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Abstract

The paper proves two theorems concerning the traces of Oriented Markov Matrices
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1. Introduction
A vertex map on a graph is a continuous map that permutes the vertices. Given a ver-

tex map, the periods of the periodic orbits can be computed; giving a subset of the

positive integers. One of the basic questions of combinatorial dynamics for vertex

maps is to determine which subsets of the positive integers can be obtained in this

way. Sharkovsky’s theorem [1] is a well-known result that answers the question when

the underlying graph is topologically an interval and the vertices all belong to the same

periodic orbit. In [2,3] a Sharkovsky-type theorem was proved for trees.

In the vertex map papers, a standard method is to construct a matrix, called the

Oriented Markov Matrix. The entries along main diagonal of the matrix give informa-

tion about periodic orbits. In particular, the diagonal entries of the matrix raised to the

nth power give information about the periodic orbits with period n. Thus the trace of

powers of the matrix becomes important.

In this paper, two results concerning the trace of powers of the Oriented Markov

Matrix are proved. The first shows that the trace is a homotopical invariant. The sec-

ond shows how the trace can be calculated from the number of edges in the graph

and the number of vertices that are not fixed by the vertex map. These results follow

from Hopf’s proof of the Lefschetz Fixed Point Theorem. However, since graphs are

homologically very simple, it is possible to give elementary proofs, which we do.

The trace theorems are then used to prove the following theorem.

Theorem 1. Let G be a graph with v vertices. Let f be a vertex map on G that is

homotopic to the identity and such that the vertices form one periodic orbit. Suppose f

flips an edge.

(1) If v is not a divisor of 2k then f has a periodic point with period 2k.

(2) If v = 2pq, where q > 1 is odd and p ≥ 0, then f has a periodic point with period

2pr for any r ≥ q.
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(Throughout the paper we will say that the period of a periodic point is the number

of distinct points in its orbit. This is often referred to as the minimal or least period.)

It should be noted that all maps on trees are homotopic to the identity. Indeed, the

proof of this theorem should be compared to the proofs of Sharkovsky Theorem in [4]

and the theorem on trees in [3].

In this paper we study maps for which the vertices are permuted by the map. Maps

on trees and graphs can be studied without this restriction. For general maps on trees

see [5]. For general maps on graphs see [6,7].

2. Graphs
An edge is a space homeomorphic to the closed interval [0, 1]. The boundary points of

the edges are vertices. An edge is not allowed to have a vertex as an interior point.

The intersection of two distinct edges is empty, consists of one vertex or of two ver-

tices. We assume that we have a finite number e of edges and v of vertices. The graph

is the union of vertices and edges. We assume that graphs are connected and closed.

We allow the possibility that there is more than one edge between the same two ver-

tices. We also allow the possibility that an edge connects a vertex to itself (in this case

the edge is homeomorphic to a circle).

We will label the vertices V1 to Vv; in diagrams we will just label them with the inte-

gers 1 to v. If Vk and Vl are vertices and there is an edge between them we will choose

an orientation or direction on the edge and consider it as a directed edge from one ver-

tex to the other. We will label the positively oriented edges as E1, ..., Ee. If Ep is an edge

from Vk to Vl then the same edge, but with the opposite (negative) orientation that goes

from Vl to Vk will be denoted by -Ep. We will call Vk the first vertex of Ep and Vl the sec-

ond vertex. (So the first vertex of Ep equals the second vertex of -Ep and vice versa.)

Given any two vertices, Vr and Vs, a path from Vr to Vs is a sequence of edges E1 ...

Eq where the first vertex of E1 is Vr, the second vertex of Eq is Vs and the second ver-

tex of El equals the first vertex of El+1 for 1 ≤ l ≤ q - 1. If Ep and -Ep are two consecu-

tive edges in a path we can obtain a shorter path by omitting these two edges. We will

call this a contraction of the path. Given any path from vertex Vr to vertex Vs we can

form a sequence of contractions resulting in a unique path that cannot be contracted

further. We call this resulting path fully contracted. Given a path P in the graph we

will let FC(P) denote the fully contracted path that is obtained from P.

We define a circle in graph G to be a closed path that has no repeated vertices. Thus

in Figure 1, E1E2 - E3 and E3E4E5E6 are circles.

E4

E3

E6

E5
E2

E1

1

23

4 5
Figure 1 Graph with vertex permutation (1 3)(2 4 5).
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3. Linearization of vertex maps
A vertex map of a graph G is a continuous map from G to itself with the property that

the vertices of G are permuted by f. In this section we will define the linearization of a

vertex map.

Suppose θ is a permutation on 1, ..., v and that f is a map from graph G to itself with

the property that f(Vi) = Vθ(i) for 1 ≤ i ≤ v. Then we define Lf, the linearization of f, to

be the continuous map from G to itself given by Lf maps the edge E with first vertex

Vk and second vertex Vl linearly onto the fully contracted path from Vθ(k) to Vθ (l) that

is homotopic to f(E), where f(E) is considered a path parameterized by E and the

homotopy fixes both Vθ (k) and Vθ(l). This is done for each edge E in the graph. We

make the observation that it is possible for a fully contracted path to contain positive

or negative multiples of circles, but the loop based at Vθ(k) obtained by going to Vθ(l)

along the path given by Lf (parameterized by E) and then back to Vθ(k) by the path

given by f (parameterized by -E) will be contractable to a point.

For maps of the interval or of trees this linearized map is often called the connect-

the-dot map associated to θ. For trees (and intervals) f is always homotopic to the

identity and so there is a unique linearization associated to θ. However, for graphs in

general, the linearization depends on both θ and the homotopy type of the map f on

the edges.

Example 1. Figure 1 shows a graph G. In this case the map f: G ® G permutes the

vertices by f(Vi) = Vθ(i) where θ Î Sn is given by θ = (13)(245), and f(E1) = E3E1E2E4, f

(E2) = E5, f(E3) = E4E5, f(E4) = E6E1, f(E5) = E1 and f(E6) = E3.

It is straightforward to check that

f 3(E1) = E1 − E1 − E6 − E5 − E4 − E3E1E2E4E5E6E1 − E1E3 − E3E1E2E4

and

Lf 3 (E1) = −E6 − E5 − E4 − E3E1E2E4E5E6E1E2E4.

4. Oriented Markov graphs
We now define the Oriented Markov Graph associated to the graph G and Lf. This is a

directed graph on e vertices. Each of the directed edges also has either a positive or

negative sign attached. It is defined as follows: the vertices of the Markov graph corre-

spond to the edges of the graph (we will abuse notation and also denote these vertices

by E1, ..., Ee, the context should make it clear whether Ek refers to the edge in the ori-

ginal graph G or the corresponding vertex in the Markov graph); we draw a positive

directed edge from vertex Ei to vertex Ej for each occurrence of Ej in Lf(Ei); we draw a

negative directed edge from vertex Ei to vertex Ej for each occurrence of -Ej in Lf(Ei).

We will denote this Oriented Markov Graph by OMG(f).

Sometimes we will not need to use the fact that the directed edges in OMG(f) have a

positive or negative sign attached. We will use the notation Ek ® Ej to indicate that

there is a directed edge from Ek to Ej.

Let Ek1 → Ek2 · · · → Ekm be a path in the Oriented Markov Graph. This path will be

have positive orientation if the number of negative directed edges is even and negative

orientation if the number of negative directed edges is odd.
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Lemma 1. Let f be a vertex map on G. Suppose that Ek1 → Ek2 → . . . Ekmis a path in

OMG(f). Then Ekm ⊆ Lmf (Ek1). If the path Ek1 → Ek2 → . . . Ekmin OMG(f) has positive

orientation then Ekmappears in the path (in G) Lmf (Ek1 ). If the path

Ek1 → Ek2 → . . . Ekmin OMG(f) has negative orientation then −Ekmappears in the path

(in G) Lmf (Ek1 ).

Conversely, if Ekmappears in the path (in G) Lmf (Ek1 )then there is a positively oriented

path (in OMG(f)) of length m from Ek1to Ekm; and if −Ekmappears in the path (in G)

Lmf (Ek1 )then there is a positively oriented path (in OMG(f)) of length m from Ek1 to Ekm.

The following results are standard (see [8] or [9], for example, for a formal proof).

Lemma 2. Let f be a vertex map on G. Suppose that Ek0 → Ek1 → · · · Ekm → Ek0is a

loop in OMG(f). Then there exists a periodic point x of Lf with Lm+1
f (x) = xsuch that

Lrf (x) ∈ Ekrfor r = 0, 1, ..., m. Conversely, if x is a periodic point in Lf of period m + 1

and if x is not a vertex then there exists a loop Ek0 → Ek1 → · · · Ekm → Ek0in OMG(f)

such that Lrf (x) ∈ Ekrfor r = 0, 1, ..., m.

As in [3] we can change Lf to f in the first half of the above lemma to obtain the

following.

Lemma 3. Let f be a vertex map on G. Suppose that Ek0 → Ek1 → · · · Ekm → Ek0is a

loop in OMG(f). Then there exists a periodic point x of f with fm+1(x) = x such that

f r(x) ∈ Ekrfor r = 0, 1, ..., m.

If the loop Ek0 → Ek1 → · · ·Ekm → Ek0 in the above statement is not a repetition of a

shorter loop then we will say that it is a non-repetitive loop of length m + 1.

The importance of non-repetitive loops in the Oriented Markov Graph is the follow-

ing extension of Lemma 2.

Lemma 4. Let f be a vertex map on G. Suppose that Ek0 → Ek1 → · · · Ekm → Ek0is a

non-repetitive loop in OMG(f). Then there exists a periodic point x of f with fm+1(x) = x

such that f r(x) ∈ Ekrfor r = 0, 1, ..., m. If x is not a vertex of G, then x has minimum

period of m + 1.

Note that if the non-repetitive loop in the statement above has negative orientation,

then there must be a closed subinterval of Ek0 that gets mapped with negative orienta-

tion onto Ek0 under f
m+1. This means that the periodic point x can be chosen to lie in

the interior Ek0 and so it definitely is not a vertex of G.

5. Oriented Markov matrices
Suppose that f is a vertex map on G. Then we define the Oriented Markov Matrix of f,

denoted M(f), to be the e × e matrix with M(f)i,j equal to the number of positive direc-

ted edges from Ej to Ei minus the number of the negative edges from Ej to Ei. This is

equivalent to saying that M(f)i,j is equal to the number of times that Ei appears in the

path Lf(Ej) minus the number of times that -Ei appears in the path Lf(Ej).

Induction gives:

Theorem 2. Let f be a vertex map on G. Then ((M(f))n)i,j is the number of positively

oriented paths (in OMG(f)) from Ej to Ei minus the sum of negatively oriented paths (in

OMG(f)) from Ej to Ei.

Observe that to obtain LLnf from Lnf we contract paths Lnf (Ei) to FC(Lnf (Ei)) and that

each time a contraction is formed we lose the same edge with both positive and
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negative orientation, so for each j the number of times Ej appears minus the number of

times that -Ej appears is the same in both Lnf (Ei) and FC(Lnf (Ei)). So M(LLnf ) = M(Lnf ).

Theorem 3. Let f be a vertex map on G. Then (M(f ))n = M(Lnf ) = M(LLnf )for any posi-

tive integer n.

Example 1 continued. In Example 1 the oriented Markov matrix is

M(f ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 −1 0
1 0 0 0 0 0

−1 0 0 0 0 1
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

M3(f ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 2 −2 0
2 −1 0 1 −1 0

−1 1 1 −1 1 0
1 −1 0 1 0 0
0 0 0 1 0 0
0 0 0 1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

The first columns of these matrices give information about Lf (E1) and L3f (E1),

respectively.

6. Homotopic maps and the trace
In this paper we have used language that is typically used in one-dimensional

dynamics. However, many of these ideas also belong to algebraic topology and can be

expressed in that language. In particular, the underlying space is a one-dimensional

simplicial complex; the map Lf is essentially a simplicial transformation; and M(f) is

the matrix representation of the induced map on one-chains.

The goal of the next two sections is to prove results concerning the trace of M(f).

These results follow simply from Hopf’s trace formula which states that the alternating

sum of traces in homology is equal to the alternating sum of traces on the chains.

However, homological arguments are simple in the one-dimensional case, and we give

short elementary proofs. (The change of basis in Section 7:2 comes from Hopf’s proof

of the Lefschetz Fixed Point Theorem given in [10].)

Theorem 4. Let f be a vertex map on G. If f is homotopic to g then Trace(M(f)) =

Trace(M(g)).

Proof. Suppose that Er = [Vk, Vl] is an edge in G. Then for any linearized map L with

L(Vi) = f(Vi) for 1 ≤ i ≤ v we know that L will map [Vk, Vl] to a fully contracted path

from f(Vk) to f(Vl). In general there are infinitely many possible fully contracted paths

from f(Vk) to f(Vl). We observe what happens to the Mr,r entry in the Markov matrix

when we change from one fully contracted path from f(Vk) to f(Vl) to another. Notice

that the Mr,r entry only changes if we change the number of times that the path goes

around a circle that contains Er. Now, the number of times that a circle is wrapped

around itself is a homotopy invariant. Thus if we change the fully contracted path

from f(Vk) to Vf(Vl) by adding n copies of a circle containing Er, thus changing the Mr,r

entry by n and we want to end up with a map that is homotopic to the original one,
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then we have to make changes to the fully contracted paths that are the images of the

other edges in the circle so that they now, in total, add -n copies of the circle. The

only way that this can be done is by changing the image of other edges in the circle by

adding complete copies of the circle. Notice that though the diagonal entries in the

Markov matrix corresponding to a circle may change the sum of these entries must be

constant if we wish to preserve the homotopy type of the map. This means that the

trace of M(f) equals the trace of M(g) whenever f and g are homotopic. □

7. Maps homotopic to the identity–the trace theorem
Suppose that f : G ® G is a map with the property that f fixes exactly r vertices, i.e.,

there are exactly r vertices with the property that f(V) = V. This means that there are

exactly v - r vertices that are unfixed. We will let U(f, G) denote the number of unfixed

vertices of G under f. In this section we show that if f : G ® G is homotopic to the

identity then the trace of M(Lf) equals e - U(f, G).

Theorem (trace theorem). Let f be a vertex map on G. Suppose that f is homotopic

to the identity map on G. Then Trace(M(f)) = e - U(f, G).

The proof is given below. The outline is to first prove it for trees, which is straight-

forward. Then we need to calculate the trace of M(f) for general graphs. This is done

by introducing the chain group and seeing that the matrix induces a homomorphism.

Then a new basis is chosen for the chain group. The induced map on chains gives a

new matrix that is similar to M(f), but such that it is simple to calculate its trace.

7.1. Proof of the Trace theorem when G is a tree

First the case when G is a tree. (This is a slight generalization of a result in [2], where

it was proved for the case when none of the vertices are fixed by f.)

Proof. For each unfixed vertex, Vi there is a fully contracted path from Vi to f(Vi) that

will be denoted P(Vi). The initial vertex in this path is Vi. At Vi draw an arrow (direc-

tion arrow) pointing along the first edge of P(Vi). We repeat this process for each of

the unfixed vertices in G. If a vertex V is fixed then no direction arrows are drawn at

V.

Observe that an edge Ei contains two direction arrows if and only if - Ei is in Lf (Ei).

Also observe that Ei contains no direction arrows if and only if Ei is in Lf (Ei). Finally,

an edge contains one direction arrow if and only if Lf (Ei) does not contain either Ei or

- Ei. Notice that the number of arrows on the edge Ei is exactly 1 - M(f)i,i. So the total

number of arrows is
∑e

1(1 − M(f )i,i) = e − Trace(M(f )). However, there are exactly U

(f, G) arrows in G, one for each unfixed vertex, so U(f, G) = e - Trace(M(f)).

7.2. Chain groups

An integral 1-chain is a formal sum
∑e

1 aiEi, where ai are integers. Addition of chains

is defined by

e∑
1

aiEi +
e∑
1

biEi =
e∑
1

(ai + bi)Ei.

Thus 1-chains form a free abelian group with e generators. The coordinate vector of

a 1-chain
∑e

1 aiEi relative to the ordered basis (E1, E2, ..., Ee) is [a1, a2, ..., ae]
T.

Bernhardt Fixed Point Theory and Applications 2011, 2011:8
http://www.fixedpointtheoryandapplications.com/content/2011/1/8

Page 6 of 11



The Oriented Markov Matrix, M(f), defines a homomorphism from the chain group

to itself by sending the 1-chain with coordinate vector v to M(f)v. Notice that this is

entirely consistent with the previous interpretation of M(f), in that for any path P in G

we can find the coordinate vector v; the coordinate vector of the image of P under Lf
is M(f)v.

7.3. Spanning trees-change of basis

Let T denote a spanning tree for G. This contains v - 1 edges, we will denote them

E′
1, . . . ,E

′
v−1. There are then e + 1 - v edges in G that do not appear in T. For each

edge, E, that is in G, but not T choose a circle in G that consists of E plus edges in T.

In this way e + 1 - v circles are obtained, denoted C1, ..., Ce+1-v.

Notice that if Ei is the edge in Ci that does not belong to T, then there exist paths P1
and P2 in T such that Ei = FC(P1CiP2). This means that any fully contracted path in G

can be expressed as the contraction of a path that is written only using

C1, . . . ,Ce+1−v,E′
1, . . . ,E

′
v−1.

We now consider the matrix, N, that represents the homomorphism on 1-chains

with respect to the ordered basis

(C1, . . . ,Ce+1−v,E′
1, . . . ,E

′
v−1).

Since f is homotopic to the identity and Ci is a circle, we have Lf (Ci) = Ci. This

means that

N =
(
I A
0 B

)
,

where I is the (e + 1 - v) × (e + 1 - v) identity matrix and 0 is the (v - 1) × (e + v - 1)

zero matrix.

The matrices M(f) and N are similar, because they represent the same homomorph-

ism with respect to different bases. This means

Trace(M(f )) = Trace(N),

but

Trace(N) = Trace(I) + Trace(B) = e + 1 − v + Trace(B).

To complete the proof we must calculate Trace(B).

7.4. Completion of the proof

For each edge E′
i in T we know that Lf (E′

i) can be written as a path using

(C1, . . . ,Ce+1−v,E′
1, . . . ,E

′
v−1).. Since circles both begin and end at the same vertex,

notice that if we delete all the circles in this path we obtain a new path that lies

entirely in T and has the same endpoints as Lf (Ei). We define f’ to be the map on T

defined in this way. Note that f’ is a vertex map on T with vertex permutation given by

θ. Also note that M (f’) = B. Thus by the proof for trees we know that Trace(B) = v - 1

- U (f, G).

In the previous section it was shown that

Trace(M(f )) = e + 1 − v + Trace(B).
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So we obtain

Trace(M(f ) = e − U(f ,G),

which completes the proof.

7.5. Example 1 continued

In this subsection we illustrate the construction using Example 1.

We take as the spanning tree the tree formed by the edges E1, E3, E5 and E6. Then

there are two circles. We let C1 = E3E4E5E6 and C2 = E1E2 - E3. The new ordered basis

for the chain group is (C1, C2, E1, E3, E5, E6). Notice that E2 = - E1C2E3 and E4 =

-E3C1E-6-E5. So Lf (E1) = -E3E1E2E4 = -E3E1 - E1C2E3 - E3C1 - E6 - E5 which can be

contracted to -E3C2C1 - E6 - E5. In this way we obtain

N =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 0
0 1 1 0 0 0
0 0 0 0 −1 0
0 0 −1 −1 0 1
0 0 −1 0 0 0
0 0 −1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The map f’ on the spanning tree permutes the vertices in exactly the same way as f

but maps the edges in the following way: f’(E1) = -E3 - E6 - E5, f’(E3) = -E3 - E6, f’(E5) =

- E1 and f’(E6) = E3.

8. Vertices form one periodic orbit
In this section we study vertex maps where the vertices of G consist of one periodic

orbit.

First, we state some basic results concerning the trace of the Oriented Markov

Matrix. This is followed by some results for maps that are homotopic to the identity.

Finally, we look at maps that are homotopic to the identity and that have at least one

edge flipped, and show that we can obtain some results that are connected to the Shar-

kovsky ordering in this case.

Given a vertex map f, we will let θ denote the permutation on v elements defined by

f (Vi) = Vθ(i) for i = 1, ..., v.

8.1. Basic trace results for maps that are homotopic to the identity

Suppose that the vertices of G consist of one periodic orbit. Then in this case, if k is

not an integer multiple of v, then θk(i) ≠ i for i = 1, ... v; and that if k is an integer

multiple of v then θk is the identity. This fact, along with the fact that f n is homotopic

to the identity for any positive integer n, gives us the following corollary to the Trace

theorem.

Corollary 5. Let G be a graph with e edges and v vertices. Suppose that f : G ® G is

homotopic to the identity. Suppose that the vertices of G form one periodic orbit. Then:

(1) Trace(M(f)k) = e - v if k is not an integer multiple of v.

(2) Trace(M(f)k) = e if k is an integer multiple of v.

The following result follows immediately from Theorem 7 in [11].
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Theorem 6. Let G be a graph with e edges and v vertices. Suppose that f : G ® G is

homotopic to the identity. Suppose that the vertices of G form one periodic orbit. Then

M(f)v = I, where I is the e × e identity matrix.

8.2. Edge flipping and the proof of Theorem 1

We say a vertex map f on a graph flips an edge E if - E appears in Lf (E).

First we make the observation that if the underlying graph is a tree and that none of

the vertices are fixed by the vertex map, then it must have this edge flipping property.

Lemma 5. If f is a vertex map on a tree that does not fix any vertices, then f flips an

edge.

Proof. By Corollary 5, the trace of M (f) = -1. Thus M (f) must have an entry along

the main diagonal that is a negative integer. □
The following two lemmas plus Lemma 4 complete the proof of Theorem 1.

Lemma 6. Let G be a graph and f a vertex map from G to itself that is homotopic to

the identity. Suppose that the vertices form one periodic orbit. Suppose f flips an edge. If

v is not a divisor of 2k, then OMG(f) has a non-repetitive loop of length 2k with negative

orientation.

Proof. Since f flips an edge, there must be at least one loop in the Markov graph that

has length 1 and has negative orientation. Since Trace(M (f)) = e - v, there must be at

least e - v + 1 loops of length 1 that have positive orientation. By going around each of

these loops in the Markov graph twice we can see that there must be at least e - v + 2

loops of length 2 that have positive orientation. Since Trace(M (f)2) = e - v, there must

be at least one loop of length 2 with negative orientation. Since it has negative orienta-

tion, it cannot be the repetition of a shorter loop. So the Markov graph of f has a non-

repetitive loop of length 2 with negative orientation.

Now, for any positive integer k, consider loops of length 2k in the Markov graph. If j

< k, and the Markov graph has a non-repetitiveloop of length 2j, then this gives a loop

of length 2k by going around it 2k-j times. Since 2k-j is even, this repetitive loop of

length 2k must have positive orientation. From the argument above, we know there are

at least e - v + 2 loops of length 2. This means that there must be at least e - v + 2

loops of length 2k with positive orientation. Since Trace(M(f )2
k
) = e − v, there must be

a loop of length 2k with negative orientation. This must be a non-repetitive loop

because any repetitive loop of length 2k consists of an even number of repetitions of

the shorter loop and so must have positive orientation. □
Lemma 7. Let G be a graph and f a map from G to itself that is homotopic to the

identity. Suppose that the vertices form one periodic orbit. Suppose f flips an edge. If v =

2pq, where q >1 is odd and p ≥ 0, then M(f) has a non-repetitive loop of length 2pr for

any r ≥ q.

Proof. Let r - q = 2st, where t is odd. The previous lemma tells us that there must be

a non-repetitive loop of length 2p+s with negative orientation. Let Ei denote an edge in

this loop. Then Theorem 6 tells us that M2pq(f ) = I. So there must be a loop of length

2pq from Ei to itself with positive orientation. Note that this loop cannot be a repeti-

tion of the loop of length 2p+s because this loop has negative orientation and repeating

it an odd number of times gives a loop with negative orientation. A non-repetitive

loop of length 2pr can be obtained by first going t times around the loop of length 2p+s
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and then going around the loop of length 2pq once. Since t is odd, the resulting non-

repetitive loop has negative orientation. □

9. Concluding comments
In the first subsection we show that the edge flipping property is essential to the con-

clusion of Theorem 1. Then in the next subsection we compare the partial ordering

given by Theorem 1 to the orderings given when the underlying graphs are restricted

to trees.

9.1. Edge flipping

Given a graph G, we let the Euler Characteristic be the number of vertices minus the

number of edges. Vertex maps of trees (and the interval) that do not fix any of the ver-

tices have the edge flipping property. The graphs in these cases have Euler characteris-

tic of 1. However, if the Euler characteristic is less than 1, then vertex maps need not

flip edges and the set of periods of periodic points can consist of one or two numbers.

By considering rotations, it is clear that for maps of a circle, for any positive integer

n it is possible to construct a map from the circle to itself that only has periodic points

with period n and no other periods.

Lemma 8. Let G be a graph and f : G ® G a map that is homotopic to the identity

and permutes the vertices. Then we can construct a graph G’ by doubling one edge in G

and a map f’: G’ ® G’ such that f’ is homotopic to the identity and such that f’

restricted to G equals f and such that f’ has only one other periodic point-a fixed point.

Proof. Let Ek be an edge in the graph G with vertices Vk1 and Vk2 Let P be a path in

the graph from Vk1 to f (Vk1). Then -Ek followed by P followed by f(Ek), which we will

denote by - EkPf (Ek) gives a path from Vk2 to f (Vk2). We form G’ by adding a new

edge, Ee+1 that goes from Vk1 to Vk2. We define f’ restricted to G to equal f and let f’(Ee

+1) = PEe+1 - EkPf (Ek). We define f’ to be linear on the subinterval of Ee+1 that gets

mapped onto Ee+1. Notice that this new map is homotopic to the identity and that the

only new periodic point introduced is the fixed point in Ee+1.

The lemma above gives the second part of the next result. The first part follows from

the Trace theorem which tells us that the trace of M(f) is non-zero and hence by

Lemma 3, f must have a fixed point.

Theorem 7. Let G be a graph with v vertices. Suppose that f: G ® G is homotopic to

the identity and has the property that the vertices form one periodic orbit. If v ≠ e, then

f must have a fixed point.

Given any negative integer n we can construct a graph G with v vertices and e edges

with v - e = n and a map f: G ® G homotopic to the identity with the property that

the vertices form one periodic orbit and such that f has periodic orbits with period v

and 1 and no other periods.

9.2. Orderings of the natural numbers

Theorem 1 gives a partial order on the natural numbers. This should be compared to

the case when the underlying graph is assumed to be a tree in which case we get

another partial order (see [3]); and to the case when the graph is topologically an inter-

val in which case we get Sharkovsky’s ordering, a total ordering. Note that in going

from the Sharkovsky ordering to the tree ordering and then to the graph ordering, no
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relations are added, only relations are deleted. So the graph ordering is weaker than

the tree ordering, and the tree ordering is weaker than Sharkovsky’s ordering. Given a

positive integer n, consider the set of natural numbers that are forced by n, {m Î N|m

⊲n}, for each of the three orderings. If m ⊲n for the Sharkovsky ordering and m ⋪ n

for the graph ordering, then m < n. This means that for each n, the three sets {m Î
N|m ⊲n} only differ by a finite number of elements.

In both Sharkovsky’s Theorem and the theorem on trees there is a result that is

sometimes called the converse. This is the result that given any n in the ordering one

can find an example of a vertex map that does not have a periodic point of period m

for any m ⋪ n. It is an open question as to whether the converse result holds for the

graph ordering. We conjecture that it does, but this is little more than a guess.

Another natural question is to ask what happens in the case when the vertices of a

vertex map form more than one periodic orbit. This is, of course, a harder question.

For maps of the circle this leads to the study of rotation intervals. The beginnings of

the generalization of this idea to graphs can be found in [11].
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