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Abstract

In this paper, we introduce the modified general iterative approximation methods for
finding a common fixed point of nonexpansive semigroups which is a unique
solution of some variational inequalities. The strong convergence theorems are
established in the framework of a reflexive Banach space which admits a weakly
continuous duality mapping. The main result extends various results existing in the
current literature.
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1. Introduction
Let C be a nonempty subset of a normed linear space E. Recall that a mapping T: C ®
C is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ E. (1:1)

We use F(T) to denote the set of fixed points of T, that is, F(T) = {x Î E: Tx = x}. A

self mapping f: E ® E is a contraction on E if there exists a constant a Î (0, 1) and x,

y Î E such that

‖f (x) − f (y)‖ ≤ α‖x − y‖. (1:2)

We use ΠE to denote the collection of all contractions on E. That is, ΠE = {f: f is a

contraction on E}.

Here, we consider a scheme for a semigroup of nonexpansive mappings. Let C be a

closed convex subset of a Banach space E. Then, a family S = {T(s) : 0 ≤ s < ∞} of

mappings of C into itself is called a nonexpansive semigroup on E if it satisfies the fol-

lowing conditions:

(i) T(0)x = x for all x Î C ;

(ii) T(s + t) = T(s)T(t) for all s, t ≥ 0;

(iii) ||T(s)x - T(s)y|| ≤ ||x - y|| for all x, y Î C and s ≥ 0;

(iv) for all x Î C, the mapping s ↦ T(s)x is continuous.

We denote by F(S) the set of all common fixed points of S , that is,
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F(S) := {x ∈ E : T(s)x = x, 0 ≤ s < ∞} = ∩s≥0F(T(s)).

One classical way to study nonexpansive mappings is to use contractions to approxi-

mate a non-expansive mapping ([1-3]). More precisely, take t Î (0, 1) and define a

contraction Tt: E ® E by

Ttx = tu + (1 − t)Tx, ∀x ∈ E, (1:3)

where u Î E is a fixed point. Banach’s contraction mapping principle guarantees that

Tt has a unique fixed point xt in E. It is unclear, in general, what is the behavior of xt
as t ® 0, even if T has a fixed point. However, in the case of T having a fixed point,

Browder [1] proved that if E is a Hilbert space, then xt converges strongly to a fixed

point of T. Reich [2] extended Browder’s result to the setting of Banach spaces and

proved that if E is a uniformly smooth Banach space, then {xt} converges strongly to a

fixed point of T and the limit defines the (unique) sunny nonexpansive retraction from

E onto F(T). Xu [3] proved Reich’s results hold in reflexive Banach spaces which have

a weakly continuous duality mapping.

In the last ten years or so, the iterative methods for nonexpansive mappings have

recently been applied to solve convex minimization problems; see, e.g., [4-6] and the

references therein.

By a gauge function �, we mean a continuous strictly increasing function �: [0, ∞) ®
[0, ∞) such that �(0) = 0 and �(t) ® ∞ as t ® ∞. Let E* be the dual space of E. The

duality mapping Jϕ : E → 2E
∗
associated with a gauge function � is defined by

Jϕ(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖ϕ(‖x‖), ‖f ∗‖ = ϕ(‖x‖)}, ∀x ∈ E.

In particular, the duality mapping with the gauge function �(t) = t, denoted by J, is

referred to as the normalized duality mapping. Clearly, there holds the relation

Jϕ(x) =
ϕ(‖x‖)

‖x‖ J(x) for all x ≠ 0 (see [7]).

Browder [7] initiated the study of certain classes of nonlinear operators by means of

the duality mapping J�. Following Browder [7], we say that a Banach space E has a

weakly continuous duality mapping if there exists a gauge � for which the duality map-

ping J�(x) is single-valued and continuous from the weak topology to the weak* topol-

ogy, that is, for any {xn} with xn ⇀ x, the sequence {J�(xn)} converges weakly* to J�(x).

It is known that lp has a weakly continuous duality mapping with a gauge function �(t)

= tp-1 for all 1 <p < ∞. Set

�(t) =

t∫
0

ϕ(τ )dτ , ∀t ≥ 0,

then

Jϕ(x) = ∂�(‖x‖), ∀x ∈ E,

where ∂ denotes the sub-differential in the sense of convex analysis.

In a Banach space E having a weakly continuous duality mapping J� with a gauge

function �, an operator A is said to be strongly positive [8] if there exists a constant

γ̄ > 0 with the property
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〈Ax, Jϕ(x)〉 ≥ γ̄ ‖x‖ϕ(‖x‖) (1:4)

and

‖αI − βA‖ = sup
‖x‖≤1

|〈(αI − βA)x, Jϕ(x)〉|, α ∈ [0, 1],β ∈ [−1, 1], (1:5)

where I is the identity mapping. If E: = H is a real Hilbert space, then the inequality

(1.4) reduces to

〈Ax, x〉 ≥ γ̄ ‖x‖2 for all x ∈ H. (1:6)

A typical problem is to minimize a quadratic function over the set of the fixed points

of a nonexpansive mapping on a real Hilbert space H:

min
x∈C

1
2

〈Ax, x〉 − 〈x, b〉, (1:7)

where C is the fixed point set of a nonexpansive mapping T on H and b is a given

point in H. In 2003, Xu ([5]) proved that the sequence {xn} defined by the iterative

method below, with the initial guess x0 Î H chosen arbitrarily:

xn+1 = (I − αnA)Txn + αnu, n ≥ 0, (1:8)

converges strongly to the unique solution of the minimization problem (1.7) pro-

vided the sequence {an} satisfies certain conditions. Using the viscosity approximation

method, Moudafi [9] introduced the following iterative iterative process for nonexpan-

sive mappings (see [10,11] for further developments in both Hilbert and Banach

spaces). Let f be a contraction on H. Starting with an arbitrary initial x0 Î H, define a

sequence {xn} recursively by

xn+1 = (1 − σn)Txn + σnf (xn), n ≥ 0, (1:9)

where {sn} is a sequence in (0, 1). It is proved [9,11] that under certain appropriate

conditions imposed on {sn}, the sequence {xn} generated by (1.9) strongly converges to

the unique solution x* in C of the variational inequality

〈(I − f )x∗, x − x∗〉 ≥ 0, x ∈ H. (1:10)

In [12], Marino and Xu mixed the iterative method (1.8) and the viscosity approxi-

mation method (1.9) and considered the following general iterative method:

xn+1 = (I − αnA)Txn + αnγ f (xn), n ≥ 0, (1:11)

where A is a strongly positive bounded linear operator on H. They proved that if the

sequence {an} of parameters satisfies the following conditions

(C1) limn®∞ an = 0,

(C2)
∑∞

n=1 αn = ∞ , and

(C3)
∑∞

n=1 | αn+1 − αn |< ∞,

then the sequence {xn} generated by (1.11) converges strongly to the unique solution

x* in H of the variational inequality

〈(A − γ f )x∗, x − x∗〉 ≥ 0, x ∈ H (1:12)
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which is the optimality condition for the minimization problem:

minx∈C 1
2 〈Ax, x〉 − h(x) , where h is a potential function for gf(i.e., h’(x) = gf(x) for x Î

H).

Very recently, Wangkeeree et al. [8] introduced the following general iterative

approximation method in the framework of a reflexive Banach space E which admits a

weakly continuous duality mapping:
⎧⎨
⎩
x0 = x ∈ E,
yn = βnxn + (1 − βn)Tnxn,
xn+1 = αnγ f (xn) + (I − αnA)yn, n ≥ 0,

(1:13)

where A is strongly positive bounded linear operator on E and proved the strong

convergence theorems for a countable family of nonexpansive mappings

{Tn : E → E}∞n=1 . Other investigations of approximating common fixed points for a

countable family of nonexpansive mappings can be found in Refs. [1,3,8,10-14] and

many results not cited here.

Inspired and motivated by the iterative (1.13) given above, we give the following

modified general iterative scheme for a nonexpansive semigroup {T(t): t > 0}: for any

{T(tn): tn > 0, n Î N} ⊂ {T(t): t > 0},
⎧⎨
⎩
x0 = x ∈ E,
yn = βnxn + (1 − βn)T(tn)xn,
xn+1 = αnγ f (xn) + (I − αnA)yn, n ≥ 0,

(1:14)

where {an}, {bn} and {tn} are real sequence satisfying appropriate control conditions,

A is strongly positive bounded linear operator on E and f is a contraction on E. The

strong convergence theorems are proved in the framework of a reflexive Banach space

which admits a weakly continuous duality mapping. Furthermore, by using these

results, we obtain strong convergence theorems of the following new iterative schemes

{un} and {wn} defined by
⎧⎨
⎩
u0 = u ∈ E,
vn = βnun + (1 − βn)T(tn)un,
un+1 = αnγ f (T(tn)un) + (I − αnA)vn, n ≥ 0,

(1:15)

and
⎧⎨
⎩
w0 = c ∈ E,
vn = βnwn + (1 − βn)T(tn)wn,
wn+1 = T(tn)

(
αnγ f (wn) + (I − αnA)vn

)
, n ≥ 0.

(1:16)

The results presented in this paper improve and extend the corresponding results

announced by Marino and Xu [12], Wangkeeree et al. [8], and Li et al. [15] many

others.

2. Preliminaries
Throughout this paper, let E be a real Banach space and E* be its dual space. We write

xn ⇀ x (respectively xn ⇀* x) to indicate that the sequence {xn} weakly (respectively

weak*) converges to x; as usual xn ® x will symbolize strong convergence. Let U = {x

Î E: ||x|| = 1}. A Banach space E is said to uniformly convex if, for any ε Î (0, 2],
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there exists δ > 0 such that, for any x, y Î U, ||x - y|| ≥ ε implies ‖ x+y
2 ‖ ≤ 1 − δ . It is

known that a uniformly convex Banach space is reflexive and strictly convex (see also

[16]). A Banach space E is said to be smooth if the limit limt→0
‖x+ty‖ − ‖x‖

t
exists for all

x, y Î U. It is also said to be uniformly smooth if the limit is attained uniformly for x,

y Î U.

Now we collect some useful lemmas for proving the convergence result of this paper.

The first part of the next lemma is an immediate consequence of the subdifferential

inequality and the proof of the second part can be found in [17].

Lemma 2.1. ([17]) Assume that a Banach space E has a weakly continuous duality

mapping J� with gauge �.

(i) For all x, y Î E, the following inequality holds:

�(‖x + y‖) ≤ �(‖x‖) + 〈y, Jϕ(x + y)〉.

In particular, for all x, y Î E,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x + y)〉.

(ii) Assume that a sequence {xn} in E converges weakly to a point x Î E.

Then the following identity holds:

lim sup
n→∞

�(‖xn − y‖) = lim sup
n→∞

�(‖xn − x‖) + �(‖y − x‖), ∀x, y ∈ E.

Now, we present the concept of uniformly asymptotically regular semigroup. S is

said to be uniformly asymptotically regular (in short, u.a.r.) on C if for all h ≥ 0 and

any bounded subset B of C,

lim
s→∞ sup

x∈B
‖T(h)(T(s)x) − T(s)x‖ = 0.

The nonexpansive semigroup {st: t > 0} defined by the following lemma is an exam-

ple of u.a.r. nonexpansive semigroup. Other examples of u.a.r. operator semigroup can

be found in [[18], Examples 17,18].

Lemma 2.2. (see [[19], Lemma 2.7]). Let C be a nonempty closed convex subset of a

uniformly convex Banach space E, B a bounded closed convex subset of C, and

S = {T(s) : 0 ≤ s < ∞}a nonexpansive semigroup on C such that F(S) 
= ∅ . For each h

> 0, set σt(x) = 1
t

t∫
0
T(s)xds , then

lim
t→∞ sup

x∈B
‖σt(x) − T(h)σt(x)‖ = 0. (2:1)

Example 2.3. The set {st: t > 0} defined by Lemma 2.2 is u.a.r. nonexpansive semi-

group. In fact, it is obvious that {st: t > 0} is a nonexpansive semigroup. For each h >

0, we have
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‖σt(x) − σhσt(x)‖ =

∥∥∥∥∥∥σt(x) − 1
h

h∫
0

T(s)σt(x)ds

∥∥∥∥∥∥

=

∥∥∥∥∥∥
1
h

h∫
0

(σt(x) − T(s)σt(x))ds

∥∥∥∥∥∥

≤ 1
h

h∫
0

‖σt(x) − T(s)σt(x)‖ds.

Applying Lemma 2.2, we have

lim
t→∞ sup

xinB
‖σt(x) − σhσt(x)‖ ≤ 1

h

h∫
0

lim
t→∞ sup

x∈B
‖σt(x) − σhσt(x)‖ds = 0.

The next valuable lemma is proved for applying our main results.

Lemma 2.4. [[8], Lemma 3.1] Assume that a Banach space E has a weakly continu-

ous duality mapping J� with gauge �. Let A be a strong positive linear bounded opera-

tor on E with coefficient γ̄ > 0and 0 <r ≥ �(1)||A||-1. Then ‖I − ρA‖ ≤ ϕ(1)(1 − ργ̄ ) .

Lemma 2.5. ([6]) Assume that {an} is a sequence of nonnegative real numbers such

that

an+1 ≤ (1 − αn)an + bn,

where {an} is a sequence in (0, 1) and {bn} is a sequence such that

(a)
∑∞

n=1 αn = ∞ ;

(b) lim supn®∞ bn/an ≤ 0 or
∑∞

n=1 ‖bn‖ < ∞ .

Then limn®∞ an = 0.

3. Main results
Let E be a Banach space which admits a weakly continuous duality mapping J� with

gauge � such that � is invariant on [0, 1], i.e., �([0, 1]) ⊂ [0, 1]. Let S = {T(s) : s ≥ 0}
be a nonexpansive semigroups from C into itself. For f Î ΠE, t Î (0, 1), and A is a

strongly positive bounded linear operator with coefficient γ̄ > 0 and 0 < γ <
γ̄ϕ(1)

α
,

the mapping St: E ® E defined by

St(x) = tγ f (x) + (I − tA)T(λt)x,∀x ∈ E

is a contraction mapping. Indeed, for any x, y Î E,

‖St(x) − St(y)‖ = ‖tγ (f (x) − f (y)) + (I − tA)(T(λt)x − T(λt)y)‖
≤ tγ ‖f (x) − f (y)‖ + ‖I − tA‖‖T(λt)x − T(λt)y‖
≤ tγ α‖x − y‖ + ϕ(1)(1 − tγ̄ )‖x − y‖
≤ (

1 − t(ϕ(1)γ̄ − γ α)
) ‖x − y‖.

(3:1)

Thus, by Banach contraction mapping principle, there exists a unique fixed point xt
in E, that is,
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xt = tγ f (xt) + (I − tA)T(λt)xt. (3:2)

Remark 3.1. We note that lp space has a weakly continuous duality mapping with a

gauge function �(t) = tp-1 for all 1 <p < ∞. It is clear that � is invariant on [0, 1].

Lemma 3.2. Let E be a reflexive Banach space which admits a weakly continuous

duality mapping J� with gauge � such that � is invariant on [0, 1]. Let

S = {T(s) : s ≥ 0}be a nonexpansive semigroup with F(S) 
= ∅ , and f Î ΠE, let A be a

strongly positive bounded linear operator with coefficient γ̄ > 0and 0 < γ <
γ̄ϕ(1)

α
,

and let t Î (0, 1) which satisfying t ® 0. Then the net {xt} defined by (3.2) with {lt}0 <t

< 1 is a positive real divergent sequence; converges strongly as t ® 0 to a common fixed

point x̃ in F(S)which solves the variational inequality:

〈(A − γ f )x̃, Jϕ(x̃ − z)〉 ≤ 0, z ∈ F(S). (3:3)

Proof. We first show that the uniqueness of a solution of the variational inequality

(3.3). Suppose both x̃ ∈ F(S) and x∗ ∈ F(S) are solutions to (3.3), then

〈(A − γ f )x̃, Jϕ(x̃ − x∗)〉 ≤ 0 (3:4)

and

〈(A − γ f )x∗, Jϕ(x∗ − x̃)〉 ≤ 0. (3:5)

Adding (3.4) and (3.5), we obtain

〈(A − γ f )x̃ − (A − γ f )x∗, Jϕ(x̃ − x∗)〉 ≤ 0. (3:6)

Noticing that for any x, y Î E,

〈(A − γ f )x − (A − γ f )y, Jϕ(x − y)〉 = 〈A(x − y), Jϕ(x − y)〉 − γ 〈f (x) − f (y), Jϕ(x − y)〉
≥ γ̄ ‖x − y‖ϕ(‖x − y‖) − γ ‖f (x) − f (y)‖‖Jϕ(x − y)‖
≥ γ̄ �(‖x − y‖) − γ α�(‖x − y‖)
= (γ̄ − γ α)�(‖x − y‖)
≥ (γ̄ ϕ(1) − γ α)�(‖x − y‖) ≥ 0.

(3:7)

Using (3.6) and 0 < γ̄ ϕ(1) − γ α in the last inequality, we get that �(‖x̃ − x∗‖) = 0 .

Therefore, x̃ = x∗ and the uniqueness is proved. Below we use x̃ to denote the unique

solution of (3.3). Next, we will rove that {xt} is bounded. Take a p ∈ F(S) , then we

have

‖xt − p‖ = ‖tγ f (xt) + (I − tA)T(λt)xt − p‖
= ‖(I − tA)T(λt)xt − (I − tA)p + t(γ f (xt) − A(p))‖
≤ ‖ϕ(1)(1 − tγ̄ )‖xt − p‖ + t(γ α‖xt − p‖ + ‖γ f (p) − A(p)‖).

It follows that

‖xt − p‖ ≤ 1
γ̄ ϕ(1) − γ α

‖γ f (p) − A(p)‖.

Hence, {xt} is bounded, so are {f(xt)} and {AT(xt)}. The definition of {xt} implies that

‖xt − T(λt)xt‖ = t‖γ f (xt) − A(T(λt)xt)‖ → 0 as t → 0. (3:8)
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Next, we show that ||xt - T(h)xt|| ® 0 for all h ≥ 0. Since {T(t): t ≥ 0} is u.a.r. nonex-

pansive semigroup and limt®0 lt = ∞, then, for all h > 0 and for any bounded subset D

of C containing {xt},

lim
t→0

‖T(h)(T(λt)xt) − T(λt)xt‖ ≤ lim
t→0

sup
x∈D

‖T(h)(T(λt)xt) − T(λt)xt‖ = 0.

Hence, when t ® 0, for all h > 0, we have

‖xt − T(h)xt‖ ≤ ‖xt − T(λt)xt‖ + ‖T(λt)xt − T(h)(T(λ)xt)‖ + ‖T(h)(T(λt)xt) − T(h)xt‖
≤ 2‖xt − T(λt)xt‖ + ‖T(λt)xt − T(h)(T(λt)xt)‖ → 0.

(3:9)

Assume that {tn}∞n=1 ⊂ (0, 1) is such that tn ® 0 as n ® ∞. Put xn := xtn and

λn := λtn . We show that {xn} contains a subsequence converging strongly to x̃ ∈ F(S) .
It follows from reflexivity of E and the boundedness of sequence {xn} that there exists

{xnj} which is a subsequence of {xn} converging weakly to w Î E as n ® ∞. Since J� is

weakly sequentially continuous, we have by Lemma 2.1 that

lim sup
j→∞

�(‖xnj − x‖) = lim sup
j→∞

�(‖xnj − w‖) + �(‖x − w‖), for all x ∈ E.

Let

H(x) = lim sup
j→∞

�(‖xnj − x‖), for all x ∈ E.

It follows that

H(x) = H(w) + �(‖x − w‖), for all x ∈ E.

For h ≥ 0, from (3.9) we obtain

H(T(h)w) = lim sup
j→∞

�(‖xnj − T(h)w‖) = lim sup
j→∞

�(‖T(h)xnj − T(h)w‖)

≤ lim sup
j→∞

�(‖xnj − w‖) = H(w).
(3:10)

On the other hand, however,

H(T(h)w) = H(w) + �(‖T(h)w − w‖). (3:11)

It follows from (3.10) and (3.11) that

�(‖T(h)w − w‖) = H(T(h)w) − H(w) ≤ 0.

This implies that T(h)w = w for all h ≥ 0, and so w ∈ F(S) . Next, we show that

xnj → w as j ® ∞. In fact, since �(t) =
∫ t
0 ϕ(τ )dτ , ∀t ≥ 0, and �: [0, ∞) ® [0, ∞) is a

gauge function, then for 1 ≥ k ≥ 0, �(kx) ≤ �(x) and

�(kt) =

kt∫
0

ϕ(τ )dτ = k

t∫
0

ϕ(kx)dx ≤ k

t∫
0

ϕ(x)dx = k�(t).
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Following Lemma 2.1, we have

�(‖xn − w‖) = �((I − tnA)T(tn)xn − (I − tnA)w + tn(γ f (xn) − A(w)))

= �(‖(I − tnA)T(tn)xn − (I − tnA)w‖) + tn〈γ f (xn) − A(w), Jϕ(xn − w)〉
≤ �(ϕ(1)(1 − tnγ̄ )‖xn − w‖) + tnγ 〈f (xtn) − f (w), Jϕ(xn − w)〉
+ tn〈γ f (w)− A(w), Jϕ(xn − w)〉

≤ ϕ(1)(1 − tnγ̄ )�(‖xn − w‖) + tnγ ‖f (xn) − f (w)‖‖Jϕ(xn − w)‖
+ tn〈γ f (w)− A(w), Jϕ(xn − w)〉

≤ ϕ(1)(1 − tnγ̄ )�(‖xn − w‖) + tnγ α‖xn − w‖ ‖Jϕ(xn − w)‖
+ tn〈γ f (w)− A(w), Jϕ(xn − w)〉

= ϕ(1)(1 − tnγ̄ )�(‖xn − w‖) + tnγ α�(‖xn − w‖)
+ tn〈γ f (w)− A(w), Jϕ(xn − w)〉

= (1 − tn(γ̄ ϕ(1) − γ α))�(‖xn − w‖) + tn〈γ f (w) − A(w), Jϕ(xn − w)〉.

(3:12)

This implies that

�(‖xnj − w‖) ≤ 1
γ̄ ϕ(1) − γ α

〈γ f (w) − A(w), Jϕ(xnj − w)〉.

Now observing that xn ⇀ w implies J�(xn - w) ⇀ 0, we conclude from the last

inequality that

�(‖xnj − w‖) → 0 as j → ∞.

Hence, xnj → w as j ® ∞. Next, we prove that w solves the variational inequality

(3.3). For any z ∈ F(S) , we observe that

〈(I − T(λt))xt − (I − T(λt))z, Jϕ(xt − z)〉 = 〈xt − z, Jϕ(xt − z)〉 + 〈T(λt)xt − T(λt)z, Jϕ(xt − z)〉
= �(‖xt − z‖) − 〈T(λt)z − T(λt)xt, Jϕ(xt − z)〉
≥ �(‖xt − z‖) − ‖T(λt)z − T(λt)xt‖ ‖Jϕ(xt − z)‖
≥ �(‖xt − z‖) − ‖z − xt‖ ‖Jϕ(xt − z)‖
= �(‖xt − z‖) − �(‖xt − z‖) = 0.

(3:13)

Since

xt = tγ f (xt) + (I − tA)T(λt)xt,

we can derive that

(A − γ f )(xt) = −1
t
(I − T(λt))xt + (A(I − T(λt))xt).

Thus,

〈(A − γ f )(xt), Jϕ(xt − z)〉 = −1
t
〈(I − T(λt))xt − (I − T(λt))z, Jϕ(xt − z)〉 + 〈A(I − T(λt))xt, Jϕ(xt − z)〉

≤ 〈A(I − T(λt))xt, Jϕ(xt − z)〉.
(3:14)

Noticing that

xnj − T(λtnj
)xnj → 0.

Now replacing t and lt with nj and tnj in (3.14) and letting j ® ∞, we have

〈(A − γ f )w, Jϕ(w − z)〉 ≤ 0.
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So, w Î F(T) is a solution of the variational inequality (3.3), and hence, w = x̃ by the

uniqueness. In a summary, we have shown that each cluster point of {xt}(at t ® 0)

equals x̃ . Therefore, xt → x̃ as t ® 0. This completes the proof.

Theorem 3.3. Let E be a reflexive Banach space which admits a weakly continuous

duality mapping J� with gauge � such that � is invariant on [0, 1]. Let {T(s): s ≥ 0} be

a u.a.r. semigroup of nonexpansive mappings with F(S) 
= ∅ , and f Î ΠE, let A be a

strongly positive bounded linear operator with coefficient γ̄ > 0and 0 < γ <
γ̄ϕ(1)

α
. Let

the sequence {xn} be generated by the following:
⎧⎨
⎩
x0 = x ∈ E,
yn = βnxn + (1 − βn)T(tn)xn,
xn+1 = αnγ f (xn) + (I − αnA)yn, n ≥ 0

(3:15)

where {an} ⊂ (0, 1) and {bn} ⊂ [0, 1] are real sequences satisfying the following condi-

tions:

(C1) limn®∞ an = 0 and
∑∞

n=1 αn = ∞
(C2) limn®∞ bn = 0,

(C3) limn®∞ tn = ∞.

Then {xn} converges strongly to x̃ that is obtained in Lemma 3.2.

Proof. Since limn®∞ an = 0, we may assume, without loss of generality, that an <�

(1)||A||-1 for all n. By Lemma 2.4, we have ‖I − αnA‖ ≤ ϕ(1)(1 − αnγ̄ ) . We first

observe that {xn} is bounded. Indeed, pick any p ∈ F(S) to obtain

‖yn − p‖ = ‖βnxn + (1 − βn)T(tn)xn − p‖
= ‖βn(xn − p) + (1 − βn)(T(tn)xn − T(tn)p)‖
≤ βn‖xn − p‖ + (1 − βn)‖xn − p‖
= ‖xn − p‖,

(3:16)

and so

‖xn+1 − p‖ = ‖αnγ f (xn) + (I − αnA)yn − p‖
= ‖αn(γ f (xn) − A(p)) + (I − αnA)yn − (I − αnA)p‖
≤ αn‖γ f (xn) − A(p)‖ + ϕ(1)(1 − αnγ̄ )‖yn − p‖
≤ αnγ ‖f (xn) − f (p)‖ + αn‖γ f (p) − A(p)‖ + ϕ(1)(1 − αnγ̄ )‖yn − p‖
≤ αnγ α‖xn − p‖ + αn‖γ f (p) − A(p)‖ + ϕ(1)(1 − αnγ̄ )‖xn − p‖
≤ (1 − αn(γ̄ ϕ(1) − γ α))‖xn − p‖ + αn‖γ f (xn) − A(p)‖

= (1 − αn(γ̄ ϕ(1) − γ α))‖xn − p‖ + αn(γ̄ ϕ(1) − γ α)
‖γ f (xn) − A(p)‖

γ̄ ϕ(1) − γ α
.

It follows from induction that

‖xn − p‖ ≤ max
{
‖x0 − p‖, ‖γ f (p) − A(p)‖

γ̄ ϕ(1) − γ α

}
, n ≥ 0. (3:17)

The boundedness of {xn} implies that {yn}, {T(tn)xn} and {f(xn)} are bounded.
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Thus by (3.29), (C1) and (C2), we have

‖yn − T(tn)xn‖ = βn‖xn − T(tn)xn‖ → 0

and there by,

‖xn+1 − T(tn)xn‖ ≤ ‖yn − T(tn)xn‖ + αn‖γ f (xn) − A(yn)‖ → 0.

Since {T(t): t ≥ 0} is u.a.r. nonexpansive semigroup and limn®∞ tn = ∞, then, for all h

> 0 and for any bounded subset D of C containing {xn},

lim
n→∞ ‖T(h)(T(tn)xn) − T(tn)xn‖ ≤ lim

n→∞ sup
x∈D

‖T(h)(T(tn)xn) − T(tn)xn‖ = 0.

Hence, when n ® ∞, for all h > 0, we have

‖xn+1 − T(h)xn+1‖ ≤ ‖xn+1 − T(tn)xn‖ + ‖T(tn)xn − T(h)(T(tn)xn)‖ + ‖T(h)(T(tn)xn) − T(h)xn+1‖
≤ 2‖xn+1 − T(tn)xn‖ + ‖T(tn)xn − T(h)(T(tn)xn)‖ → 0

(3:18)

Next, we prove that

lim sup
n→∞

〈γ f (x̃) − Ax̃, Jϕ(xn − x̃)〉 ≤ 0, (3:19)

Let {xnk} be a subsequence of {xn} such that

lim
k→∞

〈γ f (x̃) − Ax̃, Jϕ(xnk − x̃)〉 = lim sup
n→∞

〈γ f (x̃) − Ax̃, Jϕ(xn − x̃)〉. (3:20)

If follows from reflexivity of E and the boundedness of sequence {xnk} that there

exists {xnki } which is a subsequence of {xnk} converging weakly to w Î E as i ® ∞.

Since J� is weakly continuous, we have by Lemma 2.1 that

lim sup
n→∞

�(‖xnki − x‖) = lim sup
n→∞

�(‖xnki − w‖) + �(‖x − w‖), for all x ∈ E.

Let

H(x) = lim sup
n→∞

�(‖xnki − x‖), for all x ∈ E.

It follows that

H(x) = H(w) + �(‖x − w‖), for all x ∈ E.

From (3.18), for each h > 0, we obtain

H(T(h)w) = lim sup
i→∞

�(‖xnki − T(h)w‖) = lim sup
i→∞

�(‖T(h)xnki − T(h)w‖)

≤ lim sup
i→∞

�(‖xnki − w‖) = H(w)
(3:21)

On the other hand, however,

H(T(h)w) = H(w) + �(‖T(h)w − w‖) (3:22)

It follows from (3.21) and (3.22) that

�(‖T(h)w − w‖) = H(T(h)w) − H(w) ≤ 0.

This implies that T(h)w = w for all h > 0, and so w ∈ F(S) . Since the duality map J�
is single-valued and weakly continuous, we get that
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lim sup
n→∞

〈γ f (x̃) − Ax̃, Jϕ(xn − x̃)〉 = lim
k→∞

〈γ f (x̃) − Ax̃, Jϕ(xnk − x̃)〉

= lim
i→∞

〈γ f (x̃) − Ax̃, Jϕ(xnki − x̃)〉
= 〈(A − γ f )x̃, Jϕ(x̃ − w)〉 ≤ 0

as required.

Finally, we show that xn → x̃ as n ® ∞.

�(||xn+1 − x̃||) = �(||αn(γ f (xn)) + (I − αnA)yn − x̃||)
= �(||αn(γ f (xn) − Ax̃) + (I − αnA)(yn − x̃)||)
= �(||αn(γ f (xn) − γ f (x̃)) + αn(γ f (x̃) − Ax̃) + (I − αnA)(yn − x̃)||)
≤ �(||αn(γ f (xn) − γ f (x̃)) + (I − αnA)(yn − x̃)||) + αn〈γ f (x̃) − Ax̃, Jϕ(xn+1 − x̃)〉
≤ �(||αn(γ f (xn) − γ f (x̃))|| + ||(I − αnA)(yn − x̃)||) + αn〈γ f (x̃) − Ax̃, Jϕ(xn+1 − x̃)〉
≤ �(αnγ α||xn − x̃|| + ϕ(1)(1 − αnγ̄ )||yn − x̃||)) + αn〈γ f (x̃) − Ax̃, Jϕ(xn+1 − x̃)〉
≤ �(αnγ α||xn − x̃|| + ϕ(1)(1 − αnγ̄ )||xn − x̃||)) + αn〈γ f (x̃) − Ax̃, Jϕ(xn+1 − x̃)〉
= �((ϕ(1) − αn(ϕ(1)γ̄ − γ α))||xn − x̃||) + αn〈γ f (x̃) − Ax̃, Jϕ(xn+1 − x̃)〉
≤ (1 − αn(ϕ(1)γ̄ − γ α))�(||xn − x̃||)) + αn〈γ f (x̃) − Ax̃, Jϕ(xn+1 − x̃)〉.

(3:23)

Apply Lemma 2.5 to (3.23) to conclude �(‖xn+1 − x̃‖) → 0 as n ® ∞, that is,

xn → x̃ as n ® ∞. This completes the proof. □
Corollary 3.4. Let E be a reflexive Banach space which admits a weakly continuous

duality mapping J� with gauge � such that � is invariant on [0, 1]. Let {T(s): s ≥ 0} be

a u.a.r. semigroup of nonexpansive mappings with F(S) 
= ∅ , and f Î ΠE, let A be a

strongly positive bounded linear operator with coefficient γ̄ > 0and 0 < γ <
γ̄ϕ(1)

α
. Let

the sequence {xn} be generated by the following:
⎧⎨
⎩
u0 = u ∈ E,
vn = βnun + (1 − βn)T(tn)un,
un+1 = αnγ f (T(tn)un) + (I − αnA)vn, n ≥ 0

(3:24)

where {an} ⊂ (0, 1) and {bn} ⊂ [0, 1] are real sequences satisfying the following condi-

tions:

(C1) limn®∞ an = 0 and
∑∞

n=1 αn = ∞
(C2) limn®∞ bn = 0,

(C3) limn®∞ tn = ∞.

Then {un} converges strongly to x̃ that is obtained in Lemma 3.2.

Proof. Let {xn} be the sequence in given by x0 = u0 and
{
yn = βnxn + (1 − βn)T(tn)xn,
xn+1 = αnγ f (xn) + (I − αnA)yn, n ≥ 0.

(3:25)

From Theorem 3.3, xn → x̃ . We claim that un → x̃ . From (3.26) and (3.25), we have

‖yn − vn‖ = ‖βnxn + (1 − βn)T(tn)xn − βnun − (1 − βn)T(tn)un‖
≤ βn‖xn − un‖ + (1 − βn)‖T(tn)xn − T(tn)un‖
≤ βn‖xn − un‖ + (1 − βn)‖xn − un‖
= ‖xn − un‖.
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Again, it then follows that

‖xn+1 − un+1‖ = ‖αnγ f (xn) + (I − αnA)yn − αnγ f (T(tn)un) − (I − αnA)vn‖
≤ αnγ ‖f (xn) − f (T(tn)un)‖ + ‖I − αnA‖ ‖yn − vn‖
≤ αnγ α‖xn − T(tn)un‖ + ϕ(1)(1 − αnγ̄ )‖xn − un‖
≤ αnγ α‖xn − T(tn)x̃‖ + αnγ α‖T(tn)x̃ − T(tn)un‖ + ϕ(1)(1 − αnγ̄ )‖xn − un‖
≤ αnγ α‖xn − x̃‖ + αnγ α‖x̃ − un‖ + ϕ(1)(1 − αnγ̄ )‖xn − un‖
= αnγ α‖xn − x̃‖ + αnγ α‖x̃ − xn‖ + αnγ α‖xn − un‖ + ϕ(1)(1 − αnγ̄ )‖xn − un‖
= (ϕ(1)(1 − αnγ̄ ) + αnγ α)‖xn − un‖ + (αnγ α + αnγ α)‖xn − x̃‖
≤ (1 − αn(ϕ(1)γ̄ − γ α))‖xn − un‖ + αn(ϕ(1)γ̄ − γ α)

2γ α

(ϕ(1)γ̄ − γ α)
‖xn − x̃‖.

It follows from
∑∞

n=1 αn = ∞ , limn→∞‖xn − x̃‖ = 0 , and Lemma 2.5 that ||xn - un||

® 0. Consequently, un → x̃ as required. □
Corollary 3.5. Let E be a reflexive Banach space which admits a weakly continuous

duality mapping J� with gauge � such that � is invariant on [0, 1]. Let {T(s): s ≥ 0} be

a u.a.r. semigroup of nonexpansive mappings with F(S) 
= ∅ , and f Î ΠE, let A be a

strongly positive bounded linear operator with coefficient γ̄ > 0and 0 < γ <
γ̄ϕ(1)

α
. Let

the sequence {xn} be generated by the following:
⎧⎨
⎩
w0 = w ∈ E,
vn = βnwn + (1 − βn)T(tn)wn,
wn+1 = T(tn)

(
αnγ f (wn) + (I − αnA)vn

)
, n ≥ 0

(3:26)

where {an} ⊂ (0, 1) and {bn} ⊂ [0, 1] are real sequences satisfying the following condi-

tions:

(C1) limn®∞ an = 0 and
∑∞

n=1 αn = ∞
(C2) limn®∞ bn = 0,

(C3) limn®∞ tn = ∞.

Then {wn} converges strongly to x̃ that is obtained in Lemma 3.2.

Proof. Define the sequence {un} and {sn} by

un = αnγ f (wn) + (I − αnA)wn, σn = αn+1 ∀n ≥ 0. (3:27)

Taking p ∈ F(S) , we have

‖wn+1 − p‖ = ‖T(tn)un − T(tn)p‖ ≤ ‖un − p‖
= ‖αnγ f (wn) + (I − αnA)wn − (I − αnA)p − αnAp‖
≤ αn‖γ f (wn) − Ap‖ + ‖I − αnA‖ ‖wn − p‖
≤ αn‖γ f (wn) − Ap‖ + ϕ(1)(1 − αnγ̄ )‖wn − p‖
≤ αn‖γ f (wn) − γ f (p)‖ + αn‖γ f (p) − Ap‖ + ϕ(1)(1 − αnγ̄ )‖wn − p‖
≤ αnγ α‖wn − p‖ + αn‖γ f (p) − Ap‖ + ϕ(1)(1 − αnγ̄ )‖wn − p‖

= (1 − αn(γ̄ ϕ(1) − γ α))‖wn − p‖ + αn(γ̄ ϕ(1) − γ α)
‖γ f (p) − Ap‖
(γ̄ ϕ(1) − γ α)

.
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It follows from induction that

‖wn+1 − p‖ ≤ max
{
‖w0 − p‖, ‖γ f (p) − A(p)‖

γ̄ ϕ(1) − γ α

}
, n ≥ 0.

Thus, both {un} and {wn} are bounded. We observe that

un+1 = αn+1f (wn+1) + (I − αn+1A)wn+1 = σnf (T(tn)un) + (I − σnA)T(tn)un.

Thus, Corollary 3.4 implies that{un} converges strongly to some point x̃ . In this case,

we also have

‖wn − x̃‖ ≤ ‖wn − un‖ + ‖un − x̃‖ = αn‖γ f (wn) − Awn‖ + ‖un − x̃‖ → 0.

Hence, the sequence {wn} converges strongly to some point x̃ . This completes the

proof. □
By Lemma 2.2, we obtain the following corollary.

Corollary 3.6. Let E be a uniformly convex Banach space which admits a weakly con-

tinuous duality mapping J� with gauge � such that � is invariant on [0, 1]. Let C be a

nonempty closed convex subset of E and S = {T(s) : s ≥ 0}a nonexpansive semigroup

from C into itself such that F(S) 
= ∅ .
Let f Î ΠE, and let A be a strongly positive linear bounded operator with a coefficient

0 < γ <
γ̄ϕ(1)

α
and 0 < γ <

γ̄ϕ(1)
α

. Let the sequence {xn} be generated by the following:

⎧⎪⎪⎨
⎪⎪⎩

x0 = x ∈ E,

yn = βnxn + (1 − βn) 1
tn

tn∫
0
T(s)xnds,

xn+1 = αnγ f (xn) + (I − αnA)yn, n ≥ 0

(3:28)

where {an} ⊂ (0, 1) and {bn} ⊂ [0, 1] are real sequences satisfying the following condi-

tions:

(C1) limn®∞ an = 0 and
∑∞

n=1 αn = ∞
(C2) limn®∞ bn = 0,

(C3) limn®∞ tn = ∞.

Then {xn} converges strongly to x̃ that is obtained in Lemma 3.2.

Setting E ≡ H and bn ≡ 0 a real Hilbert space in Corollary 3.6, we have the following

result.

Corollary 3.7. [[15], Theorem 3.2] Let H be a real Hilbert space. Let C be a none-

mpty closed convex subset of E and S = {T(s) : s ≥ 0}a nonexpansive semigroup from C

into itself such that F(S) 
= ∅ . Let f Î ΠE, and let A be a strongly positive linear

bounded operator with a coefficient γ̄ > 0and 0 < γ <
γ̄

α
. Let the sequence {xn} be gen-

erated by the following:
⎧⎨
⎩
x0 = x ∈ E,

xn+1 = αnγ f (xn) + (I − αnA) 1
tn

tn∫
0
T(s)xnds, n ≥ 0

(3:29)
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where {an} ⊂ (0, 1) is a real sequences satisfying the following conditions:

(C1) limn®∞ an = 0 and
∑∞

n=1 αn = ∞
(C2) limn®∞ tn = ∞.

Then {xn} converges strongly to x̃ that is obtained in Lemma 3.2. Then {xn} converges

strongly to x̃which solves the variational inequality (1.12).
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