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Abstract

In this article, we introduce the concept of a Banach operator pair in the setting of
modular function spaces. We prove some common fixed point results for such type
of operators satisfying a more general condition of nonexpansiveness. We also
establish a version of the well-known De Marr’s theorem for an arbitrary family of
symmetric Banach operator pairs in modular function spaces without Δ2-condition.
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1. Introduction
The purpose of this article is to give an outline of fixed point theory for mappings

defined on some subsets of modular function spaces which are natural generalization

of both function and sequence variants of many important, from applications perspec-

tive, spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, Calderon-

Lozanovskii spaces and many others. This article operates within the framework of

convex function modulars.

The importance of applications of nonexpansive mappings in modular function

spaces lies in the richness of structure of modular function spaces that besides being

Banach spaces (or F-spaces in a more general settings) are equipped with modular

equivalents of norm or metric notions, and also are equipped with almost everywhere

convergence and convergence in submeasure. In many cases, particularly in applica-

tions to integral operators, approximation and fixed point results, modular type condi-

tions are much more natural as modular type assumptions can be more easily verified

than their metric or norm counterparts. There are also important results that can be

proved only using the concepts of modular function spaces. From this perspective, the

fixed point theory in modular function spaces should be considered as complementary

to the fixed point theory in normed spaces and in metric spaces.

The theory of contractions and nonexpansive mappings defined on convex subsets of

Banach spaces is rich (see, e.g., [1-4]) and has been well developed since the 1960s and

generalized to other metric spaces (see, e.g., [5-7]), and modular function spaces (see,

e.g., [8-11]). The corresponding fixed point results were then extended to larger classes

of mappings like asymptotic mappings [12,13], pointwise contractions [14] and asymp-

totic pointwise contractions and nonexpansive mappings [15-17].
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As noted in [16,18], questions are sometimes asked whether the theory of modular

function spaces provides general methods for the consideration of fixed point proper-

ties; the situation here is the same as it is in the Banach space setting.

In this article, we introduce the concept of a Banach operator pair in modular func-

tion spaces. Then, we investigate the existence of common fixed points for such opera-

tors. Believing that the well-known De Marr’s theorem [19] is not known yet in the

setting of modular function spaces, we establish this classical result in this new setting.

2. Preliminaries
Let Ω be a nonempty set and Σ be a nontrivial s-algebra of subsets of Ω. Let P be a δ-

ring of subsets of Ω, such that E ∩ A ∈ P for any E ∈ P and A Î Σ. Let us assume that

there exists an increasing sequence of sets Kn ∈ P such that Ω = UKn. By E we denote

the linear space of all simple functions with supports from P. By M∞ we will denote

the space of all extended measurable functions, i.e., all functions f : Ω ® [- ∞, ∞] such

that there exists a sequence {gn} ⊂ E, |gn| ≤ |f| and gn(ω) ® f(ω) for all ω Î Ω. By 1A
we denote the characteristic function of the set A.

Definition 2.1. Let ρ : M∞ → [0,∞]be a nontrivial, convex and even function. We

say that r is a regular convex function pseudomodular if:

(i) r(0) = 0;

(ii) r is monotone, i.e., |f(ω)| ≤ |g(ω)| for all ω Î Ω implies r(f) ≤ r(g), where
f , g ∈ M∞;

(iii) r is orthogonally subadditive, i.e., r(f1A∪B) ≤ r(f1A) + r(f1B) for anyA,B Î Σ

such that A ∩ B �= ∅, f ∈ M;

(iv) r has the Fatou property, i.e., |fn(ω)| ↑ |f(ω)| for all ω Î Ω implies r(fn) ↑ r(f),
where f ∈ M∞;

(v) r is order continuous in E, i.e., gn ∈ Eand |gn(ω)| ↓, 0 implies r(gn) ↓, 0.

As in the case of measure spaces, we say that a set A Î Σ is r-null if r(g1A) = 0 for

every g ∈ E. We say that a property holds r-almost everywhere if the exceptional set is

r-null. As usual we identify any pair of measurable sets whose symmetric difference is

r-null as well as any pair of measurable functions differing only on a r-null set. With

this in mind, we define

M(�,�,P ,ρ) = {f ∈ M∞; |f (ω)| < ∞ρ − a.e.}, (2:1)

where each f ∈ M(�,�,P ,ρ) is actually an equivalence class of functions equal r-a.
e. rather than an individual function. When no confusion arises we will write M.

instead of M(�,�,P ,ρ).

Definition 2.2. Let r be a regular function pseudomodular.

(1) We say that r is a regular convex function semimodular if r(af) = 0 for every a
> 0 implies f = 0 r-a.e.
(2) We say that r is a regular convex function modular if r(f) = 0 implies f = 0 r-a.
e.
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The class of all nonzero regular convex function modulars defined on Ω will be

denoted by 	.
Let us denote r(f, E) = r(f1E) for f ∈ M, E Î Σ. It is easy to prove that r(f, E) is a

function pseudomodular in the sense of Definition 2.1.1 in [20] (more precisely, it is a

function pseudomodular with the Fatou property). Therefore, we can use all results of

the standard theory of modular function spaces as per the framework defined by

Kozlowski in [20-22]; see also Musielak [23] for the basics of the general modular

theory.

Remark 2.1. We limit ourselves to convex function modulars in this article. However,

omitting convexity in Definition 2.1 or replacing it by s-convexity would lead to the defi-

nition of nonconvex or s-convex regular function pseudomodulars, semimodulars and

modulars as in [20].

Definition 2.3. [20-22]Let r be a convex function modular.

(a) A modular function space is the vector space Lr(Ω, Σ), or briefly Lr, defined by

Lρ = {f ∈ M;ρ(λf ) → 0 as λ → 0}.

(b) The following formula defines a norm in Lr (frequently called Luxemurg norm):∥∥f∥∥
ρ
= inf{α > 0;ρ(f /α) ≤ 1}.

In the following theorem, we recall some of the properties of modular spaces that

will be used later on in this article.

Theorem 2.1. [20, 21, 22] Let ρ ∈ 	.

(1) Lr, ||f||r is complete and the norm || · ||r is monotone w.r.t. the natural order in

M.

(2) ||fn||r ® 0 if and only if r(afn) ® 0 for every a > 0.

(3) If r(afn) ® 0 for an a > 0, then there exists a subsequence {gn} of {fn} such that

gn ® 0 r-a.e.
(4) If {fn} converges uniformly to f on a set E ∈ P, then r(a(fn - f), E) ® 0 for every

a > 0.

(5) Let fn ® f r-a.e. There exists a nondecreasing sequence of sets Hk ∈ Psuch that

Hk ↑ Ω and {fn} converges uniformly to f on every Hk (Egoroff Theorem).

(6) r(f) ≤ lim inf r(fn) whenever fn ® f r-a.e. (Note: this property is equivalent to the

Fatou Property.)

(7) Defining L0ρ = {f ∈ Lρ ; ρ(f , ·) is order continuous}and
Eρ = {f ∈ Lρ ; λf ∈ L0ρ for every λ > 0}, we have:

(a) Lρ ⊃ L0ρ ⊃ Eρ,

(b) Er has the Lebesgue property, i.e., r(af,Dk) ® 0 for a > 0, f Î Er and Dk ↓ ∅.
(c) Er is the closure of E (in the sense of || · ||r).

The following definition plays an important role in the theory of modular function

spaces.
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Definition 2.4. Let ρ ∈ 	. We say that r has the Δ2-property if supn r(2fn, Dk) ® 0

whenever Dk ↓ ∅and supn r(fn, Dk) ® 0.

Theorem 2.2. Let ρ ∈ 	. The following conditions are equivalent:

(a) r has Δ2-property,

(b) L0ρis a linear subspace of Lr,

(c) Lρ = L0ρ = Eρ,

(d) if r(fn) ® 0, then r(2fn) ® 0,

(e) if r(afn) ® 0 for an a > 0, then ||fn||r ® 0, i.e., the modular convergence is

equivalent to the norm convergence.

The following definition is crucial throughout this article.

Definition 2.5. Let ρ ∈ 	.

(a) We say that {fn} is r-convergent to f and write fn ® f (r) if and only if r(fn - f)

® 0.

(b) A sequence {fn} where fn Î Lr is called r-Cauchy if r(fn - fm) ® 0 as n,m ® ∞.

(c) A set B ⊂ Lr is called r-closed if for any sequence of fn Î B, the convergence fn®f

(r) implies that f belongs to B.

(d) A set B ⊂ Lr is called r-bounded if its r-diameter δr(B) = sup{r(f - g); f Î B,g Î
B} < ∞.

(e) Let f Î Lr and C ⊂ Lr. The r-distance between f and C is defined as

dρ(f ,C) = int {ρ(f − g); g ∈ C}.

Let us note that r-convergence does not necessarily imply r-Cauchy condition. Also,

fn ® f does not imply in general lfn ® lf, l > 1. Using Theorem 2.1, it is not difficult

to prove the following.

Proposition 2.1. Let ρ ∈ 	.

(i) Lr is r-complete,

(ii) r-balls Br(x, r) = {y Î Lr; r(x - y) ≤ r} are r-closed.

The following property plays in the theory of modular function spaces a role similar

to the reflexivity in Banach spaces (see, e.g., [10]).

Definition 2.6. We say that Lr has property (R) if and only if every nonincreasing

sequence {Cn} of nonempty, r-bounded, r-closed, convex subsets of Lr has nonempty

intersection. A nonempty subset K of Lr is said to be r-compact if for any family {Aa;

Aa Î 2Lr, a Î Γ} of r-closed subsets with K ∩ Aα1 ∩ · · · ∩ Aαn �= ∅, for any a1,..., anÎ Γ,

we have

K ∩
(⋂

α∈�

Aα

)
�= ∅.

Next, we give the modular definitions of asymptotic pointwise nonexpansive map-

pings. The definitions are straightforward generalizations of their norm and metric

equivalents [13,15,17].
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Definition 2.7. Let ρ ∈ 	and let C ⊂ Lr be nonempty and r-closed. A mapping T : C

® C is called an asymptotic pointwise mapping if there exists a sequence of mappings

an : C ® [0, ∞) such that

ρ
(
Tn(f ) − Tn(g)

) ≤ αn(f )ρ(f − g) for any f , g ∈ Lρ .

(i) If lim supn®∞ an(f) ≤ 1 for any f Î Lr, then T is called asymptotic point-wise r-
nonexpansive.

(ii) If supnÎN an(f) ≤ 1 for any f Î Lr, then T is called r-nonexpansive. In particular,

we have

ρ
(
T(f ) − T(g)

) ≤ ρ(f − g) for any f , g ∈ C.

The fixed point set of T is defined by Fix(T) = {f Î C; T(f) = f}.

In the following definition, we introduce the concept of Banach Operator Pairs

[24,25] in modular function spaces.

Definition 2.8. Let ρ ∈ 	and let C ⊂ Lr be nonempty. The ordered pair (S, T) of two

self-maps of the subset C is called a Banach operator pair, if the set Fix(T) is S-invar-

iant, namely S(Fix(T)) ⊆ Fix(T).

In [26], a result similar to Ky Fan’s fixed point theorem in modular function spaces

was proved. The following definition is needed:

Definition 2.9. Let ρ ∈ 	. Let C ⊂ Lr be a nonempty r-closed subset. Let T : C ® Lr
be a map. T is called r-continuous if {T(fn)} r-converges to T(f) whenever {fn} r-con-
verges to f. Also, T will be called strongly r-continuous if T is r-continuous and

lim inf
n→∞ ρ(g − T(fn)) = ρ(g − T(f ))

for any sequence {fn} ⊂ C which r-converges to f and for any g Î C.

3. Common fixed points for Banach operator pairs
The study of a common fixed point of a pair of commuting mappings was initiated as

soon as the first fixed point result was proved. This problem becomes more challen-

ging and seems to be of vital interest in view of historically significant and negatively

settled problem that a pair of commuting continuous self-mappings on the unit inter-

val [0,1] need not have a common fixed point [27]. Since then, many fixed point theor-

ists have attempted to find weaker forms of commutativity that may ensure the

existence of a common fixed point for a pair of self-mappings on a metric space. In

this context, the notions of weakly compatible mappings [28] and Banach operator

pairs [24,25,29-34] have been of significant interest for generalizing results in metric

fixed point theory for single valued mappings. In this section, we investigate some of

these results in modular function spaces.

We first prove the following technical result.

Theorem 3.1. Let ρ ∈ 	. Let K ⊂ Lp be r-compact convex subset. Then, any T : K ®
K strongly r-continuous has a nonempty fixed point set Fix(T). Moreover, Fix(T) is r-
compact.

Proof. The existence of a fixed point is proved in [26]. Hence, Fix(T) is nonempty.

Let us prove that Fix(T) is r-compact. It is enough to show that Fix(T) is r-closed
since K is r-compact. Let {fn} be a sequence in Fix(T) such that {fn} r-converges to f.

Let us prove that f Î Fix(T). Since T is r-continuous, so {T(fn)} r-converges to T(f).
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Since T(fn) = fn, we get {fn} r-converges to f and T(f). The uniqueness of the r-limit

implies T(f) = f, i.e., f Î Fix(T).

Definition 3.1. Let K ⊂ Lr be nonempty subset. The mapping T : K ® K is called R-

map if Fix (T) is a r-continuous retract of K. Recall that a mapping R : K ® Fix(T) is

a retract if and only if R ○ R = R.

Note that in general the fixed point set of r-continuous mappings defined on any r-
compact convex subset of Lr may not be a r-continuous retract.
Theorem 3.2. Let ρ ∈ 	. Let K ⊂ Lr be r-compact convex subset. Let T : K ® K be

strongly r-continuous R-map. Let S : K ® K be strongly r-continuous such that (S,T) is

a Banach operator pair. Then, F(S,T) = Fix(T) ⋂ Fix(S) is a nonempty r-compact subset

of K.

Proof. From Theorem 3.1, we know that Fix(T) is not empty and r-compact subset of

K. Since T is an R-map, then there exists a r-continuous retract R : K ® Fix(T). Since

(S,T) is a Banach pair of operators, then S(Fix(T)) ⊂ Fix(T). Note that S○R : K ® K is

strongly r-continuous. Indeed, if {fn} ⊂ K r-converges to f, then {R(fn)} ⊂ K r-con-
verges to R(f) since R is r-continuous. And since S is strongly r-continuous, then for

any g Î K, we have

lim inf
n→∞ ρ(g − S(R(fn))) = ρ(g − S(R(f ))),

which shows that S ○ R is strongly r-continuous. Theorem 3.1 implies that Fix(S ○
R) is nonempty and r-compact. Note that if f Î Fix(S ○ R), then we have S ○ R(f) = S

(R(f)) = f Î Fix(T) since S ○ R(K) ○ Fix(T). In particular, we have R(f) = f. Hence, S(f)

= f, i.e., f Î Fix(T) ⋂ Fix(S). It is easy to then see that Fix(T) ⋂ Fix(S) = Fix(S ○ R) = F

(S,T) which implies F(S,T) is nonempty and r-compact subset of K.

Before we state next result which deals with r-nonexpansive mappings, let us recall

the definition of uniform convexity in modular function spaces [18].

Definition 3.2. Let ρ ∈ 	. We define the following uniform convexity type properties

of the function modular r:
(i) Let r > 0,ε > 0. Define

D1(r, ε) = {(f , g); f , g ∈ Lρ ,ρ(f ) ≤ r,ρ(g) ≤ r,ρ(f − g) ≥ εr}.

Let

δ1(r, ε) = inf
{
1 − 1

r
ρ

(
f + g
2

)
; (f , g) ∈ D1(r, ε)

}
if D1(r, ε) �= ∅,

and δ1(r,ε) = 1 if D1(r, ε) = ∅. We say that r satisfies (UC1) if for every r > 0,ε > 0, δ1
(r,ε) > 0. Note that for every r > 0, D1(r, ε) �= ∅, for ε > 0 small enough.

(ii) We say that r satisfies (UUC1) if for every s ≥ 0, ε > 0 there exists

η1(s, ε) > 0

depending on s and ε such that

δ1(r, ε) > η1(s, ε) > 0 for r > s.
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(iii) Let r > 0, ε > 0. Define

D2(r, ε) =
{
(f , g); f , g ∈ Lρ ,ρ(f ) ≤ r, ρ(g) ≤ r, ρ

(
f − g
2

)
≥ εr

}
.

Let

δ2(r, ε) = inf
{
1 − 1

r
ρ

(
f + g
2

)
; (f , g) ∈ D2(r, ε)

}
if D2(r, ε) �= ∅,

and δ2 (r,ε) = 1 if D2(r, ε) = ∅. We say that r satisfies (UC2) if for every r > 0,ε > 0,

δ2 (r,ε) > 0. Note that for every r > 0, D2(r, ε) �= ∅, for ε > 0 small enough.

(iv) We say that r satisfies (UUC2) if for every s ≥ 0, ε > 0 there exists

η2(s, ε) > 0

depending on s and ε such that

δ2(r, ε) > η2(s, ε) > 0 for r > s.

In [18], it is proved that any asymptotically pointwise r-nonexpansive mapping

defined on a r-closed r-bounded convex subset has a fixed point. The next result

improves their result by showing that the fixed point set is convex.

Theorem 3.3. Assume ρ ∈ 	is (UUC1). Let C be a r-closed r-bounded convex none-

mpty subset of Lr. Then, any T : C ® C asymptotically pointwise r-nonexpansive has a

fixed point. Moreover, the set of all fixed points Fix(T) is r-closed and convex.

Proof. In [18], it is proved that Fix(T) is a r-closed nonempty subset of C. Let us

prove that Fix(T) is convex. Let f,g Î Fix(T), with f ≠ g. For every n Î N, we have

ρ

(
f − Tn

(
f + g
2

))
≤ αn(f )ρ

(
f − g
2

)

and

ρ

(
g − Tn

(
f + g
2

))
≤ αn(g)ρ

(
f − g
2

)
.

Set R = ρ

(
f − g
2

)
. Then,

lim sup
n→∞

ρ

(
f − Tn

(
f + g
2

))
≤ R and lim sup

n→∞
ρ

(
g − Tn

(
f + g
2

))
≤ R.

Since

ρ

(
1
2

[
f − Tn

(
f + g
2

)]
+
1
2

[
Tn

(
f + g
2

)
− g

])
= ρ

(
f − g
2

)
= R,

and r is (UUC2) (since (UUC1) implies (UUC2)), then we must have

lim
n→∞ ρ

(
1
2

[
f − Tn

(
f + g
2

)]
− 1

2

[
Tn

(
f + g
2

)
− g

])
= 0,
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and so

lim
n→∞ ρ

(
f + g
2

− Tn
(
f + g
2

))
= 0.

Since r is convex we get

ρ

(
1
2

[
f + g
2

− T
(
f + g
2

)])
≤ 1

2
ρ

(
f + g
2

− Tn
(
f + g
2

))

+
1
2

ρ

(
Tn

(
f + g
2

)
− T

(
f + g
2

))

which implies

ρ

(
1
2

[
f + g
2

− T
(
f + g
2

)])
≤ 1

2
ρ

(
f + g
2

− Tn
(
f + g
2

))

+
α1

(
f + g
2

)
2

ρ

(
f + g
2

− Tn−1
(
f + g
2

))
.

If we let n ® ∞, we get ρ

(
1
2

[
f + g
2

− T
(
f + g
2

)])
= 0, i.e.,T

(
f + g
2

)
=
f + g
2

and

so
f + g
2

∈ Fix(T). This completes the proof of our claim.

As a corollary, we obtain the following result.

Corollary 3.1. Assume ρ ∈ 	is (UUC1). Let C be a r-closed r-bounded convex none-

mpty subset of Lp. Then, any T : C ® C r-nonexpansive has a fixed point. Moreover,

the set of all fixed points Fix(T) is r-closed and convex.

Next, we discuss the existence of common fixed points for Banach operator pairs of

pointwise asymptotically r-nonexpansive mappings.

Theorem 3.4. Assume ρ ∈ 	is (UUC1). Let C be a r-closed r-bounded convex none-

mpty subset of Lp. Let T : C ® C be asymptotically pointwise r-nonexpansive mapping.

Then, any S : C ® C pointwise asymptotically r-nonexpansive mapping such that (S,

T) is a Banach operator pair has a common fixed point with T. Moreover F(S, T) = Fix

(T) ⋂ Fix(S) is a nonempty r-closed convex subset of C.

Proof. Since T is asymptotically pointwise r-nonexpansive, then Fix(T) is nonempty

r-closed convex subset of C. Since (S, T) is a Banach operator pair, then we must have

S(Fix(T)) ⊂ Fix(T). Theorem 3.3 implies that the restriction of S to Fix(T) has a none-

mpty fixed point set which is r-closed and convex, i.e., F(S,T) = Fix(T) ⋂ Fix(S) is a

nonempty r-closed convex subset of C. This completes the proof of our claim.

As a corollary, we get the following result.

Corollary 3.2. Assume ρ ∈ 	is (UUC1). Let C be a r-closed r-bounded convex none-

mpty subset of Lp. Let T : C ® C be r-nonexpansive mapping. Then, any S : C ® C r-
nonexpansive mapping such that (S,T) is a Banach operator pair has a common fixed

point with T. Moreover, F(S,T) = Fix(T) ⋂ Fix(S) is a nonempty r-closed convex subset

of C.

4. Common fixed point of Banach operator family
The aim of this section is to extend the common fixed point results found in the pre-

vious section to a family of Banach operator mappings. In particular, we prove an
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analogue of De Marr’s result in modular function spaces. In order to obtain such

extension we need to introduce the concept of symmetric Banach operator pairs.

Definition 4.1. Let T and S be two self-maps of a set C. The pair (S,T) is called sym-

metric Banach operator pair if both (S, T) and (T, S) are Banach operator pairs, i.e., T

(Fix(S)) ⊆ Fix(S) and S(Fix(T)) ⊆ Fix(T).

Let ρ ∈ 	 and C be a r-closed nonempty subset of Lp. Let T be a family of self-maps

defined on C. Then, the family T has a common fixed point if it is the fixed point of

each member of T . The set of common fixed points is denoted by Fix(T ). We have by

definition Fix(T ) =
⋂

T∈T Fix(T).

Next, we state an analogue of De Marr’s result in modular function spaces.

Theorem 4.1. Let ρ ∈ 	. Let K ⊂ Lp be nonempty r-compact convex subset. Let T be

a family of self-maps defined on K such that any map in T is strongly r-continuous R-
map. Assume that any two mappings in T form a symmetric Banach operator pair.

Then, the family T has a common fixed point. Moreover, Fix(T )is a r-compact subset of

K.

Proof. Using Theorem 3.2, we deduce that for any T1,T2,... ,Tn in T , we have Fix(T1)

⋂Fix(T2)⋂...⋂Fix(Tn) is a nonempty r-compact subset of K. Therefore, any finite family

of the subsets {Fix(T);T ∈ T } has a nonempty intersection. Since these sets are all r-

closed and K is r-compact, we conclude that Fix(T ) =
⋂

T∈T Fix(T) is not empty and

is r-closed. Therefore, Fix(T ) is a r-compact subset of K which finishes the proof of

our theorem.

As commuting operators are symmetric Banach operators, so we obtain:

Corollary 4.1. Let ρ ∈ 	. Let K ⊂ Lp be nonempty r-compact convex subset. Let T be

a family of commuting self-maps defined on K such that any map in T is strongly r-
continuous R-map. Then, the family T has a common fixed point. Moreover, Fix(T )is a

r-compact subset of K.

Next, we discuss a similar conclusion in modular function spaces Lp when r is

(UUC1). Prior to obtain such result we will need an intersection property which seems

to be new. Indeed, it is well known [18] that if ρ ∈ 	 is (UUC2), then any countable

family {Cn} of r-bounded r-closed convex subsets of Lp has a nonempty intersection

provided that the intersection of any finite subfamily has a nonempty intersection.

Such intersection property is known as property (R). This intersection property is par-

allel to the well-known fact that uniformly convex Banach spaces are reflexive. The

property (R) is essential for the proof of many fixed point theorems in metric and

modular function spaces. But since it is not clear that this intersection property is

related to any topology, we did not know if such intersection property is in fact valid

for any family. Therefore, the next result seems to be new.

Theorem 4.2. Assume ρ ∈ 	is (UUC1). Let {Ca}aÎΓ be a nonincreasing family of

nonempty, convex, r-closed r-bounded subsets of Lp, where Γ is a directed index set.

then,
⋂

α∈� Cα �=∅.
Proof. Recall that Γ is directed if there exists an order ≼ defined on Γ such that for

any a,b Î Γ, there exists g Î Γ such that a ≼ g and b ≼ g. And {Ca}aÎΓ is nonincreas-

ing if and only if for any a, b Î Γ such that a ≼ b, then Cb ⊂ Ca. Note that for any a0

Î Γ, we have
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⋂
α∈�

Cα =
⋂

α0�α

Cα .

Therefore, without of any generality, we may assume that there exists C ⊂ Lp r-
closed r-bounded convex subset such that Ca ⊂ C for any a Î Γ. If δP(C) = 0, then all

subsets Ca are reduced to a single point. In this case, we have nothing to prove.

Hence, let us assume δP(C) > 0. Let f Î C. Then, the proximinality of r-closed convex

subsets of Lp when r is (UUC2) (see [18]) implies the existence of fa Î Ca such that

ρ(f − fα) = dρ(f ,Cα) = inf{ρ(f − g); g ∈ Cα}.

Set Aa = {fb; a ≼ b}, for any a Î Γ. Then, Aa ⊂ Ca, for any a Î Γ. Notice that

δρ(Aα) = δρ

(
convρ (Aα)

)
for any α ∈ �.

Indeed, let g Î Aa, then Aa ⊂ B(g,δr(Aa)). Since B(g,δr(Aa)) is r-closed and convex,

then we must have convρ(Aα) ⊂ B(g, δρ(Aα)). Hence, for any h ∈ convρ(Aα), we have r
(g - h) ≤ δr(Aa). Since g was arbitrary in Aa we conclude that Aa ⊂ B(h, δr(Aa)). Again

for the same reason we get convρ(Aα) ⊂ B(h, δρ(Aα)). Hence, for any g, h ∈ convρ(Aα)

we have r(g - h) ≤ δr(Aa), which implies δρ

(
convρ (Aα)

) ≤ δρ(Aα). This is enough to

have δρ

(
convρ (Aα)

)
= δρ(Aα). Set R = supaÎΓ r(f - fa). Without loss of any generality,

we may assume R > 0. Let us prove that infaÎΓ δr(Aa) = 0. Assume not. Then, infaÎΓ

δr(Aa) > 0. Set δ =
1
2
infα∈� δρ(Aα). Then, for any a Î Γ, there exist b,g Î Γ such that

a ≼ b and a ≼ g and

ρ(fβ − fγ ) > δ.

Since r(f - fg) ≤ R and r(f - fb) ≤ R, then we have

ρ

(
f − fβ + fγ

2

)
≤ R

(
1 − δ1

(
R,

δ

R

))
.

Since fb, fg Î Ca and Ca is convex, we get

ρ(f − fα) ≤ R
(
1 − δ1

(
R,

δ

R

))
,

using the definition of fa. Since a was chosen arbitrarily in Γ we get

R = sup
α∈�

ρ(f − fα) ≤ R
(
1 − δ1

(
R,

δ

R

))
.

This is a contradiction. Therefore, we have infaÎΓ δr(Aa) = 0. Since Γ is directed,

there exists {an} ⊂ Γ such that an ≼ an+1 and infn ≥ 1 δr(Aan) = 0. In particular, we

have Aan+1 ⊂ Aan which implies convρ
(
Aαn+1

) ⊂ convρ
(
Aαn

)
. Using the property (R)

satisfied by Lr, we conclude A =
⋂

n≥1
convρ

(
Aαn

) �=∅. Since

infα∈�δρ

(
convρ

(
Aαn

))
= infα∈�δρ(Aα) = 0, we conclude that A = {h} for some h Î C.

Let us prove that for any a Î Γ we have h ∈ convρ(Aα). Indeed, let a Î Γ. If there

exists n ≥ 1 such that a ≼ an, then we have Aan ⊂ Aa. Hence,

convρ
(
Aαn

) ⊂ convρ (Aα). This clearly implies h ∈ convρ(Aα). Otherwise, assume that

for any n ≥ 1 such that an ≼ a, so Aa ≼ Aan. Hence, convρ (Aα) ⊂ convρ
(
Aαn

)
. In
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particular, we have convρ(Aα) ⊂
⋂

n≥1
convρ

(
Aαn

)
= {h}. Which forces h ∈ convρ(Aα).

Therefore, h ∈ ⋂
α∈� convρ (Aα). Since

⋂
α∈� convρ(Aα) ⊂ ⋂

α∈� Cα, we conclude that

h ∈ ⋂
α∈� Cα. Hence,

⋂
α∈� Cα �=∅.

Using Theorem 4.2, we get the following common fixed point result.

Theorem 4.3. Assume ρ ∈ 	. is (UUC1). Let C be a r-closed r-bounded convex none-

mpty subset of Lp. Let T be a family of self-maps defined on C such that any map in

T is asymptotically pointwise r-nonexpansive. Assume that any two mappings in T form

a symmetric Banach operator pair. Then, the family T has a common fixed point. More-

over, Fix(T )is a r-closed convex subset of C.

Proof. Using Theorem 3.4, we deduce that for any T1,T2,...,Tn in T , we have Fix(T1) ⋂
Fix(T2) ⋂ ... ⋂ Fix(Tn) is a nonempty r-closed convex subset of C. Therefore, any finite

family of the subsets {Fix(T);T ∈ T } has a nonempty intersection. Since these sets are

all r-closed and convex subsets of C, then Theorem 4.2 implies that

Fix(T ) =
⋂

T∈T Fix(T) is not empty and is r-closed and convex. Therefore, Fix(T ) is a

r-closed convex subset of C which finishes the proof of our theorem.

As corollaries we get the following common fixed point results which seem to be

new.

Corollary 4.2. Assume ρ ∈ 	is (UUC1). Let C be a r-closed r-bounded convex none-

mpty subset of Lr. Let T be a family of self-maps defined on C such that any map in

T is r-nonexpansive. Assume that any two mappings in T form a symmetric Banach

operator pair. Then, the family T has a common fixed point. Moreover, Fix(T )is a r-
closed convex subset of C.

Corollary 4.3. Assume ρ ∈ 	is (UUC1). Let C be a r-closed r-bounded convex none-

mpty subset of Lp. Let T be a family of commuting self-maps defined on C such that

any map in T is asymptotically pointwise r-nonexpansive. Then, the family T has a

common fixed point. Moreover, Fix(T )is a r-closed convex subset of C.
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