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1 Introduction
Fixed point theory is a very attractive subject, which has recently drawn much atten-

tion from the communities of physics, engineering, mathematics, etc. The Banach con-

traction principle [1] is one of the most important theorems in fixed point theory. It

has applications in many diverse areas.

Definition 1.1 Let M be a nonempty set and f: M ® M be a given mapping. We say

that x* Î M is a fixed point of f if fx* = x*.

Theorem 1.1 (Banach contraction principle [1]). Let (M, d) be a complete metric

space and f: M ® M be a contractive mapping, i.e., there exists l Î [0, 1) such that for

all x, y Î M,

d(fx, fy) ≤ λ d(x, y). (1)

Then the mapping f has a unique fixed point x* Î M. Moreover, for every x0 Î M, the

sequence (xk) defined by: xk+1 = fxk for all k = 0, 1, 2, ... converges to x*, and the error

estimate is given by:

d(xk, x∗) ≤ λk

1 − λ
d(x0, x1), for all k = 0, 1, 2, . . .

Many generalizations of Banach contraction principle exists in the literature. For

more details, we refer the reader to [2-4].

To apply the Banach fixed point theorem, the choice of the metric plays a crucial

role. In this study, we use the Thompson metric introduced by Thompson [5] for the

study of solutions to systems of nonlinear matrix equations involving contractive

mappings.

We first review the Thompson metric on the open convex cone P(n) (n ≥ 2), the set

of all n×n Hermitian positive definite matrices. We endow P(n) with the Thompson

Berzig and Samet Fixed Point Theory and Applications 2011, 2011:89
http://www.fixedpointtheoryandapplications.com/content/2011/1/89

© 2011 Berzig and Samet; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:maher.berzig@gmail.com
mailto:maher.berzig@gmail.com
http://creativecommons.org/licenses/by/2.0


metric defined by:

d(A,B) = max
{
logM(A

/
B), logM(B

/
A)

}
,

where M(A/B) = inf{l > 0: A ≤ lB} = l+(B-1/2AB-1/2), the maximal eigenvalue of B-1/

2AB-1/2. Here, X ≤ Y means that Y - X is positive semidefinite and X <Y means that Y

- X is positive definite. Thompson [5] (cf. [6,7]) has proved that P(n) is a complete

metric space with respect to the Thompson metric d and d(A, B) = ||log(A-1/2BA-1/2)||,

where ||·|| stands for the spectral norm. The Thompson metric exists on any open

normal convex cones of real Banach spaces [5,6]; in particular, the open convex cone

of positive definite operators of a Hilbert space. It is invariant under the matrix inver-

sion and congruence transformations, that is,

d(A,B) = d(A−1,B−1) = d(MAM∗,MBM∗) (2)

for any nonsingular matrix M. The other useful result is the nonpositive curvature

property of the Thompson metric, that is,

d(Xr ,Yr) ≤ r d(X,Y), r ∈ [0, 1]. (3)

By the invariant properties of the metric, we then have

d(MXrM∗,MYrM∗) ≤ |r|d(X,Y), r ∈ [−1, 1] (4)

for any X, Y Î P(n) and nonsingular matrix M.

Lemma 1.1 (see [8]). For all A, B, C, D Î P(n), we have

d(A + B,C +D) ≤ max{d(A,C), d(B,D)}.

In particular,

d(A + B,A + C) ≤ d(B,C).

2 Main result
In the last few years, there has been a constantly increasing interest in developing the

theory and numerical approaches for HPD (Hermitian positive definite) solutions to

different classes of nonlinear matrix equations (see [8-21]). In this study, we consider

the following problem: Find (X1, X2, ..., Xm) Î (P(n))m solution to the following system

of nonlinear matrix equations:

Xri
i = Qi +

m∑
j=1

(
A∗
j Fij(Xj)Aj

)αij

, i = 1, 2, . . . ,m, (5)

where ri ≥ 1, 0 < |aij| ≤ 1, Qi ≥ 0, Ai are nonsingular matrices, and Fij: P(n) ® P (n)

are Lipshitzian mappings, that is,

sup
X,Y∈P(n),X �=Y

d(Fij(X), Fij(Y))

d(X,Y)
= kij < ∞. (6)

If m = 1 and a11 = 1, then (5) reduces to find X Î P(n) solution to Xr = Q + A*F(X)

A. Such problem was studied by Liao et al. [15]. Now, we introduce the following

definition.
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Definition 2.1 We say that Problem (5) is Banach admissible if the following hypoth-

esis is satisfied:

max
1≤i≤m

{
max
1≤j≤m

{|αij|kij/ri}
}

< 1.

Our main result is the following.

Theorem 2.1 If Problem (5) is Banach admissible, then it has one and only one solu-

tion (X∗
1,X

∗
2, . . . ,X

∗
m) ∈ (P(n))m. Moreover, for any (X1(0), X2(0), ..., Xm(0)) Î (P(n))m,

the sequences (Xi(k))k≥0, 1 ≤ i ≤ m, defined by:

Xi(k + 1) =

⎛
⎝Qi +

m∑
j=1

(A∗
j Fij(Xj(k))Aj)

αij

⎞
⎠

1/ri

, (7)

converge respectively to X∗
1,X

∗
2, . . . ,X

∗
m, and the error estimation is

max{d(X1(k),X∗
1), d(X2(k),X∗

2), . . . , d(Xm(k),X∗
m)}

≤ qkm
1 − qm

max{d(X1(1),X1(0)), d(X2(1),X2(0)), . . . , d(Xm(1),Xm(0))},
(8)

where

qm = max
1≤i≤m

{
max
1≤j≤m

{|αij|kij/ri}
}
.

Proof. Define the mapping G: (P(n))m ® (P(n))m by:

G(X1,X2, . . . ,Xm) = (G1(X1,X2, . . . ,Xm),G2(X1,X2, . . . ,Xm), . . . ,Gm(X1,X2, . . . ,Xm)),

for all X = (X1, X2, ..., Xm) Î (P(n))m, where

Gi(X) =

⎛
⎝Qi +

m∑
j=1

(A∗
j Fij(Xj)Aj)

αij

⎞
⎠

1/ri

,

for all i = 1, 2, ..., m. We endow (P(n))m with the metric dm defined by:

dm((X1,X2, . . . ,Xm), (Y1,Y2, . . . ,Ym)) = max
{
d(X1,Y1), d(X2,Y2), . . . , d(Xm,Ym)

}
,

for all X = (X1, X2, ..., Xm), Y = (Y1, Y2, ..., Ym) Î (P (n))m. Obviously, ((P(n))m, dm) is

a complete metric space.

We claim that

dm(G(X),G(Y)) ≤ qm dm(X,Y), for all X,Y ∈ (P(n))m. (9)

For all X, Y Î (P(n))m, We have

dm(G(X),G(Y)) = max
1≤i≤m

{d(Gi(X),Gi(Y))}. (10)

On the other hand, using the properties of the Thompson metric (see Section 1), for

all i = 1, 2, ..., m, we have
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d(Gi(X),Gi(Y)) = d

⎛
⎜⎝

⎛
⎝Qi +

m∑
j=1

(A∗
j Fij(Xj)Aj)

αij

⎞
⎠

1/ri

,

⎛
⎝Qi +

m∑
j=1

(A∗
j Fij(Yj)Aj)

αij

⎞
⎠

1/ri
⎞
⎟⎠

≤ 1
ri
d

⎛
⎝Qi +

m∑
j=1

(A∗
j Fij(Xj)Aj)

αij ,Qi +
m∑
j=1

(A∗
j Fij(Yj)Aj)

αij

⎞
⎠

≤ 1
ri
d

⎛
⎝ m∑

j=1

(A∗
j Fij(Xj)Aj)

αij ,
m∑
j=1

(A∗
j Fij(Yj)Aj)

αij

⎞
⎠

≤ 1
ri
d

⎛
⎝(A∗

1Fi1(X1)A1)
αi1 +

m∑
j=2

(A∗
j Fij(Xj)Aj)

αij , (A∗
1Fi1(Y1)A1)αi1 +

m∑
j=2

(A∗
j Fij(Yj)Aj)

αij

⎞
⎠

≤ 1
ri
max

⎧⎨
⎩d((A∗

1Fi1(X1)A1)αi1 , (A∗
1Fi1(Y1)A1)αi1), d

⎛
⎝ m∑

j=2

(A∗
j Fij(Xj)Aj)

αij ,
m∑
j=2

(A∗
j Fij(Yj)Aj)

αij

⎞
⎠

⎫⎬
⎭

≤ · · ·
≤ 1

ri
max

{
d((A∗

1Fi1(X1)A1)αi1 , (A∗
1Fi1(Y1)A1)αi1), . . . , d((A∗

mFim(Xm)Am)αim , (A∗
mFim(Ym)Am)αim)

}
≤ 1

ri
max

{|αi1|d(A∗
1Fi1(X1)A1,A∗

1Fi1(Y1)A1), . . . , |αim|d(A∗
mFim(Xm)Am,A∗

mFim(Ym)Am)
}

≤ 1
ri
max

{|αi1|d(Fi1(X1), Fi1(Y1)), . . . , |αim|d(Fim(Xm), Fim(Ym))
}

≤ 1
ri
max

{|αi1|ki1d(X1,Y1), . . . , |αim|kimd(Xm,Ym)
}

≤ max1≤j≤m{|αij|kij}
ri

max
{
d(X1,Y1), . . . , d(Xm,Ym)

}
≤ max

1≤j≤m
{|αij|kij/ri} dm(X,Y).

Thus, we proved that for all i = 1, 2, ..., m, we have

d(Gi(X),Gi(Y)) ≤ max
1≤j≤m

{|αij|kij/ri} dm(X,Y). (11)

Now, (9) holds immediately from (10) and (11). Applying the Banach contraction

principle (see Theorem 1.1) to the mapping G, we get the desired result. □

3 Examples and numerical results
3.1 The matrix equation: X =

(
((X1/2 + B1)

- 1/2 + B2)
1/3

+ B3

)1/2

We consider the problem: Find X Î P(n) solution to

X =
((

(X1/2 + B1)
−1/2

+ B2)
)1/3

+ B3

)1/2

, (12)

where Bi ≥ 0 for all i = 1, 2, 3.

Problem (12) is equivalent to: Find X1 Î P (n) solution to

Xr1
1 = Q1 + (A∗

1F11(X1)A1)α11 , (13)

where r1 = 2, Q1 = B3, A1 = In (the identity matrix), a11 = 1/3 and F11 : P(n) ® P (n)

is given by:

F11(X) = (X1/2 + B1)−1/2 + B2.

Proposition 3.1 F11 is a Lipshitzian mapping with k11 ≤ 1/4.
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Proof. Using the properties of the Thompson metric, for all X, Y Î P(n), we have

d(F11(X), F11(Y)) = d((X1/2 + B1)−1/2 + B2, (Y1/2 + B1)−1/2 + B2)

≤ d((X1/2 + B1)−1/2, (Y1/2 + B1)−1/2)

≤ 1
2
d(X1/2 + B1,Y1/2 + B1)

≤ 1
2
d(X1/2,Y1/2) ≤ 1

4
d(X,Y).

Thus, we have k11 ≤ 1/4. □
Proposition 3.2 Problem (13) is Banach admissible.

Proof. We have

|α11|k11
r1

≤
1
3
1
4

2
=

1
24

< 1.

This implies that Problem (13) is Banach admissible. □
Theorem 3.1 Problem (13) has one and only one solution X∗

1 ∈ P(n). Moreover, for

any X1(0) Î P(n), the sequence (X1(k))k≥0 defined by:

X1(k + 1) =
((

(X1(k)
1/2 + B1)

−1/2
+ B2

)1/3
+ B3

)1/2

, (14)

converges to X∗
1, and the error estimation is

d(X1(k),X∗
1) ≤ qk1

1 − q1
d(X1(1),X1(0)), (15)

where q1 = 1/4.

Proof. Follows from Propositions 3.1, 3.2 and Theorem 2.1. □
Now, we give a numerical example to illustrate our result given by Theorem 3.1.

We consider the 5 × 5 positive matrices B1, B2, and B3 given by:

B1 =

⎛
⎜⎜⎜⎜⎝
1.0000 0.5000 0.3333 0.2500 0
0.5000 1.0000 0.6667 0.5000 0
0.3333 0.6667 1.0000 0.7500 0
0.2500 0.5000 0.7500 1.0000 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , B2 =

⎛
⎜⎜⎜⎜⎝
1.4236 1.3472 1.1875 1.0000 0
1.3472 1.9444 1.8750 1.6250 0
1.1875 1.8750 2.1181 1.9167 0
1.0000 1.6250 1.9167 1.8750 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

and

B3 =

⎛
⎜⎜⎜⎜⎝
2.7431 3.3507 3.3102 2.9201 0
3.3507 4.6806 4.8391 4.3403 0
3.3102 4.8391 5.2014 4.7396 0
2.9201 4.3403 4.7396 4.3750 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

We use the iterative algorithm (14) to solve (12) for different values of X1(0):

X1(0) = M1 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

⎞
⎟⎟⎟⎟⎠ , X1(0) = M2 =

⎛
⎜⎜⎜⎜⎝
0.02 0.01 0 0 0
0.01 0.02 0.01 0 0
0 0.01 0.02 0.01 0
0 0 0.01 0.02 0.01
0 0 0 0.01 0.02

⎞
⎟⎟⎟⎟⎠
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and

X1(0) = M3 =

⎛
⎜⎜⎜⎜⎝

30 15 10 7.5 6
15 30 20 15 12
10 20 30 22.5 18
7.5 15 22.5 30 24
6 12 18 24 30

⎞
⎟⎟⎟⎟⎠ .

For X1(0) = M1, after 9 iterations, we get the unique positive definite solution

X1(9) =

⎛
⎜⎜⎜⎜⎝

1.6819 0.69442 0.61478 0.51591 0
0.69442 1.9552 0.96059 0.84385 0
0.61478 0.96059 2.0567 0.9785 0
0.51591 0.84385 0.9785 1.9227 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

and its residual error

R(X1(9)) =

∥∥∥∥∥∥X1(9) −
(((

X1(9)
1/2 + B1

)−1/2
+ B2

)1/3

+ B3

)1/2
∥∥∥∥∥∥ = 6.346 × 10−13.

For X1(0) = M2, after 9 iterations, the residual error

R(X1(9)) = 1.5884 × 10−12.

For X1(0) = M3, after 9 iterations, the residual error

R(X1(9)) = 1.1123 × 10−12.

The convergence history of the algorithm for different values of X1(0) is given by Fig-

ure 1, where c1 corresponds to X1(0) = M1, c2 corresponds to X1(0) = M2, and c3 corre-

sponds to X1(0) = M3.
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Figure 1 Convergence history for Eq. (12).
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3.2 System of three nonlinear matrix equations

We consider the problem: Find (X1, X2, X3) Î (P(n))3 solution to⎧⎪⎪⎨
⎪⎪⎩
X1 = In + A∗

1(X
1/3
1 + B1)1/2A1 + A∗

2(X
1/4
2 + B2)1/3A2 + A∗

3(X
1/5
3 + B3)1/4A3,

X2 = In + A∗
1(X

1/5
1 + B1)1/4A1 + A∗

2(X
1/3
2 + B2)1/2A2 + A∗

3(X
1/4
3 + B3)1/3A3,

X3 = In + A∗
1(X

1/4
1 + B1)1/3A1 + A∗

2(X
1/5
2 + B2)1/4A2 + A∗

3(X
1/3
3 + B3)1/2A3,

(16)

where Ai are n × n singular matrices.

Problem (16) is equivalent to: Find (X1, X2, X3) Î (P(n))3 solution to

Xri
i = Qi +

3∑
j=1

(A∗
j Fij(Xj)Aj)

αij , i = 1, 2, 3, (17)

where r1 = r2 = r3 = 1, Q1 = Q2 = Q3 = In and for all i, j Î {1, 2, 3}, aij = 1,

Fij(Xj) = (X
θij
j + Bj)γij , θ = (θij) =

⎛
⎝1/3 1/4 1/5
1/5 1/3 1/4
1/4 1/5 1/3

⎞
⎠ , γ = (γij) =

⎛
⎝1/2 1/3 1/4
1/4 1/2 1/3
1/3 1/4 1/2

⎞
⎠ .

Proposition 3.3 For all i, j Î {1, 2, 3}, Fij: P(n) ® P(n) is a Lipshitzian mapping with

kij ≤ gijθij.
Proof. For all X, Y Î P(n), since θij, gij Î (0, 1), we have

d(Fij(X), Fij(Y)) = d((Xθij + Bj)γij , (Yθij + Bj)γij)

≤ γijd(Xθij + Bj,Yθij + Bj)

≤ γijd(Xθij ,Yθij)

≤ γijθijd(X,Y).

Then, Fij is a Lipshitzian mapping with kij ≤ gijθij. □
Proposition 3.4 Problem (17) is Banach admissible.

Proof. We have

max
1≤i≤3

{
max
1≤j≤3

{|αij|kij/ri}
}
= max

1≤i,j≤3
kij

≤ max
1≤i,j≤3

γijθij

= 1/6 < 1.

This implies that Problem (17) is Banach admissible. □
Theorem 3.2 Problem (16) has one and only one solution (X∗

1,X
∗
2,X

∗
3) ∈ (P(n))3.

Moreover, for any (X1(0), X2(0), X3(0)) Î (P(n))3, the sequences (Xi(k))k≥0, 1 ≤ i ≤ 3,

defined by:

Xi(k + 1) = In +
3∑
j=1

A∗
j Fij(Xj(k))Aj, (18)

converge respectively to X∗
1,X

∗
2,X

∗
3, and the error estimation is

max{d(X1(k),X∗
1), d(X2(k),X∗

2), d(X3(k),X∗
3)}

≤ qk3
1 − q3

max{d(X1(1),X1(0)), d(X2(1),X2(0)), d(X3(1),X3(0))},
(19)
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where q3 = 1/6.

Proof. Follows from Propositions 3.3, 3.4 and Theorem 2.1. □
Now, we give a numerical example to illustrate our obtained result given by Theo-

rem 3.2.

We consider the 3 × 3 positive matrices B1, B2 and B3 given by:

B1 =

⎛
⎝ 1. 0.5 0
0.5 1 0
0 0 0

⎞
⎠ , B2 =

⎛
⎝1.25 1 0

1 1.25 0
0 0 0

⎞
⎠ and B3 =

⎛
⎝ 1.75 1.625 0
1.625 1.75 0
0 0 0

⎞
⎠ .

We consider the 3 × 3 nonsingular matrices A1, A2 and A3 given by:

A1 =

⎛
⎝ 0.3107 −0.5972 0.7395
0.9505 0.1952 −0.2417

0 −0.7780 −0.6282

⎞
⎠ , A2 =

⎛
⎝ 1.5 −2 0.5

0.5 0 −0.5
−0.5 2 −1.5

⎞
⎠

and

A3 =

⎛
⎝−1 −1 1

1 −1 1
−1 −1 −1

⎞
⎠ .

We use the iterative algorithm (18) to solve Problem (16) for different values of (X1

(0), X2(0), X3(0)):

X1(0) = X2(0) = X3(0) = M1 =

⎛
⎝1 0 0
0 2 0
0 0 3

⎞
⎠ ,

X1(0) = X2(0) = X3(0) = M2 =

⎛
⎝0.02 0.01 0
0.01 0.02 0.01
0 0.01 0.02

⎞
⎠

and

X1(0) = X2(0) = X3(0) = M3 =

⎛
⎝30 15 10
15 30 20
10 20 30

⎞
⎠ .

The error at the iteration k is given by:

R(X1(k),X2(k),X3(k)) = max
1≤i≤3

∥∥∥∥∥∥Xi(k) − I3 −
3∑
j=1

A∗
j Fij(Xj(k))Aj

∥∥∥∥∥∥ .
For X1(0) = X2(0) = X3(0) = M1, after 15 iterations, we obtain

X1(15) =

⎛
⎝ 10.565 −4.4081 2.7937

−4.4081 16.883 −6.6118
2.7937 −6.6118 9.7152

⎞
⎠ , X2(15) =

⎛
⎝ 11.512 −5.8429 3.1922

−5.8429 19.485 −7.9308
3.1922 −7.9308 10.68

⎞
⎠

and

X3(15) =

⎛
⎝ 11.235 −3.5241 3.2712

−3.5241 17.839 −7.8035
3.2712 −7.8035 11.618

⎞
⎠ .
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The residual error is given by:

R(X1(15),X2(15),X3(15)) = 4.722 × 10−15.

For X1(0) = X2(0) = X3(0) = M2, after 15 iterations, the residual error is given by:

R(X1(15),X2(15),X3(15)) = 4.911 × 10−15.

For X1(0) = X2(0) = X3(0) = M3, after 15 iterations, the residual error is given by:

R(X1(15),X2(15),X3(15)) = 8.869 × 10−15.

The convergence history of the algorithm for different values of X1(0), X2(0), and X3

(0) is given by Figure 2, where c1 corresponds to X1(0) = X2(0) = X3(0) = M1, c2 corre-

sponds to X1(0) = X2(0) = X3(0) = M2 and c3 corresponds to X1(0) = X2(0) = X3(0) =

M3.
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