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Abstract

In this article, we introduce a new hybrid projection iterative scheme based on the
shrinking projection method for finding a common element of the set of solutions
of the generalized mixed equilibrium problems and the set of common fixed points
for a pair of asymptotically quasi-j-nonexpansive mappings in Banach spaces and set
of variational inequalities for an a-inverse strongly monotone mapping. The results
obtained in this article improve and extend the recent ones announced by
Matsushita and Takahashi (Fixed Point Theory Appl. 2004(1):37-47, 2004), Qin et al.
(Appl. Math. Comput. 215:3874-3883, 2010), Chang et al. (Nonlinear Anal. 73:2260-
2270, 2010), Kamraksa and Wangkeeree (J. Nonlinear Anal. Optim.: Theory Appl. 1
(1):55-69, 2010) and many others.
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1. Introduction
Let E be a Banach space with norm ||·||, C be a nonempty closed convex subset of E,

and let E* denote the dual of E. Let f : C × C ® ℝ be a bifunction, �: C ® ℝ be a

real-valued function, and B : C ® E* be a mapping. The generalized mixed equilibrium

problem, is to find x Î C such that

f (x, y) + 〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:1)

The set of solutions to (1.1) is denoted by GMEP(f, B, �), i.e.,

GMEP (f ,B,ϕ) = {x ∈ C : f (x, y) + 〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C}. (1:2)

If B ≡ 0, then the problem (1.1) reduces into the mixed equilibrium problem for f,

denoted by MEP(f, �), is to find x Î C such that

f (x, y) + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:3)

If � ≡ 0, then the problem (1.1) reduces into the generalized equilibrium problem,

denoted by GEP(f, B), is to find x Î C such that
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f (x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (1:4)

If f ≡ 0, then the problem (1.1) reduces into the mixed variational inequality of

Browder type, denoted by MVI(B, C), is to find x Î C such that

〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:5)

If � ≡ 0, then the problem (1.5) reduces into the classical variational inequality,

denoted by VI(B, C), which is to find x Î C such that

〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (1:6)

If B ≡ 0 and � ≡ 0, then the problem (1.1) reduces into the equilibrium problem for f,

denoted by EP(f), which is to find x Î C such that

f (x, y) ≥ 0, ∀y ∈ C. (1:7)

If f ≡ 0, then the problem (1.3) reduces into the minimize problem, denoted by Arg-

min (�), which is to find x Î C such that

ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:8)

The above formulation (1.6) was shown in [1] to cover monotone inclusion pro-

blems, saddle point problems, variational inequality problems, minimization problems,

optimization problems, variational inequality problems, vector equilibrium problems,

and Nash equilibria in noncooperative games. In addition, there are several other pro-

blems, for example, the complementarity problem, fixed point problem and optimiza-

tion problem, which can also be written in the form of an EP(f). In other words, the

EP(f) is an unifying model for several problems arising in physics, engineering, science,

optimization, economics, etc. In the last two decades, many articles have appeared in

the literature on the existence of solutions of EP(f); see, for example [1-4] and refer-

ences therein. Some solution methods have been proposed to solve the EP(f) in Hilbert

spaces and Banach spaces; see, for example [5-20] and references therein.

A Banach space E is said to be strictly convex if
∥∥∥x + y

2

∥∥∥ < 1 for all x, y Î E with ||x||

= ||y|| = 1 and x ≠ y. Let U = {x Î E : ||x|| = 1} be the unit sphere of E. Then, a

Banach space E is said to be smooth if the limit lim
t→0

||x + ty|| − ||x||
t

exists for each x, y

Î U. It is also said to be uniformly smooth if the limit exists uniformly in x, y Î U. Let

E be a Banach space. The modulus of convexity of E is the function δ : [0, 2] ® [0, 1]

defined by

δ(ε) = inf{1 − ||x + y
2

|| : x, y ∈ E, ||x|| = ||y|| = 1, ||x − y|| ≥ ε}.

A Banach space E is uniformly convex if and only if δ (ε) >0 for all ε Î (0, 2]. Let p

be a fixed real number with p ≥ 2. A Banach space E is said to be p-uniformly convex

if there exists a constant c >0 such that δ (ε) ≥ cεp for all ε Î [0, 2]; see [21,22] for

more details. Observe that every p-uniformly convex is uniformly convex. One should

note that no Banach space is p-uniformly convex for 1 < p <2. It is well known that a

Hilbert space is 2-uniformly convex, uniformly smooth. For each p >1, the generalized

duality mapping Jp : E ® 2E* is defined by
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Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||p, ||x∗|| = ||x||p−1}

for all x Î E. In particular, J = J2 is called the normalized duality mapping. If E is a

Hilbert space, then J = I, where I is the identity mapping.

A set valued mapping U : E ⇉ E* with graph G(U) = {(x, x*) : x* Î Ux}, domain D(U)

= {x Î E : Ux ≠ ∅}, and rang R(U) = ∪{Ux : x Î D(U)}. U is said to be monotone if 〈x -

y, x* - y*〉 ≥ 0 whenever x* Î Ux, y* Î Uy. A monotone operator U is said to be maxi-

mal monotone if its graph is not properly contained in the graph of any other mono-

tone operator. We know that if U is maximal monotone, then the solution set U-1 0 =

{x Î D(U) : 0 Î Ux} is closed and convex. It is knows that U is a maximal monotone

if and only if R(J + rU) = E* for all r >0 when E is a reflexive, strictly convex and

smooth Banach space (see [23]).

Recall that let A : C ® E* be a mapping. Then, A is called

(i) monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C,

(ii) a-inverse-strongly monotone if there exists a constant a >0 such that

〈Ax − Ay, x − y〉 ≥ α||Ax − Ay||2, ∀x, y ∈ C.

The class of inverse-strongly monotone mappings has been studied by many

researchers to approximating a common fixed point; see [24-29] for more details.

Recall that a mappings T : C ® C is said to be nonexpansive if

||Tx − Ty|| ≤ ||x − y||, for all x, y ∈ C.

T is said to be quasi-nonexpansive if F(T) ≠ ∅, and

||Tx − y|| ≤ ||x − y||, for all x ∈ C, y ∈ F(T).

T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1, ∞)

with kn ® 1 as n ® ∞ such that

||Tnx − Tny|| ≤ kn||x − y||, for all x, y ∈ C.

T is said to be asymptotically quasi-nonexpansive if F(T) ≠ ∅ and there exists a

sequence {kn} ⊂ [1, ∞) with kn ® 1 as n ® ∞ such that

||Tnx − y|| ≤ kn||x − y||, for all x ∈ C, y ∈ F(T).

T is called uniformly L-Lipschitzian continuous if there exists L >0 such that

||Tnx − Tny|| ≤ L||x − y||, for all x, y ∈ C.

The class of asymptotically nonexpansive mappings was introduced by Goebel and

Kirk [30] in 1972. Since 1972, a host of authors have studied the weak and strong con-

vergence of iterative processes for such a class of mappings.

If C is a nonempty closed convex subset of a Hilbert space H and PC : H ® C is the

metric projection of H onto C, then PC is a nonexpansive mapping. This fact actually

characterizes Hilbert spaces and, consequently, it is not available in more general

Banach spaces. In this connection, Alber [31] recently introduced a generalized projec-

tion operator C in Banach space E which is an analogue of the metric projection in

Hilbert spaces.
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Let E be a smooth, strictly convex and reflexive Banach spaces and C be a nonempty,

closed convex subset of E. We consider the Lyapunov functional j : E × E ® ℝ+

defined by

φ(y, x) = ||y||2 − 2〈y, Jx〉 + ||x||2 (1:9)

for all x, y Î E, where J is the normalized duality mapping from E to E*.

Observe that, in a Hilbert space H, (1.9) reduces to j(y, x) = ||x - y||2 for all x, y Î
H. The generalized projection ΠC : E ® C is a mapping that assigns to an arbitrary

point x Î E the minimum point of the functional j(y, x); that is, ΠCx = x*, where x* is

the solution to the minimization problem:

φ(x∗, x) = inf
y∈C

φ(y, x). (1:10)

The existence and uniqueness of the operator ΠC follows from the properties of the

functional j(y, x) and strict monotonicity of the mapping J (see, for example,

[9,32-34]). In Hilbert spaces, ΠC = PC.
. It is obvious from the definition of the function

j that

(1) (||y|| - ||x||)2 ≤ j(y, x) ≤ (||y|| + ||x||)2 for all x, y Î E.

(2) j(x, y) = j (x, z) + j (z, y) + 2 〈x - z, Jz - Jy〉 for all x, y, z Î E.

(3) j(x, y) = 〈x, Jx - Jy〉 + 〈y - x, Jy〉 ≤ ||x|| ||Jx - Jy|| + ||y - x|| ||y|| for all x, y Î E.

(4) If E is a reflexive, strictly convex and smooth Banach space, then, for all x, y Î
E,

φ(x, y) = 0 if and only if x = y.

By the Hahn-Banach theorem, J(x) ≠ ∅ for each x Î E, for more details see [35,36].

Remark 1.1. It is also known that if E is uniformly smooth, then J is uniformly

norm-to-norm continuous on each bounded subset of E. Also, it is well known that if

E is a smooth, strictly convex and reflexive Banach space, then the normalized duality

mapping J : E ® 2E* is single-valued, one-to-one and onto (see [35]).

Let C be a closed convex subset of E, and let T be a mapping from C into itself. We

denote by F(T) the set of fixed point of T. A point p in C is said to be an asymptotic

fixed point of T [37] if C contains a sequence {xn} which converges weakly to p such

that limn ®∞ ||xn - Txn|| = 0. The set of asymptotic fixed points of T will be denoted

by F̂(T).

A point p in C is said to be a strong asymptotic fixed point of T [37] if C contains a

sequence {xn} which converges strong to p such that limn®∞||xn - Txn|| = 0. The set

of strong asymptotic fixed points of S will be denoted by F̃(T).

A mapping T is called relatively nonexpansive [38-40] if F̂(T) = F(T) and

φ(p,Tx) ≤ φ(p, x) ∀x ∈ C and p ∈ F(T).

The asymptotic behavior of relatively nonexpansive mappings were studied in

[38,39].

A mapping T : C ® C is said to be weak relatively nonexpansive if F̃(T) = F(T) and

φ(p,Tx) ≤ φ(p, x) ∀x ∈ C and p ∈ F(T).
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A mapping T is called hemi-relatively nonexpansive if F(T) ≠ ∅ and

φ(p,Tx) ≤ φ(p, x) ∀x ∈ C and p ∈ F(T).

A mapping T is said to be relatively asymptotically nonexpansive [32,41] if

F̂(T) = F(T) 
= ∅ and there exists a sequence {kn} ⊂ [0, ∞) with kn ® 1 as n ® ∞ such

that

φ(p,Tnx) ≤ knφ(p, x) ∀x ∈ C, p ∈ F(T) and n ≥ 1.

Remark 1.2. Obviously, relatively nonexpansive implies weak relatively nonexpansive

and both also imply hemi-relatively nonexpansive. Moreover, the class of relatively

asymptotically nonexpansive is more general than the class of relatively nonexpansive

mappings.

We note that hemi-relatively nonexpansive mappings are sometimes called quasi-j-
nonexpansive mappings.

We recall the following :

(i) T : C ® C is said to be j-nonexpansive [42,43] if j (Tx, Ty) ≤ j (x, y) for all x,

y Î C.

(ii) T : C ® C is said to be quasi-j-nonexpansive [42,43] if F(T) ≠ ∅ and j(p, Tx)
≤ j(p, x) for all x Î C and p Î F(T).

(iii) T : C ® C is said to be asymptotically j-nonexpansive [43] if there exists a

sequence {kn} ⊂ [0, ∞) with kn ® 1 as n ® ∞ such that j (Tnx, Tny) ≤ kn j(x, y)
for all x, y Î C.

(iv) T : C ® C is said to be asymptotically quasi-j-nonexpansive [43] if F(T) ≠ ∅
and there exists a sequence {kn} ⊂ [0, ∞) with kn ® 1 as n ® ∞ such that j(p,
Tnx) ≤ knj (p, x) for all x Î C, p Î F(T) and n ≥ 1.

Remark 1.3. (i) The class of (asymptotically) quasi-j-nonexpansive mappings is

more general than the class of relatively (asymptotically) nonexpansive mappings,

which requires the strong restriction F̂(T) = F(T).

(ii) In real Hilbert spaces, the class of (asymptotically) quasi-j-nonexpansive map-

pings is reduced to the class of (asymptotically) quasi-nonexpansive mappings.

Let T be a nonlinear mapping, T is said to be uniformly asymptotically regular on C

if

lim
n→∞

(
sup
x∈C

||Tn+1x − Tnx||
)
= 0.

T : C ® C is said to be closed if for any sequence {xn} ⊂ C such that limn®∞ xn = x0
and limn®∞ Txn = y0, then Tx0 = y0.

We give some examples which are closed and asymptotically quasi-j-nonexpansive.
Example 1.4. (1). Let E be a uniformly smooth and strictly convex Banach space and

U ⊂ E × E* be a maximal monotone mapping such that its zero set U-10 is nonempty.

Then, Jr = (J + rU)-1 J is a closed and asymptotically quasi-j-nonexpansive mapping
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from E onto D(U) and F(Jr) = U-10.

(2). Let ΠC be the generalized projection from a smooth, strictly convex and reflex-

ive Banach space E onto a nonempty closed and convex subset C of E. Then ΠC is

a closed and asymptotically quasi-j-nonexpansive mapping from E onto C with F

(ΠC) = C.

Recently, Matsushita and Takahashi [44] obtained the following results in a Banach

space.

Theorem MT. Let E be a uniformly convex and uniformly smooth Banach space, let

C be a nonempty closed convex subset of E, let T be a relatively nonexpansive map-

ping from C into itself, and let {an} be a sequence of real numbers such that 0 ≤ an <1

and lim supn®∞ < 1. Suppose that {xn} is given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 = x ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1 − αn)JTxn),
Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = PHn∩Wnx0, n = 0, 1, 2, ...,

(1:11)

where J is the duality mapping on E. If F(T) is nonempty, then {xn} converges

strongly to PF(T)
x, where PF(T) is the generalized projection from C onto F(T). In 2008,

Iiduka and Takahashi [45] introduced the following iterative scheme for finding a solu-

tion of the variational inequality problem for an inverse-strongly monotone operator A

in a 2-uniformly convex and uniformly smooth Banach space E : x1 = x Î C and

xn+1 = �CJ
−1(Jxn − λnAxn), (1:12)

for every n = 1, 2, 3,..., where ΠC is the generalized metric projection from E onto C,

J is the duality mapping from E into E* and {ln} is a sequence of positive real numbers.

They proved that the sequence {xn} generated by (1.12) converges weakly to some ele-

ment of VI(A, C).

A popular method is the shrinking projection method which introduced by Takaha-

shi et al. [46] in year 2008. Many authors developed the shrinking projection method

for solving (mixed) equilibrium problems and fixed point problems in Hilbert and

Banch spaces; see, [12,15,16,47-57] and references therein.

Recently, Qin et al. [58] further extended Theorem MT by considering a pair of

asymptotically quasi-j-nonexpansive mappings. To be more precise, they proved the

following results.

Theorem QCK. Let E be a uniformly smooth and uniformly convex Banach space

and C a nonempty closed and convex subset of E. Let T : C ® C be a closed and

asymptotically quasi-j-nonexpansive mapping with the sequence {k(t)n } ⊂ [1,∞) such

that k(t)n → 1 as n ® ∞ and S : C ® C a closed and asymptotically quasi-j-nonexpan-

sive mapping with the sequence {k(t)n } ⊂ [1,∞) such that k(s)n → 1 as n ® ∞. Let {an},

{bn}, {gn} and {δn} be real number sequences in [0, 1].

Assume that T and S are uniformly asymptotically regular on C and Ω = F(T) ∩ F(S)

is nonempty and bounded. Let {xn} be a sequence generated in the following manner:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = �C1x0,
zn = J−1(βnJxn + γnJ(Tnxn) + δnJ(Snxn)),
yn = J−1(αnJxn + (1 − αn)Jzn),
Cn+1 = {w ∈ Cn : φ(w, yn) ≤ φ(w, xn) + (kn − 1)Mn},
xn+1 = �Cn+1x0,

(1:13)

where kn = max{k(t)n , k(s)n } for each n ≥ 1, J is the duality mapping on E, and Mn = sup

{j(z, xn) : z Î Ω } for each n ≥ 1. Assume that the control sequences {an}, {bn}, {gn}
and {δn} satisfy the following restrictions :

(a) bn + gn + δn = 1, ∀n ≥ 1;

(b) lim infn®∞ gnδn, limn®∞ bn = 0;

(c) 0 ≤ an <1 and lim supn®∞ an < 1.

On the other hand, Chang, Lee and Chan [59] proved a strong convergence theorem

for finding a common element of the set of solutions for a generalized equilibrium

problem (1.4) and the set of common fixed points for a pair of relatively nonexpansive

mappings in Banach spaces. They proved the following results.

Theorem CLC. Let E be a uniformly smooth and uniformly convex Banach space, C

be a nonempty closed convex subset of E. Let A : C ® E* be a a-inverse-strongly
monotone mapping and f : C × C ® ℝ be a bifunction satisfying the conditions (A1) -

(A4). Let S, T : C ® C be two relatively nonexpansive mappings such that Ω := F(T) ∩
F(S) ∩ GEP(f, A). Let {xn} be the sequence generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily,
zn = J−1(αnJxn + (1 − αn)JTxn),
yn = J−1(βnJxn + (1 − βn)JSxn),
un ∈ C such that

f (un, y) + 〈Aun, y − un〉 + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Hn = {v ∈ C : φ(v, un) ≤ βnφ(v, xn) + (1 − βn)φ(v, xn)},
Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = �Hn∩Wnx0, ∀n ≥ 0,

(1:14)

where {an} and {bn} are sequences in [0, 1] and {gn} ⊂ [a, 1) for some a >0. If the

following conditions are satisfied

(a) lim infn ®∞ an(1 - an) > 0;

(b) lim infn ®∞ bn(1 -bn) > 0;

then, {xn} converges strongly to ΠΩx0, where ΠΩ is the generalized projection of E

onto Ω.

Very recently, Kim [60], considered the shrinking projection methods which were

introduced by Takahashi et al. [46] for asymptotically quasi-j-nonexpansive mappings

in a uniformly smooth and strictly convex Banach space which has the Kadec-Klee

property.
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In this article, motivated and inspired by the study of Matsushita and Takahashi [44],

Qin et al. [58], Kim [60], and Chang et al. [59], we introduce a new hybrid projection

iterative scheme based on the shrinking projection method for finding a common ele-

ment of the set of solutions of the generalized mixed equilibrium problems, the set of

the variational inequality and the set of common fixed points for a pair of asymptoti-

cally quasi-j-nonexpansive mappings in Banach spaces. The results obtained in this

article improve and extend the recent ones announced by Matsushita and Takahashi

[44], Qin et al. [58], Chang et al. [59] and many others.

2. Preliminaries
For the sake of convenience, we first recall some definitions and conclusions which will

be needed in proving our main results.

In the sequel, we denote the strong convergence, weak convergence and weak* con-

vergence of a sequence {xn} by xn ® x, xn ⇀* × and xn ⇀* x, respectively.

It is well known that a uniformly convex Banach space has the Kadec-Klee property,

i.e. if xn ⇀ x and ||xn|| ® ||x||, then xn ® x.

Lemma 2.1. ([31,61]) Let E be a smooth, strictly convex and reflexive Banach space

and C be anonempty closed convex subset. Then, the following conclusion hold:

φ(x,�Cy) + φ(�Cy, y) ≤ φ(x, y); ∀x ∈ C, y ∈ E.

Lemma 2.2. ([34]). If E be a 2-uniformly convex Banach space and 0 < c ≤ 1. Then,

for all x, y Î E we have

||x − y|| ≤ 2
c2

||Jx − Jy||,

where J is the normalized duality mapping of E.

The best constant
1
c
in Lemma is called the p-uniformly convex constant of E.

Lemma 2.3. ([62]). If E be a p-uniformly convex Banach space and p be a given real

number with p ≥ 2, then for all x, y Î E, jx Î Jpx and jy Î Jpy

〈x − y, jx − jy〉 ≥ cp

2p−2p
||x − y||p,

where Jp is the generalized duality mapping of E and
1
c
is the p-uniformly convexity

constant of E.

Lemma 2.4. ([63]) Let E be a uniformly convex Banach space and Br(0) a closed ball

of E. Then, there exists a continuous strictly increasing convex function g : [0, ∞) ® [0,

∞) with g(0) = 0 such that

||αx + (1 − α)y||2 ≤ α||x||2 + (1 − α)||y||2 − α(1 − α)g(||x − y||)

for all x, y Î Br(0) and a Î [0, 1].

Lemma 2.5. ([58]) Let E be a uniformly convex and smooth Banach space, C a none-

mpty closed convex subset of E and T : C ® C a closed asymptotically quasi-j-nonex-
pansive mapping. Then, F(T) is a closed convex subset of C.
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Lemma 2.6. ([61]) Let E be a smooth and uniformly convex Banach space. Let xn and

yn be sequences in E such that either {xn} or {yn} is bounded. If limn®∞ j(xn, yn) = 0,

then limn®∞||xn - yn|| = 0.

Lemma 2.7. (Alber [31]). Let C be a nonempty closed convex subset of a smooth

Banach space E and x Î E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C.

Let E be a reflexive, strictly convex, smooth Banach space and J the duality mapping

from E into E*. Then, J-1 is also single valued, one-to-one, surjective, and it is the dua-

lity mapping from E* into E. We make use of the following mapping V studied in

Alber [31]

V(x, x∗) = ||x||2 − 2〈x, x∗〉 + ||x∗||2, (2:1)

for all x Î E and x* Î E*; that is, V (x, x*) = j(x, J-1x*).
Lemma 2.8. (Kohsaka and Takahashi [[64], Lemma 3.2]). Let E be a reflexive, strictly

convex smooth Banach space and let V be as in (2.1). Then,

V(x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V(x, x∗ + y∗),

for all × Î E and x*, y* Î E*.

Proof. Let x Î E. Define g(x*) = V (x, x*) and f(x*) = ||x*||2 for all x* Î E*. Since J -1

is the duality mapping from E* to E, we have

∂g(x∗) = ∂(−2〈x, ·〉 + f )(x∗) = −2x + 2J(−1)(x∗), ∀x∗ ∈ E∗.

Hence, we get

g(x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ g(x∗ + y∗),

that is,

V(x, x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ V(x, x∗ + y∗),

for all x*, y* Î E*.

For solving the generalized equilibrium problem, let us assume that the nonlinear

mapping A : C ® E* is a-inverse strongly monotone and the bifunction f : C × C ® ℝ

satisfies the following conditions:

(A1) f(x, x) = 0 ∀x Î C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0, ∀x, y Î C;

(A3) lim supt↓0 f (x + t(z - x), y) ≤ f(x, y), ∀x, y, z Î C;

(A4) the function y ↦ f(x, y) is convex and lower semicontinuous.

Lemma 2.9. ([1]) Let E be a smooth, strictly convex and reflexive Banach space and

C be a nonempty closed convex subset of E. Let f : C × C ® ℝ be a bifunction satisfying

the conditions (A1) - (A4). Let r >0 and × Î E, then there exists z Î C such that

f (z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.
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Lemma 2.10. ([65]) Let C be a closed convex subset of a uniformly smooth and

strictly convex Banach space E and let f be a bifunction from C × C to ℝ satisfying

(A1) - (A4). For r >0 and × Î E, define a mapping Tr : E ® C as follows:

Tr(x) =
{
z ∈ C : f (z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
,

for all × Î C. Then, the following conclusions holds:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e.

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉, ∀x, y ∈ E;

(A3) F(Tr) = EP(f );

(A4) EP(f) is a closed convex.

Lemma 2.11. ([19]) Let C be a closed convex subset of a smooth, strictly convex and

reflexive Banach space E, let f be a bifunction from C × C to ℝ satisfying (A1) - (A4)

and let r >0. Then, for × Î E and q Î F(Tr),

φ(q,Trx) + φ(Tr(x), x) ≤ φ(q, x).

Lemma 2.12. ([66]) Let C be a closed convex subset of a smooth, strictly convex and

reflexive Banach space E. Let B : C ® E* be a continuous and monotone mapping, � :

C ® ℝ be a lower semi-continuous and convex function, and f be a bifunction from C

× C to ℝ satisfying (A1) - (A4). For r >0 and × Î E, then there exists u Î C such that

f (u, y) + 〈Bu, y − u〉 + ϕ(y) − ϕ(u) +
1
r
〈y − u, Ju − Jx〉, ∀y ∈ C.

Define a mapping Kr : C ® C as follows:

Kr(x) = {u ∈ C : f (u, y) + 〈Bu, y − u〉 + ϕ(y) − ϕ(u) +
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C} (2:3)

for all x Î C. Then, the following conclusions holds:

(a) Kr is single-valued ;

(b) Kr is a firmly nonexpansive-type mapping, i.e.;

〈Krx − Kry, JKrx − JKry〉 ≤ 〈Krx − Kry, Jx − Jy〉, ∀x, y ∈ E;

(c) F(Kr) = F̂(Kr) = GMEP (f ,B,ϕ);

(d) GMEP(f, B, �) is a closed convex,

(e) j(q, Krz) + j(Krz, z) ≤ j(q, z), ∀q Î F (Kr), z Î E.

Remark 2.13. ([66]) It follows from Lemma 2.12 that the mapping Kr : C ® C

defined by (2.3) is a relatively nonexpansive mapping. Thus, it is quasi-j-nonexpansive.
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Let C be a nonempty closed convex subset of a Banach space E and let A be an

inverse-strongly monotone mapping of C into E* which is said to be hemicontinuous if

for all x, y Î C, the mapping F of [0, 1] into E*, defined by F(t) = A(tx + (1 - t)y), is

continuous with respect to the weak* topology of E*. We define by NC(v) the normal

cone for C at a point v Î C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, ∀y ∈ C}. (2:4)

Lemma 2.14. (Rockafellar [23]). Let C be a nonempty, closed convex subset of a

Banach space E, and A a monotone, hemicontinuous operator of C into E*. Let U : E ⇉

E* be an operator defined as follows:

Uv =
{
Av +NC(v), v ∈ C;

 0, otherwise. (2:5)

Then, U is maximal monotone and U-10 = VI(A, C).

3. Main results
In this section, we shall prove a strong convergence theorem for finding a common

element of the set of solutions for a generalized mixed equilibrium problem (1.2), set

of variational inequalities for an a-inverse strongly monotone mapping and the set of

common fixed points for a pair of asymptotically quasi-j-nonexpansive mappings in

Banach spaces.

Theorem 3.1. Let E be a uniformly smooth and 2-uniformly convex Banach space, C

be a nonempty closed convex subset of E. Let A be an a-inverse-strongly monotone map-

ping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î VI(A, C) ≠ ∅. Let B :

C ® E* be a continuous and monotone mapping and f : C × C ® ℝ be a bifunction

satisfying the conditions (A1) - (A4), and � : C ® ℝ be a lower semi-continuous and

convex function. Let T : C ® C be a closed and asymptoticallyquasi-j-nonexpansive

mapping with the sequence {k(t)n } ⊂ [1,∞)such that k(t)n → 1as n ® ∞ and S : C ® C

be a closed and asymptotically quasi-j-nonexpansive mapping with the sequence

{k(s)n } ⊂ [1,∞)such that k(s)n → 1as n ® ∞. Assume that T and S are uniformly asymp-

totically regular on C and Ω := F(T) ∩ F(S) ∩ VI(A, C) ∩ GMEP(f, B, �.) ≠ ∅.

Let {xn} be the sequence defined by x0 Î E and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = �C1x0 and C1 = C,
wn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + (1 − αn)JTnwn),
yn = J−1(βnJxn + (1 − βn)JSnzn),
un ∈ C, such that

f (un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:1)

where θn = (1 − βn)(k2n − 1)Mn → 0 as n ® ∞, kn = max{k(t)n , k(s)n } for each n ≥ 1, Mn

= sup{j(z, xn) : z Î Ω } for each n ≥ 1, {an} and {bn} are sequences in [0, 1], {ln} ⊂ [a,

b] for some a, b with 0 < a < b < c2a/2, where
1
c
is the 2-uniformly convexity constant

of E and {rn} ⊂ [d, ∞) for some d >0. Suppose that the following conditions are
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satisfied: lim infn®∞(1 -an) >0 and lim infn®∞(1 -bn) > 0. Then, the sequence {xn} con-

verges strongly to ΠΩx0, where ΠΩ is generalized projection of E onto Ω.

Proof. We have several steps to prove this theorem as follows:

Step 1. We first show that Cn+1 is closed and convex for each n ≥ 1. Indeed, it is

obvious that C1 = C is closed and convex. Suppose that Ci is closed and convex for

each i Î N. Next, we prove that Ci+1 is closed and convex. For any z Î Ci+1, we know

that j(z, ui) ≤ j (z, xi) + θi is equivalent to

2〈z, Jxi − Jui〉 ≤ ||xi||2 − ||ui||2 + θi,

where θi = (1 − βi)(k2i − 1)Mi and Mi = sup{j(z, xi) : z Î Ω} for each i ≥ 1. Hence,

Ci+1 is closed and convex. Then, for each n ≥ 1, we see that Cn is closed and convex.

Hence, �Cn is well defined.

By the same argument as in the proof of [[43], Lemma 2.4], one can show that F(T)

∩ F(S) is closed and convex. We also know that VI(A, C) = U-10 is closed and convex,

and hence from Lemma 2.12(d), Ω := F(S) ∩ F(T) ∩ VI(A, C) ∩ GMEP(f, B, �) is a

nonempty, closed and convex subset of C. Consequently, ΠΩ is well defined.

Step 2. We show that the sequence {xn} is well defined. Next, we prove that Ω ⊂ Cn

for each n ≥ 1. If n = 1, Ω ⊂ C1 = C is obvious. Suppose that Ω ⊂ Ci for some positive

integer i. For every q Î Ω, we obtain from the assumption that q Î Ci. It follows, from

Lemma 2.1 and Lemma 2.8, that

φ(q,wi) = φ(q,�CJ−1(Jxi − λiAxi))

≤ φ(q, J−1(Jxi − λiAxi))

= V(q, Jxi − λiAxi)

≤ V(q, (Jxi − λiAxi) + λiAxi) − 2〈J−1(Jxi − λiAxi) − q,λiAxi〉
= V(q, Jxi) − 2λi〈J−1(Jxi − λiAxi) − q,Axi〉
= φ(q, xi) − 2λi〈xi − q,Axi〉 + 2〈J−1(Jxi − λiAxi) − xi,−λiAxi〉.

(3:2)

Thus, q Î VI(A, C) and A is a-inverse-strongly monotone, we have

−2λi〈xi − q,Axi〉 = −2λi〈xi − q,Axi − Aq〉 − 2λi〈xi − q,Aq〉
≤ −2λi〈xi − q,Axi − Aq〉
= −2αλi||Axi − Aq||2.

(3:3)

From Lemma 2.2 and ||Ay|| ≤ ||Ay - Au|| for all y Î C and q Î Ω, we obtain

2〈J−1(Jxi − λiAxi) − xi,−λiAxi〉 = 2〈J−1(Jxi − λiAxi) − J−1(Jxi),−λiAxi〉
≤ 2||J−1(Jxi − λiAxi) − J−1(Jxi)|| ||λiAxi||
≤ 4

c2
||JJ−1(Jxi − λiAxi) − JJ−1(Jxi)|| ||λiAxi||

=
4
c2

||Jxi − λiAxi − Jxi|| ||λiAxi||

=
4
c2

||λiAxi||2

=
4
c2

λ2
i ||Axi||2

≤ 4
c2

λ2
i ||Axi − Aq||2.

(3:4)
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Substituting (3.3) and (3.4) into (3.2), we have

φ(q,wi) ≤ φ(q, xi) − 2αλi||Axi − Aq||2 + 4
c2

λ2
i ||Axi − Aq||2

= φ(q, xi) + 2λi(
2
c2

λi − α)||Axi − Aq||2

≤ φ(q, xi).

(3:5)

As Ti is asymptotically quasi-j-nonexpansive mapping, we also have

φ(q, zi) = φ(q, J−1(αiJxi + (1 − αi)JTiwi))

= ||q||2 − 2〈q,αiJxi + (1 − αi)JTiwi〉 + ||αiJxi + (1 − αi)JTiwi||2
≤ ||q||2 − 2αi〈q, Jxi〉 − 2(1 − αi)〈q, JTiwi〉
+ αi||xi||2 + (1 − αi)||Tiwi||2

= αiφ(q, xi) + (1 − αi)φ(q,Tiwi)

≤ αiφ(q, xi) + (1 − αi)k
(t)
i φ(q,wi)

≤ αiφ(q, xi) + (1 − αi)kiφ(q,wi)

≤ φ(q, xi) + (ki − 1)φ(q,wi).

(3:6)

It follows that

φ(q, ui) = φ(q,Kri yi) ≤ φ(q, yi)

≤ φ(q, J−1(βiJxi + (1 − βi)JSizi))

= ||q||2 − 2〈q, βiJxi + (1 − βi)JSizi〉 + ||βiJxi + (1 − βi)JSizi||2
≤ ||q||2 − 2βi〈q, Jxi〉 − 2(1 − βi)〈q, JSizi〉 + βi||xi||2 + (1 − βi)||Sizi||2
= βiφ(q, xi) + (1 − βi)φ(q, Sizi)

≤ βiφ(q, xi) + (1 − βi)k
(s)
i φ(q, zi)

≤ βiφ(q, xi) + (1 − βi)kiφ(q, zi)

= (1 − (1 − βn))φ(q, xi) + (1 − βi)kiφ(q, zi)

= φ(q, xi) + (1 − βi)[kiφ(q, zi) − φ(q, xi)]

≤ φ(q, xi) + (1 − βi)[ki(φ(q, xi) + (ki − 1)φ(q,wi)) − φ(q, xi)]

≤ φ(q, xi) + (1 − βi)[ki(φ(q, xi) + (ki − 1)φ(q, xi)) − φ(q, xi)]

= φ(q, xi) + (1 − βi)[kiφ(q, xi) + (k2i − ki)φ(q, xi) − φ(q, xi))]

= φ(q, xi) + (1 − βi)(k2i − 1)φ(q, xi)

≤ φ(q, xi) + (1 − βi)(k2i − 1)Mi

= φ(q, xi) + θi.

(3:7)

This shows that q Î Ci+1. This implies that Ω ⊂ Cn for each n ≥ 1.

From xn =
∏

Cn
x0, we see that

〈xn − q, Jx0 − Jxn〉 ≥ 0, ∀q ∈ Cn.

Since Ω ⊂ Cn for each n ≥ 1, we arrive at

〈xn − q, Jx0 − Jxn〉 ≥ 0, ∀q ∈ 
. (3:8)

Hence, the sequence {xn} is well defined.

Step 3. Now, we prove that {xn} is bounded.
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In view of Lemma 2.1, we see that

φ(xn, x0) = φ(
∏

Cn
x0, x0) ≤ φ(q, x0) − φ(q, xn) ≤ φ(q, x0),

for each q Î Cn. Therefore, we obtain that the sequence j(xn, x0) is bounded, and so

are {xn}, {wn}, {yn}, {zn}, {T
nwn} and {Snxn}.

Step 4. We show that {xn} is a Cauchy sequence.

Since xn =
∏

Cn
x0 and xn+1 = �Cn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 1.

This implies that {j(xn, x0)} is nondecreasing, and limn ®∞ j(xn, x0) exists.
For m > n and from Lemma 2.1, we have

φ(xm′xn) = φ(xm′�Cnx0) ≤ φ(xm′x0) − φ(�Cnx0, x0)

= φ(xm′x0) − φ(xn′x0).
(3:9)

Letting m, n ® ∞ in (3.9), we see that j(xm, xn) ® 0. It follows from Lemma 2.6

that ||xm - xn|| ® 0 as m, n ® ∞. Hence, {xn} is a Cauchy sequence. Since E is a

Banach space and C is closed and convex, we can assume that p Î C such that xn ® p

as n ® ∞.

Step 5. We will show that p Î Ω:= F(T) ∩ F(S) ∩ VI(A, C) ∩ GMEP(f, B, �).

(a) First, we show that p Î F(T) ∩ F(S).

By taking m = n + 1 in (3.9), we obtain that

lim
n−∞ φ(xn+1, xn) = 0. (3:10)

Since xn+1 = �Cn+1x1 ∈ Cn+1 ⊂ Cn, from definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + θn, ∀n ≥ 1, (3:11)

and from (3.5) and (3.6), we also have

knφ(xn+1, zn) ≤ φ(xn+1, xn) + (k2n − 1)Mn, ∀n ≥ 1. (3:12)

Since E is uniformly smooth and uniformly convex, from (3.10)-(3.12), θn ® 0 as n

® ∞ and

Lemma 2.6, it follows that

lim
n−∞ ||xn+1 − xn|| = lim

n−∞ ||xn+1 − un|| = lim
n−∞ ||xn+1 − zn|| = 0, (3:13)

and by using triangle inequality, we have

lim
n−∞ ||xn − un|| = lim

n−∞ ||xn − zn|| = lim
n−∞ ||xn − zn|| = 0. (3:14)

Since J is uniformly norm-to-norm continuous, we also have

lim
n−∞ ||Jxn − Jun|| = 0. (3:15)

and

lim
n−∞ ||Jxn − Jzn|| = 0. (3:16)
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Since un = Krn yn, and from (3.7), we have

φ(u, yn) ≤ φ(u, xn) + θn, ∀u ∈ 
. (3:17)

Since ||xn - un|| ® 0 and J is uniformly continuous, we have

φ(un, yn) = φ(Krnyn, yn)

≤ φ(u, yn) − φ(u,Krnyn)

≤ φ(u, xn) − φ(u,Krnyn) + θn

= φ(u, xn) − φ(u, un) + θn

= ||xn||2 − ||un||2 − 2〈u, Jxn − Jun〉 + θn

≤ ||xn − un||(||xn|| + ||un||) − 2〈u, Jxn − Jun〉 + θn → 0.

(3:18)

Since {xn} and {un} are bounded, it follows from (3.14) and (3.15) that j(yn, un) ® 0

as n ® ∞. Since E is smooth and uniformly convex, from Lemma 2.6, we have

||yn − un|| → 0, and so ||yn − xn|| → 0 as n → ∞. (3:19)

Since J is uniformly norm-to-norm continuous, we also have

||Jyn − Jun|| → 0, and ||Jyn − Jxn|| → 0 as n → ∞. (3:20)

Again from (3.1) and (3.16), we have

||Jzn − Jxn|| = (1 − αn)||JTnwn − Jxn|| → 0 as n → ∞. (3:21)

This implies that ||JTnwn - Jxn|| ® 0. Again since J-1 is uniformly norm-to-norm

continuous, we also have

||Tnwn − xn|| → 0 as n → ∞. (3:22)

For p Î Ω, we note that

||Tnwn − p|| ≤ ||Tnwn − xn|| + ||xn − p||. (3:23)

It follows from (3.22) and xn ® p as n ® ∞, that

lim
n−∞ ||Tnwn − p|| = 0. (3:24)

On other hand, we have

||Tn+1wn − p|| ≤ ||Tn+1wn − Tnwn|| + ||Tnwn − p||.

Since T is uniformly asymptotically regular and from (3.24), we obtain that

||Tn+1wn − p|| = 0. (3:25)

Thai is, TTnwn ® p as n ® ∞. From the closedness of T, we see that p Î F(T).

Furthermore, For q Î Ω, from (3.7) and (3.18) that

Saewan and Kumam Fixed Point Theory and Applications 2011, 2011:9
http://www.fixedpointtheoryandapplications.com/content/2011/1/9

Page 15 of 25



φ(q, un) ≤ φ(q, yn)

≤ φ(q, xn) + (1 − βn)[kn(φ(q, xn) + (kn − 1)φ(q,wn)) − φ(q, xn)]

≤ φ(q, xn) + (1 − βn)[knφ(q, xn) + k2nφ(q,wn) − φ(q, xn)]

≤ φ(q, xn) + (1 − βn)[knφ(q, xn) + k2n(φ(q, xn) − 2λn(α − 2
c2

λn)||Axn − Aq||2) − φ(q, xn)]

≤ φ(q, xn) + (1 − βn)knφ(q, xn) + (1 − βn)k2nφ(q, xn)

− (1 − βn)k2n2λn(α − 2
c2

λn)||Axn − Aq||2 − (1 − βn)φ(q, xn)

≤ φ(q, xn) + (1 − βn)k2nφ(q, xn) − (1 − βn)k2n2λn(α − 2
c2

λn)||Axn − Aq||2

= φ(q, xn) + θn − (1 − βn)k2n2λn(α − 2
c2

λn)||Axn − Aq||2,

and hence

2a(α − 2b
c2

)||Axn − Aq||2 ≤ 2λn(α − 2
c2

λn)||Axn − Aq||2

≤ 1
(1 − βn)k2n

(φ(q, xn) − φ(q, un) + θn).
(3:26)

From (3.18) and lim infn®∞ (1 -bn) > 0, obtain that

lim
n→∞ ||Axn − Aq|| = 0 (3:27)

From Lemma 2.1, Lemma 2.8 and (3.4), we compute

φ(xn,wn) = φ(xn,�CJ−1(Jxn − λnAxn))

≤ φ(xn, J−1(Jxn − λnAxn))

= V(xn, Jxn − λnAxn)

≤ V(xn, (Jxn − λnAxn) + λnAxn) − 2〈J−1(Jxn − λnAxn) − xn, λnAxn〉
= φ(xn, xn) + 2〈J−1(Jxn − λnAxn) − xn, −λnAxn〉
= 2〈J−1(Jxn − λnAxn) − xn, −λnAxn〉

≤ 4λ2
n

c2
||Axn − Aq||2

≤ 4b2

c2
||Axn − Aq||2.

Applying Lemma 2.6 and (3.27) that

lim
n→∞ ||xn − wn|| = 0. (3:28)

Since J is uniformly norm-to-norm continuous on bounded sets, by (3.28), we have

lim
n→∞ ||Jxn − Jwn|| = 0. (3:29)

From(3.1), (3.20) and (ii), we have

||Jyn − Jxn|| = (1 − βn)||JSnzn − Jxn|| → 0 as n → ∞. (3:30)

Since J-1 is uniformly norm-to-norm continuous on bounded sets

||Snzn − xn|| → 0 as n → ∞. (3:31)

We observe that

||Snzn − p|| ≤ ||Snzn − xn|| + ||xn − p||. (3:32)
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It follows from (3.31) and xn ® p as n ® ∞, we obtain

lim
n→∞ ||Snzn − p|| = 0. (3:33)

On other hand, we have

||Sn+1zn − p|| ≤ ||Sn+1zn − Snzn|| + ||Snzn − p||.

Since S is uniformly asymptotically regular and (3.33), we obtain that

||Sn+1zn − p|| = 0. (3:34)

that is, SSnzn ® p as n ® ∞. From the closedness of S, we see that p Î F(S). Hence,

p Î F(T) ∩ F(S).

(b) We show that p Î GMEP(f, B, �). From (A2), we have

〈Bun, y − un〉 + ϕ(y) − ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ f (y, un), ∀y ∈ C,

and hence

〈Bun, y − un〉 + ϕ(y) − ϕ(un) + 〈y − un,
(Jun − Jyn)

rn
〉 ≥ f (y, un), ∀y ∈ C. (3:35)

For t with 0 < t ≤ 1 and y Î C, let yt = ty + (1 - t)p. Then, we get yt Î C. From

(3.35), it follows that

〈Byt, yt − un〉 ≥ 〈Byt, yt − un〉 − 〈Bun, yt − un〉 − ϕ(yt) + ϕ(un) − 〈yt − un,
(Jun − Jyn)

rn
〉 + f (yt, un)

≥ 〈Byt − Bun, yt − un〉 − ϕ(yt) + ϕ(un) − 〈yt − un,
(Jun − Jyn)

rn
〉 + f (yt, un), ∀yt ∈ C.

we know that yn, un ® p as n ® ∞, and ||Jun−Jyn||
rn

→ 0 as n ® ∞. Since B is mono-

tone, we know that 〈Byt - Bun, yt - un〉 ≥ 0. Thus, it follows from (A4) that

f (yt, p) − ϕ(yt) + ϕ(p) ≤ lim inf
n→∞ f (yt, un) − ϕ(yt) + ϕ(un) ≤ lim

n→∞〈Byt, yt − un〉
= 〈Byt, yt − p〉.

Based on the conditions (A1), (A4) and convexity of �, we have

0 = f (yt, yt) + ϕ(yt) − ϕ(yt)

≤ tf (yt, y) + (1 − t)f (yt, p) + tϕ(y) + (1 − t)ϕ(p) − ϕ(yt)

= t[f (yt , y) + ϕ(y) − ϕ(yt)] + (1 − t)[f (yt, p) + ϕ(p) − ϕ(yt)]

≤ t[f (yt, y) + ϕ(y) − ϕ(yt)] + (1 − t)[〈Byt, yt − p〉]
= t[f (yt , y) + ϕ(y) − ϕ(yt)] + (1 − t)t[〈Byt , y − p〉]

and hence

0 ≤ f (yt, y) + ϕ(y) − ϕ(yt) + (1 − t)〈Byt, y − p〉.

From (A3) and the weakly lower semicontinuity of �, and letting t ® 0, we also have

f (p, y) + 〈Bp, y − p〉 + ϕ(y) − ϕ(p) ≥ 0, ∀y ∈ C.

This implies that p Î GMEP(f, B, �).
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(c) We show that p Î VI(A, C). Indeed, define a set-valued U : E ⇉ E* by Lemma

2.14, U is maximal monotone and U-10 = VI(A, C). Let (v, w) Î G(U). Since w Î
Uv = Av + NC(v), we get w - Av Î NC(v).

From wn Î C, we have

〈v − wn,w − Av〉 ≥ 0. (3:36)

On the other hand, since wn = �CJ−1(Jxn − λnAxn). Then from Lemma 2.7, we have

〈v − wn, Jwn − (Jxn − λnAxn)〉 ≥ 0,

and thus〈
v − wn,

Jxn − Jwn

λn
− Axn

〉
≤ 0. (3:37)

It follows from (3.36) and (3.37) that

〈v − wn,w〉 ≥ 〈v − wn,Av〉
≥ 〈v − wn,Av〉 + 〈v − wn,

Jxn − Jwn

λn
− Axn〉

= 〈v − wn,Av − Axn〉 + 〈v − wn,
Jxn − Jwn

λn
〉

= 〈v − wn,Av − Awn〉 + 〈v − wn,Awn − Axn〉 + 〈v − wn,
Jxn − Jwn

λn
〉

≥ −||v − wn|| ||wn − xn||
α

− ||v − wn|| ||Jxn − Jwn||
a

≥ −M(
||wn − xn||

α
+

||Jxn − Jwn||
a

),

where M = supn≥1 ||v - wn||. Takeing the limit as n ® ∞, (3.28) and (3.29), we

obtain 〈v - p, w〉 ≥ 0. Based on the maximality of U, we have p Î U-10 and hence p Î
VI(A, C). Hence, by (a), (b) and (c), we obtain p Î Ω.

Step 5. Finally, we prove that p = ΠΩx0. Taking the limit as n ® ∞ in (3.8), we

obtain that

〈p − q, Jx0 − Jp〉 ≥ 0, ∀q ∈ 


and hence, p = ΠΩx0 by Lemma 2.1. This completes the proof.

The following Theorems can readily be derived from Theorem 3.1.

Corollary 3.2. Let E be a uniformly smooth and 2-uniformly convex Banach space,

and C be a nonempty closed convex subset of E. Let A be an a-inverse-strongly mono-

tone mapping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î VI(A, C) ≠

Ø,. Let f : C × C ® ℝ be a bifunction satisfying the conditions (A1) - (A4), and � : C

® ℝ be a lower semi-continuous and convex function. Let T : C ® C be a closed and

asymptotically quasi-j-nonexpansive mapping with the sequence {k(t)n } ⊂ [1,∞)such

that k(t)n → 1as n ® ∞ and S : C ® C be a closed and asymptotically quasi-j-nonex-

pansive mapping with the sequence {k(s)n } ⊂ [1,∞)such that k(s)n → 1as n ® ∞. Assume

that T and S are uniformly asymptotically regular on C and Ω:= F(T) ∩ F(S) ∩ VI(A,

C) ∩ MEP(f, �) ≠ ∅. Let {xn} be the sequence defined by x0 Î E and
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = �C1x0 and C1 = C,
wn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + (1 − αn)JTnwn),
yn = J−1(βnJxn + (1 − βn)JSnzn),
un ∈ C, such that

f (un, y) + ϕ(y) − ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ βnφ(z, xn) + (1 − βn)knφ(z, zn) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:38)

where θn = (1 − βn)(k2n − 1)Mn → 0 as n ® ∞, kn = max{k(t)n , k(s)n } for each n ≥ 1, Mn

= sup{j(z, xn) : z Î Ω} for each n ≥ 1, {an} and {bn} are sequences in [0, 1], {ln} ⊂ [a,

b] for some a, b with 0 < a < b < c2a/2, where
1
c
is the 2-uniformly convexity constant

of E and {rn} ⊂ [d, ∞) for some d >0. Suppose that the following conditions are satis-

fied:

(i) lim infn®∞ (1 -an) >0,

(ii) lim infn®∞ (1 -bn) >0.

Then, the sequence {xn} converges strongly to ΠΩx0, where ΠΩ is generalized projec-

tion of E onto Ω.

Proof. Putting B ≡ 0 in Theorem 3.1, the conclusion of Theorem 3.2 can be obtained.

Corollary 3.3. Let E be a uniformly smooth and 2-uniformly convex Banach space, C

be a nonempty closed convex subset of E. Let A be an a-inverse-strongly monotone map-

ping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î VI(A, C) ≠ Ø. Let B :

C ® E* be a continuous and monotone mapping and � : C ® ℝ be a lower semi-con-

tinuous and convex function. Let T : C ® C be a closed and asymptotically quasi-j-

nonexpansive mapping with the sequence {k(t)n } ⊂ [1,∞)such that k(t)n → 1as n ® ∞

and S : C ® C be a closed and asymptotically quasi-j-nonexpansive mapping with the

sequence {k(s)n } ⊂ [1,∞)such that k(s)n → 1as n ® ∞. Assume that T and S are uni-

formly asymptotically regular on C and Ω := F(T) ∩ F(S) ∩ VI(A, C) ∩ MVI(B, C) ≠ ∅.

Let {xn} be the sequence defined by x0 Î E and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = �C1x0 and C1 = C,
wn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + (1 − αn)JTnwn),
yn = J−1(βnJxn + (1 − βn)JSnzn),
un ∈ C, such that

〈Bun, y − un〉 + ϕ(y) − ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ βnφ(z, xn) + (1 − βn)knφ(z, zn) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:39)

where θn = (1 − βn)(k2n − 1)Mn → 0 as n ® ∞, kn = max{k(t)n , k(s)n } for each n ≥ 1, Mn

= sup{j(z, xn) : z Î Ω} for each n ≥ 1, {an} and {bn} are sequences in [0, 1], {ln} ⊂ [a,

b] for some a, b with 0 < a < b < c2a/2, where
1
c
is the 2-uniformly convexity constant

of E and {rn} ⊂ [d, ∞) for some d >0. Suppose that the following conditions are
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satisfied:

(i) lim infn®∞ (1 -an) >0;

(ii) lim infn®∞ (1 -bn) >0.

Then, the sequence {xn} converges strongly to ΠΩx0, where ΠΩ is generalized projec-

tion of E onto Ω.

Proof. Putting f ≡ 0 in Theorem 3.1, the conclusion of Theorem 3.2 can be obtained.

Since every closed relatively asymptotically nonexpansive mapping is asymptotically

quasi-j-nonexpansive, we obtain the following corollary.

Corollary 3.4. Let E be a uniformly smooth and 2-uniformly convex Banach space, C

be a nonempty closed convex subset of E. Let A be an a-inverse-strongly monotone map-

ping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î VI(A, C) ≠ Ø. Let B :

C ® E* be a continuous and monotone mapping and f : C × C ® ℝ be a bifunction

satisfying the conditions (A1) - (A4), and �. C ® ℝ be a lower semi-continuous and

convex function. Let T. C ® C be a closed and relatively asymptotically nonexpansive

mapping with the sequence {k(t)n } ⊂ [1,∞)such that k(t)n → 1as n ® ∞ and S. C ®C be

a closed and relatively asymptotically nonexpansive mapping with the sequence

{k(s)n } ⊂ [1,∞)such that k(s)n → 1as n ® ∞. Assume that T and S are uniformly asymp-

totically regular on C and Ω := F(T) ∩ F(S) ∩ VI(A, C) ∩ GMEP(f, B,�) ≠ ∅. Let {xn}

be the sequence defined by x0 Î E and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = �C1x0 and C1 = C,
wn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + (1 − αn)JTnwn),
yn = J−1(βnJxn + (1 − βn)JSnzn),
un ∈ C, such that

f (un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ βnφ(z, xn) + (1 − βn)knφ(z, zn) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:40)

where θn = (1 − βn)(k2n − 1)Mn → 0as n ® ∞, kn = max{k(t)n , k(s)n }for each n ≥ 1, Mn

= sup{j(z, xn). z Î Ω} for each n ≥ 1, {an} and {bn} are sequences in [0, 1], {ln} ⊂ [a,

b] for some a, b with 0 < a < b < c2a/2, where
1
c
is the 2-uniformly convexity constant

of E and {rn} ⊂ [d, ∞) for some d > 0. Suppose that the following conditions are satis-

fied:

(i) lim infn®∞ (1 - an) >0;

(ii) lim infn®∞ (1 - bn) >0.

Then, the sequence {xn} converges strongly to ΠΩx0, where ΠΩ is generalized projection

of E onto Ω.

Since every closed relatively nonexpansive mapping is asymptotically quasi-j-nonex-
pansive, we obtain the following corollary.

Corollary 3.5. Let E be a uniformly smooth and 2-uniformly convex Banach space, C

be a nonempty closed convex subset of E. Let A be an a-inverse-strongly monotone
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mapping of C into E* satisfying ||Ay|| ≤ ||Ay Au||, ∀y Î C and u Î VI(A, C) ≠ Ø. Let

B : C ® E* be a continuous and monotone mapping and f : C × C ® ℝ be a bifunction

satisfying the conditions (A1) - (A4), and � : C ® ℝ be a lower semi-continuous and

convex function. Let T, S : C ® C be closed relatively nonexpansive mappings such that

Ω := F(T) ∩ F(S) ∩ VI(A, C) ∩ GMEP(f, B,�) ≠ ∅. Let {xn} be the sequence defined by

x0 Î E and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = �C1x0 and C1 = C,
wn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + (1 − αn)JTwn),
yn = J−1(βnJxn + (1 − βn)JSzn),
un ∈ C, such that

f (un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ βnφ(z, xn) + (1 − βn)knφ(z, zn) ≤ φ(z, xn)},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:41)

where {an} and {bn} are sequences in [0, 1], {ln} ⊂ [a, b] for some a, b with 0 < a < b

< c2a/2, where
1
c
is the 2-uniformly convexity constant of E and {rn} ⊂ [d, ∞) for some d

>0. Suppose that the following conditions are satisfied:

(i) lim infn®∞ (1 - an) >0,

(ii) lim infn®∞ (1 - bn) >0.

Then, the sequence {xn} converges strongly to ΠΩx0, where ΠΩ is generalized projection

of E onto Ω.

Corollary 3.6. Let E be a uniformly smooth and 2-uniformly convex Banach space, C

be a nonempty closed convex subset of E. Let A be an a-inverse-strongly monotone map-

ping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î VI(A, C) ≠ Ø. Let B :

C ® E* be a continuous and monotone mapping and f : C × C ® ℝ be a bifunction

satisfying the conditions (A1) - (A4), and � : C ® ℝ be a lower semi-continuous and

convex function. Let T, S : C ® C be a closed quasi-j-nonexpansive mappings Ω := F

(T) ∩ F(S) ∩ VI(A, C) ∩ GMEP(f, B,�) ≠ ∅. Let {xn} be the sequence defined by x0 Î E

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = �C1x0 and C1 = C,
wn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + (1 − αn)JTwn),
yn = J−1(βnJxn + (1 − βn)JSzn),
un ∈ C, such that

f (un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ βnφ(z, xn) + (1 − βn)knφ(z, zn) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:42)

where {an} and {bn} are sequences in [0, 1], {ln} ⊂ [a, b] for some a, b with 0 < a <

b < c2a/2, where
1
c
is the 2-uniformly convexity constant of E and {rn} ⊂ [d, ∞) for

some d >0. Suppose that the following conditions are satisfied:
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(i) lim infn®∞ (1 - an) >0;

(ii) lim infn®∞ (1 - bn) >0.

Then, the sequence {xn} converges strongly to ΠΩx0, where ΠΩ is generalized projec-

tion of E onto Ω

Proof. Since every closed quasi-j-nonexpansive mapping is asymptotically quasi-j-
nonexpansive, the result is implied by Theorem 3.1.

Corollary 3.7. Let E be a uniformly smooth and 2-uniformly convex Banach space, C

be a nonempty closed convex subset of E. Let A be an a-inverse-strongly monotone map-

ping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î VI(A, C) ≠ Ø. Let B :

C ® E* be a continuous and monotone mapping and f : C × C ® ℝ be a bifunction

satisfying the conditions (A1) - (A4), and � : C ® ℝ be a lower semi-continuous and

convex function. Let T, S : C ® C be closed relatively nonexpansive mappings such that

Ω := F(T) ∩ F(S) ∩ VI(A, C) ∩ GMEP(f, B,�) ≠ Ø. Let {xn} be the sequence defined by

x0 Î E and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = �C1x0 and C1 = C,
wn = �CJ−1(Jxn − λnAxn),
zn = J−1(αnJxn + (1 − αn)JTwn),
yn = J−1(βnJxn + (1 − βn)JSzn),
un ∈ C, such that

f (un, y) + 〈Bun, y − un〉 + ϕ(y) − ϕ(un) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ βnφ(z, xn) + (1 − βn)knφ(z, zn) ≤ φ(z, xn) + θn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

where {an} and {bn} are sequences in [0, 1], {ln} ⊂ [a, b] for some a, b with 0 < a < b

< c2a/2, where
1
c
is the 2-uniformly convexity constant of E and {rn} ⊂ [d, ∞) for some d

>0. Suppose that the following conditions are satisfied:

(i) lim infn®∞ (1 - an) >0;

(ii) lim infn®∞ (1 - bn) >0.

Then, the sequence {xn} converges strongly to ΠΩx0, where ΠΩ is generalized projection

of E onto Ω.

Proof. Since every closed relatively nonexpansive mapping is quasi-j-nonexpansive,
the result is implied by Theorem 3.1.

Remark 3.8. Corollaries 3.7, 3.6 and 3.7 improve and extend the corresponding

results of Saewan et al. [[51], Theorem 3.1] in the sense of changing the closed rela-

tively quasi-nonexpansive mappings to be the more general than the closed and

asymptotically quasi-j-nonexpansive mappings and adjusting a problem from the clas-

sical equilibrium problem to be the generalized equilibrium problem.
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