Solx—Txll+, lx—Tx|l=llx—Tx| .

< ) lx—Tx|+

This is a contradiction. Therefore, we obtain the desired result. Next, it is easy to get
(iv) by (iii).
(v): By (i), we know that

” Tn+1x _ Tn+2x ”2 + ” Tnx _ Tn+2x ”25” Tnx _ Tn+1x ”2 .
. . . 1 .
Then {||T"x - T"*'x||} is a decreasing sequence, and lim || T"x —T"*x || exists.
n—oo
Furthermore, we have:

lim | T"x — T"?x|? < lim || T"x — T™'%)|> — lim || T"'x — T"2x||*> = 0.
n—oo n—oo n—0oo

So, lim || T"x — T™2x || =0,

n— o0
Proposition 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C — C be a mapping with condition (B). Then for each x, y € C,

(Tx—Tpy—T) < x—p,T—y) + | Tx—x|- |-yl .
Proof By Proposition 3.1(iv), for each x, y € C, either

1T =Tyl + [T x = Tyl* < | Te = ylIP+ [ x = yll?
or

I T2% = TylI*+ || Tx = TyII> < || T2 —yl*+ | Tx —yII?
holds. In the first case, we have

I Tx = TylI+ Il x—Tyl* <[ Tx—yl*+ | x—yl

=S I T =T+ lx—yl?+ 2 —py =T + | Ty —ylII> < | Tx = Ty|*+
ATx =Ty, Ty —y) + | Ty —yI*+ I x =yl

= x—py-—T <{Ix-T,Ty—y)

= (Ix—Ty-T <x—yTy—y.
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In the second case, we have

I T% — Tyl+ | Te = Tyl? < || Tx — yl?+ || T2x —y|I?
= | TPx—ylP+ 2Tx—y,y =) + |y = T*+ || Tx = Tll> < || Tx — Ty >+
ATx =Ty, Ty —y) + |y =TI+ | T>x -yl
= (In—Ty,y—-Ty) < (sz—y,Ty—y)
Se—yTy—p+ I Tx—x|- [ Ty—yll.

Therefore, the proof is completed.

Remark 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — C be a mapping with condition (B). Then for each x, y € C, we have:

@ 11T - T + [fx - 911 < [l - 1 + 11T - 9117 + 117% - ] - 11Ty - 5l

(b)(Tx - Ty, y - Ty) <{x - 95 Ty - ) + |[Tx - x|| - || Ty - y]].

Proof By Proposition 3.2, it is easy to prove Remark 3.1.

The following theorem shows that demiclosed principle is true for mappings with
condition (B).

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H,
and let T : C — C be a mapping with condition (B). Let {x,} be a sequence in C with

X, = x and nlggo Il xn — Ty | = O, Then Tx = x.
Proof By Remark 3.1, we get:

(Txy — Tt x — Tx) < {2y — %, Tx —x) + | X0 — Tty || - | x — Tx ||

for each n € N. By assumptions, (x - Tx , x - Tx ) < 0. So, Tx = x.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H,
and let T : C — C be a mapping with condition (B). Then {T"x} is a bounded sequence
for some x € C if and only if F(T) = <.

Proof For each n € N, let x,, := T"x. Clearly, {x,} is a bounded sequence. By Lemma

2 - 2
2.1, there is a unique z € C such that #n [ ¥n —2[I7 =minuy [ X, =Yl By Proposi-
yeC

tion 3.2, for each n € N,

(1 — T2,z —Tz) < {xn —2,Te—2) + [ xn —Xns2 || - | 2 — T2 ||
= 2l xn = T2l?+ 5 Te—zl> = ) I %pe1 —2l°

< hxw—zlP+ Jlz=Tzal> = )l %0 — T2+ || %0 — Xpaz || - | 2= T2 |
= Un ”xn_TZ”2 =< Un ”xn_Z”z"' Mn ll Xp = X2 |- lz2—=Tz | .

By Proposition 3.1(v), f,||%, - T2||* < t||%, - 2||* This implies that Tz = z and F(T)
= (4. Conversely, it is easy to see.

Corollary 3.1. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H, and let T : C — C be a mapping with condition (B). Then F(T) = &.

The following theorem shows that Ballion’s type Ergodic’s theorem is also true for
the mapping with condition (B).

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H,
and let T : C — C be a mapping with condition (B). Then the following conditions are

equivalent:
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1 n=1
(i) for each x € C, Spx = " 3" Tkx converges weakly to an element of C;
k=0

(ii) F(T) # @.

In fact, if F(T) = &, then for each x € C, we know that S,x — v, where
V= nll)nolo PpryT"x gnd Prry is the metric projection from H onto F(T).

Proof (i)> (ii): Take any x € C and let x be fixed. Then there exists v € C such that
S,x = v. By Proposition 3.2, for each k€ N, we have:

(TTkx —Tv,v—"Tv) < (Tkx —v,Tv—v) + | T?Tkx — T'x -1 Tv—v|

= (T —Tv,v—Tv) < (T'x—v, Tv—v) + | T x = Trx || - | Tv—v ||
n—2
= (T % — Ty, v — Tv)
k=0
n—2 n—2
<Y (T =Ty, Tv—v) + Y [ T*x=Tx || | Tv—v||
k=0 k=0

= nSyx—x—(nm—1DTv,v—Tv) < {(n—1)S—1x— (n— 1)Tv, Tv — v)+
n—2
DT =T |- | Tv—v|
k=0

= (" Spx— 5 —Tv,v—Tv)

3

DoNT e —The |- | Ty~

=
<(Sp-1x—Tv, Tv —v) +
n—1 pary

By Proposition 3.1(v), nlgglo | T#*2x — Tkx || = 0. This implies that

1 n—2
: k+2 k _
lim 1§||T x—Tx || =0.

n—oo 1] —

Since S,x — v, we have:
(v—Tv,v—"Tv) < (v—"Tv,Tv —v).

So, Tv = v.

(ii)=> (i): Take any x € C and u € F(T), and let x and u be fixed. Since T satisfies
condition (B), ||T" - u|| < ||T" " - u|| for each n e N. Hence, lim [ T" —u ||
exists and this implies that {7"x} is a bounded sequence. By Lemma 2.4, there exists z
€ F(T) such that nlgglo PpnT"x =z, Clearly, z € F(T). Besides, we have:

n—1

1
k
FSwe—ull = > I T —ul < llx—ul.
k=0

So, {S,x} is a bounded sequence. Then there exist a subsequence {S,x} of {S,x} and

v e Csuch that S, x — v. By the above proof, we have:

Page 10 of 16



Lin et al. Fixed Point Theory and Applications 2011, 2011:92
http://www.fixedpointtheoryandapplications.com/content/2011/1/92

1 n—2
(" Sux—, 5 —Tv,v=Tv) < (Sy_1x—Tv, Tv—v)+ ~ ST =T |- | Tv—v .
k=0

This implies that

n; _ X _ _
<ni718”ix 1 Tv, v — Tv)

1 ni—2
S (Spox— 5 = ToTv=v)+ Y I T =T || Tv—v].
! k=0

Since Spx = v, {T"x} is a bounded sequence, and
. 1 n—2

lim 3 || TH2x — Tkx || = 0, it is easy to see that Tv = v. So, v e F(T).

n—oon — 1 =0

By Lemma 2.2, for each ke N, (T - PF(T)Tkx, PF(T)Tkx - uy > 0. This implies that

(T'x — PpyT"x, u — 2)

< (T*x — PperyT*%, P T'x — 2)

< || T — PeeyT'x || - || PeeryT'x — z |
< I T =z - | PeeyT'x—z ||

< llx—z| - PeeyT'x—z | .

Adding these inequalities from k = 0 to k = n - 1 and dividing by #, we have

15 hx -z 52 .
Six— Y PrnT'xu—z) < I PreryTx — 2 || -
n k=0 n k=0

Since S;,x — v and PF(T)Tkx — z, we get (v - z, u - z) < 0. Since u is any point of F
(T), we know that V=2 = nll)ﬂgo Pr)T"x,

Furthermore, if {S,x} is a subsequence of {S,x} and S, x — ¢, then g = v by follow-
ing the same argument as the above proof. Therefore, SnX — v = nlgTolo PT"x | and the

proof is completed.

4 Weak convergence theorems with errors

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H, and
let Ty, Ty : C — C be two mappings with condition (B) and Q: = F(Ty) n F(T,) = &.
Let {a,}, {b,}, {c..}, {d,.}, 16,}, and {1,} be sequences in [0,1] with

An+Cp+0,=by+dy+2y=1,n€N.
Let {u,} and {v,} be bounded sequences in C. Let {x,} and {y,} be defined by

x1 € C chosen arbitrary,
Vn 1= AnXn + Cn T1Xy + Opliy,
Xne1 = bpXy + dpToyn + Anby.

Assume that:

(i) liminfa,cy, > 0454 liminfb,d, > 0;
n—oo n—oo

(ii) > 6y < ocoand Y A < 00.

n=1 n=1
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Then x,, — z and y,, — z, where & = lim Poxy
n—o0

Proof Take any w € Q) and let w be fixed. Then for each n € N, we have:

and

2
| yn — wll

2
= || anxp + cuT1xp + Opuy, — w||

2 2 2
= ap || X0 —wl” + cn || Tixy —wl* + 6 || tn — w]|

2 2 2
—anCn || Xn — T1xp 1" — anOn || Xp — W™ — cuby || Toxy — uyll

< an lxn—wl® + cn [l %0 —wl? + Oy || up — w||?

—ancn || Xn — Tixull® — anbh || %0 — wll> = cubp | Trxy — upl?
< N % —wll” + 6y || un —wl)?,

| xne1 — wl?
= bnxy + dnTZ}/n + AUy — w”2
= by || xp — w”2 + dy || Toyn — w”2 + An llvn — w”2

_bndn ” Xp — TZYn”z - bn)\n ” Xp — Un”2 - dn)\n ” T2yn - Un”2
< by llxn— wi®+ dullyn— wi+ A [l vy — wll?

—budy || xn — Tz)’n”2 — bphn || X0 — Vn||2 — dpha |l Toyn — Vn||2
< byl xn —wl? + da(ll %0 — Wl + O | tn — wll*) + Ap | v — wl?

_bndn ” Xpn — T2le||2 - bn)”n ” Xn — Un”z - dn)”n ” T2yn - Un”z
< N xn —wl? + dub | tn — wll* + Ay | va —wl?

—budy || xn — TZ)’n”2 — bphn || xn — Vn||2 — duhn |l Toyn — 1}n”z
< |l xn— w”2 + dnby || un — W”2 + An |l vn — w||2-

By Lemma 2.5, lim || x, —w || exists. So, {x,} is a bounded sequence. Now, we set
n—oo

lim || x, —w || = £, Besides,
n—oo

budn | X0 — Taynll® + bk || xn — vall> + dukn | Tayn — vall?

2 2 2 2
< X —wll™ + dnbp || tn —wI* + An | V0 — wl"— || Xpr — wll”

This implies that

lim budy || X, — Toyal®> = 0.
n—oQ

By assumption, lim || X, — T2yu | = O, Furthermore, we have:
n—oo

2 2 2 2
| X1 —wllI® < byl xn —wll” + dn | yn —wl™ + Ap || v —w|l”.

This implies that

budn (Il X0 — W) + Oy || tn — wl*= || yu — wl?)

< dp(ll Xn — Wl + O | un — wl*= || yu — wl?)
< (1 =bn) Il X —wl* + duby | un — wll> = du | yu — wll

2 2 2 2
< N xn —wi*= 1 Xpr —wl* + An | va —wl® + dubp || n — wl|”
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Hence, lim bydn (Il xn — wll? + O |ty — wl>— || yn — W||2) = 0. By assumption,
n—o00
lim (I %y — wl + 6y || iy — wl>— || yo — wll*) = 0.
n—o00
Since lim 6y || uy —w|?> =0,
n—oo
lim (|| x, — w|>— || yo — w|?) = 0.
n—oo

Hence, lim ||y, —w| = lim || x, —w || = ¢, Similar to the above proof, we also get
n—oo n—oo

lim || x, — T1x, || = 0.
n—o00

Besides,

||yn — Xn ” = || anxn + cnTrxn + Opun — X ||
< | Taxn — Xp || + 6n || X0 — un ||

SHTixn —X0 ll +6n | X —un Il .

This implies that 1M Il yn =% =0 and lm || yn = Topa | = 0. Since {x,} is a
bounded sequence, there exists a subsequence {x,,} of {x,} such that Xn, = z. By The-
orem 3.1, z = Tz

If X is a subsequence of {x,} and ¥, — g, then T1q = g. Suppose that g # z. Then

we have:
liminf || x,, —z | < liminf || x,, —q || = lim [ x, —q [l = im || x,, — g |
k—00 k—00 n—00 j—oo

< liminf || x, —z| = lim || x, —z || = liminf || x,, —z || .
j—o0 g n—o00 k—o00

And this leads to a contradiction. Then every weakly convergent subsequence of x,,
has the same limit. So, x, -~ z € F(T}). Since x, - z and nlgglo [ %0 =¥l =0, y, -z
By Theorem 3.1, z € F(T,). Hence, z€ Q.

Next, by Lemma 2.4, Pox, converges. Then there exists v € Q such that

lim Pox, = v, By Lemma 2.3, Poz = v. Since z€ Q, 2=V = lim Poxy | and the proof
[e.¢] n—oo

n—
is completed.
In Theorem 4.1, if 8, = A,, = 0 for each n € N, then we have the following result.
Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H,
and let Ty, T, : C — C be two mappings with condition (B) and Q: = F(T1) n F(T5) #
@. Let {a,} and (b,) be two sequences in [0,1]. Let {x,} be defined by

x1 € C chosen arbitrary,
Yn = anXn + (1 — an)T1x,,
Xne1 = by + (1 — by)Toyn.

Assume that liminfa,(1 —a,) > 0444 liminfb,(1 —b,) > 0, Then X, ~ z and y,
n— 00 n—oo

~ z where 2= 1im Pox,
n—oo

Furthermore, we also have the following corollaries from Theorem 4.2.
Corollary 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H,
and let T : C — C be a mapping with condition (B) and F(T) = &. Let {a,} and {b,} be
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two sequences in [0,1]. Let {x,} be defined by

x1 € C chosen arbitrary,
Yn = anXn + (1 — ay)Txy,
Xpe1 = bpxy + (1 — by)Tyy.

Assume that liminfa,(1 —an) > 044 iminfb,(1 —by) > 0. Then x, ~ z and y,
n— 00 n—00
~ z, where 2= 1im Pp(ryx,
n—oo
Corollary 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H,

and let T : C — C be a mapping with condition (B) and F(T) = &. Let {b,} be a
sequence in [0,1]. Let {x,} be defined by

{xl € C chosen arbitrary,
X1 = bpxy + (1 — by) Ty,

Assume that ligiogfbn(l —by) > 0. Then x, — z, where & = nlg{.lo Pr(ryxn

Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let G: C x C — R be a function satisfying (Al1)-(A4). Let T : C — C be a mapping
with condition (B) and Q: = F(T) n (EP) = &. Let {a,}, {b,}, and {0,} be sequences in
[0,1] with a,, + b, + 0, = 1. Let {w,} be a bounded sequence in C. Let {r,} S [a, =) for
some a > 0. Let {x,} be defined by u; ¢ H

xn € Csuch that G(xp,y) + ' (y — xp, Xy —us) =0 Vye G
Upsl = ApXp + by Tx, + Oy,

o0
Assume that: llgglfanbn>0, and Y 0, <oo. Then x, — z where
n=1

z= nlljglo P(epynr(r)Xn

Proof Take any w € Q and let w be fixed. Putting x, = T\, u, for each n € N. Then

we have:
| Xno1 — w]?
= | Trn,,luml - w||2
< | tpar —w|?
< |l anx, + by Txn + Gy — W||2
< an % = wl?+ by || Txg —wll* + 6y | 0n — wl* = @nbn | %5 — Txa)?
< an |l xn— w||2 + by |l Xy — W”2 + On || on — W”2 — anby || Xy — Txn”2
< [lan— w”2 + Op || on — w”2 — apby || %, — Txn||2-

By Lemma 2.5, nlgglo | xn —w Il exists. So, {x,} is bounded. Furthermore, we have:

(@) im anby | %5 = T2 = 0

(b) lim || x, — Txy, || = 0,

n—00
(©) Il thner = %0 Il = I baTxy — bpxy + Ouwy — Opxy | < || Tty — X || + 0 | W — x4 I
(d) im || tp1 —xn || =0,

n—o0

(&) lim [l uy—w = lim [l —w].
n—-oo n—oo
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Following the same argument as the proof of Theorem 4.2, there exists z € C such
that x,, - z and Tz = z. Besides, we also have

2 2
lxne1 —wll= = 1| Trml Upe1 — W
2
= Trml Un+1 — Trmlw”

f (Trn+1un+1 - T,

The1

W, Upi1 — W)
=< (xn+1 — W, Ups1 — W)

1 2 1 2 1 2
=5 | Xpe1 —wll” + 2 | uner — wil= — 2 | Xne1 — unaa ll°

This implies that

2 2 2
” Xn+l — un+1|| =< || Upsy1 — w” - ” Xn+1 — w” .
By (e), nlgglo Il %0 —un | = 0, Next, we want to show that z e (EP). Since x, = Ty, uy,

1
Gl y) + (y—%nx—u) 20 VyeC.

n
By (A2),

1
r (Y — Xn, Xn — un) = G(ern) V)/ e C.
n

By (A4), (i), and nlg{.lo %0 —un Il =0, we get

0> lim G(y,xx) > G(y,z2) VyeC.
n—00

By (A2), G(z, y) 2 0 for all y e C. So, ze (EP) n F(T) = Q. By Lemma 2.4, there
exists v € (EP) n F(T) such that r}g& Pepynp(ryXn =V, By Lemma 2.3, z = Ppynrn)? =
v, and the proof is completed.

In Theorem 4.3, if 8, = 0 for each n € N, then we have the following result.

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let G: C x C — R be a function satisfying (A1)-(A4). Let T: C — C be a mapping
with condition (B) and Q: = F(T) n (EP) = &. Let {a,} be a sequence in [0,1]. Let {x,;}
be defined by u; € H

Xy € Csuch that G(xn, y) + | (¥ = Xn %0 —t1n) =0 Vy € G
Unps1 = AnXp + (1 — an) Txy.

Assume that: {r,} € [a, ) for some a > 0 and lirfl_l)glfan(l —an) >0, Then x, — z,

where 2= lim P(ep)nr(r)Xn .
n—-oo
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