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Abstract

In this paper, a new class of a pair of generalized nonlinear contractions on partially
ordered partial metric spaces is introduced, and some coincidence and common
fixed-point theorems for these contractions are proved. Presented theorems are
twofold generalizations of very recent fixed-point theorems of Altun and Erduran
(Fixed Point Theory Appl 2011(Article ID 508730):10, 2011), Altun et al. (Topol Appl
157(18):2778-2785, 2010), Matthews (Proceedings of the 8th summer conference on
general topology and applications, New York Academy of Sciences, New York, pp.
183-197, 1994) and many other known corresponding theorems.
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1 Introduction
It is well known that the Banach contraction principle is a very useful, simple and clas-

sical tool in nonlinear analysis. There exist a vast literature concerning its various gen-

eralizations and extensions (see [1-45]). In [22], Matthews extended the Banach

contraction mapping theorem to the partial metric context for applications in program

verification. After that, fixed-point results in partial metric spaces have been studied

[4,8,28,31,34,45]. The existence of several connections between partial metrics and

topological aspects of domain theory has been pointed by many authors (see

[8,9,16,23,31,33,36-38,41,42,46,47]).

First, we recall some definitions of partial metric spaces and some their properties.

Definition 1.1 A partial metric on a set X is a function p : X × X ® ℝ+ such that for

all x, y, z Î X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y) - p(z, z).

Note that the self-distance of any point need not be zero, hence the idea of general-

izing metrics so that a metric on a non-empty set X is precisely a partial metric p on

X such that for any x Î X, p(x, x) = 0.

Similar to the case of metric space, a partial metric space is a pair (X, p) consisting

of a non-empty set X and a partial metric p on X.
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Example 1.1 Let a function p : ℝ+ × ℝ+ ® ℝ+ be defined by p(x, y) = max{x, y} for

any x, y Î ℝ+. Then, (ℝ+ , p) is a partial metric space where the self-distance for any

point x Î ℝ+ is its value itself.

Example 1.2 Consider a function p : ℝ- × ℝ- ® ℝ+ defined by p(x, y) = - min(x, y)

for any x, y Î ℝ-. The pair (ℝ-, p) is a partial metric space for which p is called the

usual partial metric on ℝ- and where the self-distance for any point x Î ℝ- is its abso-

lute value.

Example 1.3 If X: = {[a, b] | a, b Î ℝ, a ≤ b}, then p : X × X ® ℝ+ defined by p([a,

b], [c, d]) = max{b, d} - min{a, b} defines a partial metric on X.

Each partial metric p on X generates a T0 topology τp on X, which has as a base the

family of open p-balls {Bp(x, ε), x Î X, ε > 0}, where

Bp(x, ε) = {y ∈ X|p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

If p is a partial metric on X, then the function ps : X × X ® ℝ+ defined by

ps(x, y) = 2p(x, y) − p(x, x) − p(y, y)

is a metric on X.

Definition 1.2 Let (X, p) be a partial metric space and {xn} be a sequence in X. Then,

(i) {xn} converges to a point x Î X if and only if p(x, x) = limn®+∞ p(x, xn),

(ii) {xn} is a Cauchy sequence if there exists (and is finite) limn,m®+∞ p(xn, xm).

Definition 1.3 A partial metric space (X, p) is said to be complete if every Cauchy

sequence {xn} in X converges, with respect to τp, to a point x Î X, such that p(x, x) =

limn,m®+∞ p(xn, xm).

Remark 1.1 It is easy to see that every closed subset of a complete partial metric

space is complete.

Lemma 1.1 ([22,28]) Let (X, p) be a partial metric space. Then

(a) {xn} is a Cauchy sequence in (X, P) if and only if it is a Cauchy sequence in the

metric space (X, Ps),

(b) (X, p) is complete if and only if the metric space (X, ps) is complete. Furthermore,

limn®+∞ ps (xn, x) = 0 if and only if

p(x, x) = lim
n→+∞ p(xn, x) = lim

n,m→+∞ p(xn, xm).

Matthews [22] obtained the following Banach fixed-point theorem on complete par-

tial metric spaces.

Theorem 1.1 (Matthews [22]) Let f be a mapping of a complete partial metric space

(X, p) into itself such that there is a constant c Î [0,1) satisfying for all x, y Î X :

p(fx, fy) ≤ cp(x, y).

Then, f has a unique fixed point.

Recently, Altun et al. [4] obtained the following nice result, which generalizes Theo-

rem 1.1 of Matthews.

Theorem 1.2 (Altun et al. [4]) Let (X, p) be a complete partial metric space and let

T : X ® X be a map such that

p(Tx,Ty) ≤ ϕ

(
max

{
p(x, y), p(x,Tx), p(y,Ty),

1
2
[p(x,Ty) + p(y,Tx)]

})
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for all x, y Î X, where � : [0, +∞) ® [0, +∞) satisfies the following conditions:

(i) � is continuous and non-decreasing,

(ii)
∑

n≥1 ϕn(t)is convergent for each t > 0.

Then, T has a unique fixed point.

On the other hand, existence of fixed points in partially ordered sets has been con-

sidered recently in [32], and some generalizations of the result of [32] are given in

[1-3,5-7,11,12,14,15,17,19,24-27,29,30,39,40,43] in partial ordered metric spaces. Also,

in [32], some applications to matrix equations are presented, and in [15] and [26],

some applications to ordinary differential equations are given. In [29], O’Regan and

Petruşel established some fixed-point results for self-generalized contractions in

ordered metric spaces. Jachymski [19] established a geometric lemma [19, Lemma 1],

giving a list of equivalent conditions for some subsets of the plane. Using this lemma,

he proved that some very recent fixed-point theorems for generalized contractions on

ordered metric spaces obtained by Harjani and Sadarangani [15] and Amini-Harandi

and Emami [5] do follow from an earlier result of O’Regan and Petruşel [29, Theorem
3.6].

Very recently, Altun and Erduran [3] generalized Theorem 1.2 to partially ordered

complete partial metric spaces and established the following new fixed-point theorems,

involving a function � : [0, +∞) ® [0, +∞) satisfying the conditions (i)-(ii) in Theorem

1.2.

Theorem 1.3 (Altun and Erduran [3]). Let (X, ≼) be a partially ordered set and sup-

pose that there is a partial metric p on X such that (X, p) is a complete partial metric

space. Suppose F : X ® X is a continuous and non-decreasing mapping (with respect to

≼) such that

p(Fx, Fy) ≤ ϕ

(
max

{
p(x, y), p(x, Fx), p(y, Fy),

1
2
[p(x, Fy) + p(y, Fx)]

})

for all x, y Î X with y ≼ x, where � : [0, +∞) ® [0, +∞) satisfies conditions (i)-(ii) in

Theorem 1.2. If there exists x0 Î X such that x0 ≼ Fx0, then there exists x Î X such

that Fx = x. Moreover, p (x, x) = 0.

Theorem 1.4 (Altun and Erduran [3]) Let (X, ≼) be a partially ordered set and sup-

pose that there is a partial metric p on X such that (X, p) is a complete partial metric

space. Suppose F : X ® X is a non-decreasing mapping such that

p(Fx, Fy) ≤ ϕ

(
max

{
p(x, y), p(x, Fx), p(y, Fy),

1
2
[p(x, Fy) + p(y, Fx)]

})

for all x, y Î X with y ≺ x (y ≼ x and y ≠ x), where � : [0, +∞) ® [0, +∞) satisfies

conditions (i)-(ii) in Theorem 1.2. Suppose also that the condition{
if {xn} ⊂ X is a increasing sequence

with xn → x ∈ X, then xn ≺ x for all n

holds. If there exists x0 Î X such that x0 ≼ Fx0, then there exists x Î X such that Fx =

x. Moreover, p(x, x) = 0.

Theorem 1.5 (Altun and Erduran [3]) Let (X, ≼) be a partially ordered set and sup-

pose that there is a partial metric p on X such that (X, p) is a complete partial metric

space. Suppose F : X ® X is a continuous and non-decreasing mapping such that
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p(Fx, Fy) ≤ ϕ

(
max

{
p(x, y),

1
2
[p(x, Fx) + p(y, Fy)],

1
2
[p(x, Fy) + p(y, Fx)]

})

for all x, y Î X with y ≼ x, where � : [0, +∞) ® [0, +∞) satisfies conditions (i)-(ii) in

Theorem 1.2. If there exists x0 Î X such that x0 ≼ Fx0, then there exists x Î X such

that Fx = x. Moreover, p(x, x) = 0. If we suppose that for all x, y Î X there exists z Î
X, which is comparable to x and y, we obtain uniqueness of the fixed point of F.

Altun et al. [4], Altun and Erduran [3] and many authors have obtained fixed-point

theorems for contractions under the assumption that a comparison function � : [0,

+∞) ® [0, +∞) is non-decreasing and such that
∑∞

n=1 ϕn(t) < ∞ for each t > 0 (see, e.

g., [13] and the references in [11,18]-Added in proof). However, the latter condition is

strong and rather hard to verify in practice, though some examples and general criteria

for this convergence are known (see, e.g., [3,44]). So a natural question arises whether

this strong condition can be omitted in partial metric fixed-point theory.

The aims of this paper is to establish coincidence and common fixed-point theorems

in ordered partial metric spaces with a function � satisfying the condition �(t) <t for

all t > 0, which is weaker than the condition
∑∞

n=1 ϕn(t) < ∞. Presented theorems gen-

eralize and extend to a pair of mappings the results of Altun and Erduran [3], Altun et

al. [4], Matthews [22] and many other known corresponding theorems.

2 Main results
We start this section by some preliminaries.

Definition 2.1 (Altun and Erduran [3]) Let (X, p) be a partial metric space, F : X ®
X be a given mapping. We say that F is continuous at x0 Î X, if for every ε >0, there

exists δ >0 such that F(Bp(x0, δ)) ⊆ Bp(Fx0, ε).

The following result is easy to check.

Lemma 2.1 Let (X, p) be a partial metric space, F : X ® X be a given mapping. Sup-

pose that F is continuous at x0 Î X. Then, for all sequence {xn} ⊂ X, we have

xn → x0 ⇒ Fxn → Fx0.

Definition 2.2 (Ćirić et al. [11]) Let (X, ≼) be a partially ordered set and F, g : X ®
X are mappings of X into itself. One says F is g-non-decreasing if for x, y Î X, we have

gx � gy ⇒ Fx � Fy.

We introduce the following definition.

Definition 2.3 Let (X, p) be a partial metric space and F, g: X ® X are mappings of

X into itself. We say that the pair {F, g} is partial compatible if the following conditions

hold:

(b1) p(x, x) = 0 ⇒ p(gx, gx) = 0,

(b2) limn®+∞ p(Fgxn, gFxn) = 0, whenever {xn} is a sequence in X such that Fxn ® t

and gxn ® t for some t Î X.

It is clear that Definition 2.3 extends and generalizes the notion of compatibility

introduced by Jungck [21].

Define by j the set of functions � : [0, +∞) ® [0, +∞) satisfying the following

conditions:

(c1) � is continuous and non-decreasing,

(c2) �(t) <t for each t > 0.
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Now, we are ready to state and prove our first result.

Theorem 2.1 Let (X, ≼) be a partially ordered set and suppose that there is a partial

metric p on X such that (X, p) is a complete partial metric space. Let F, g : X ® X be

two continuous self-mappings of X such that FX ⊆ gX, F is a g-non-decreasing mapping,

the pair {F, g} is partial compatible, and

p(Fx, Fy) ≤ ϕ

(
max

{
p(gx, gy), p(gx, Fx), p(gy, Fy),

1
2
[p(gx, Fy) + p(gy, Fx)]

})
(1)

for all x, y Î X for which gy ≼ gx, where a function � Î j. If there exists x0 Î X with

gx0 ≼ Fx0, then F and g have a coincidence point, that is, there exists x Î X such that

Fx = gx. Moreover, we have p(x, x) = p(Fx, Fx) = p(gx, gx) = 0.

Proof. Let x0 Î X such that gx0 ≼ Fx0. Since FX ⊆ gX, we can choose x1 Î X so that

gx1 = Fx0. Again, from FX ⊆ gX, there exists x2 Î X such that gx2 = Fx1. Continuing

this process, we can choose a sequence {xn} ⊂ X such that

gxn+1 = Fxn, ∀n ≥ 0.

Since gx0 ≼ Fx0 and Fx0 = gx1, then gx0 ≼ gx1. Since F is a g-non-decreasing mapping,

we have Fx0 ≼ Fx1, that is, gx1 ≼ gx2. Again, using that F is a g-non-decreasing map-

ping, we have Fx1 ≼ Fx2, that is, gx2 ≼ gx3. Continuing this process, we get

gx1 � gx2 � gx3 � · · · � gxn � gxn+1 � · · · (2)

Suppose that there exists n Î N such that p(Fxn, Fxn+1) = 0. This implies that Fxn =

Fxn+1, that is, gxn+1 = Fxn+1. Then, xn+1 is a coincidence point of F and g, and so we

have finished the proof. Thus, we can assume that

p(Fxn, Fxn+1) > 0, ∀n ∈ N. (3)

We will show that

p(Fxn, Fxn+1) ≤ ϕ(p(Fxn−1, Fxn)) for all n ≥ 1. (4)

Using (2) and applying the considered contraction (1) with x = xn and y = xn+1, we

get

p(Fxn, Fxn+1) ≤

ϕ

(
max

{
p(gxn, gxn+1), p(Fxn, gxn), p(Fxn+1, gxn+1),

1
2
[p(gxn, Fxn+1) + p(Fxn, gxn+1)]

})

= ϕ

(
max

{
p(Fxn−1, Fxn), p(Fxn+1, Fxn),

1
2
[p(Fxn−1, Fxn+1) + p(Fxn, Fxn)]

})

≤ ϕ

(
max

{
p(Fxn−1, Fxn), p(Fxn+1, Fxn),

1
2
[p(Fxn−1, Fxn) + p(Fxn, Fxn+1)]

})
.

Hence, as

p(Fxn, Fxn) + p(Fxn−1, Fxn+1) ≤ p(Fxn−1, Fxn) + p(Fxn, Fxn+1)

and � is non-decreasing, we have

p(Fxn, Fxn+1) ≤ ϕ
(
max

{
p(Fxn−1, Fxn), p(Fxn+1, Fxn)

})
. (5)
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If we suppose that max
{
p(Fxn−1, Fxn), p(Fxn+1, Fxn)

}
= p(Fxn+1, Fxn), then from (5),

p(Fxn, Fxn+1) ≤ ϕ(p(Fxn+1, Fxn)).

Using (3) and the fact that �(t) <t for all t > 0, we have

p(Fxn, Fxn+1) ≤ ϕ(p(Fxn+1, Fxn)) < p(Fxn+1, Fxn),

a contradiction. Therefore,

max
{
p(Fxn−1, Fxn), p(Fxn+1, Fxn)

}
= p(Fxn−1, Fxn),

and so from (5),

p(Fxn, Fxn+1) ≤ ϕ(p(Fxn−1, Fxn)).

Thus, we proved (4).

Since � is non-decreasing, repeating the inequality (4) n times, we get

p(Fxn, Fxn+1) ≤ ϕn(p(Fx0, Fx1)), ∀n ∈ N. (6)

Letting n ® +∞ in the inequality (6) and using the fact that �n (t) ® 0 as n ® +∞

for all t > 0, we obtain

lim
n→+∞ p(Fxn, Fxn+1) = 0. (7)

On the other hand, we have

ps(Fxn, Fxn+1) = 2p(Fxn, Fxn+1) − p(Fxn, Fxn) − p(Fxn+1, Fxn+1)

≤ 2p(Fxn, Fxn+1).

Letting n ® +∞ in this inequality, by (7), we get

lim
n→+∞ ps(Fxn, Fxn+1) = 0. (8)

Now, we shall prove that {Fxn} is a Cauchy sequence in the metric space (X, ps). Sup-

pose, to the contrary, that {Fxn} is not a Cauchy sequence in (X, ps). Then, there exists

ε > 0 such that for each positive integer k, there exist two sequences of positive inte-

gers {m(k)} and {n(k)} such that

n(k) > m(k) > k and ps(Fxm(k), Fxn(k)) ≥ ε. (9)

Since ps(x, y) ≤ 2p(x, y) for all x, y Î X, from (9), for all positive integer k, we have

n(k) > m(k) > k and p(Fxm(k), Fxn(k)) ≥ ε

2
.

Without loss of generality, we can suppose that also

n(k) > m(k) > k, p(Fxm(k), Fxn(k)) ≥ ε

2
, p(Fxm(k), Fxn(k)−1) <

ε

2
. (10)

From (10) and the triangular inequality (that holds for a partial metric), we have

ε

2
≤ p(Fxm(k), Fxn(k))

≤ p(Fxm(k), Fxn(k)−1) + p(Fxn(k)−1, Fxn(k)) − p(Fxn(k)−1, Fxn(k)−1)

<
ε

2
+ p(Fxn(k)−1, Fxn(k)).
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Letting k ® +∞ and using (7), we get

lim
k→+∞

p(Fxm(k), Fxn(k)) =
ε

2
. (11)

Again, using the triangular inequality, we obtain

ε

2
≤ p(Fxm(k), Fxn(k)) ≤ p(Fxm(k), Fxm(k)−1) + p(Fxm(k)−1, Fxn(k))

≤ p(Fxm(k), Fxm(k)−1) + p(Fxn(k), Fxm(k)) + p(Fxm(k)−1, Fxm(k)).

Letting k ® +∞ in this inequality, and using (11) and (7), we get

ε

2
≤ lim

k→+∞
p(Fxn(k), Fxm(k)−1) ≤ ε

2
.

Hence,

lim
k→+∞

p(Fxn(k), Fxm(k)−1) =
ε

2
. (12)

On the other hand, we have

p(Fxn(k), Fxm(k)) ≤ p(Fxn(k), Fxn(k)+1) + p(Fxn(k)+1, Fxm(k)). (13)

From (1) with x = xn and y = xn+1, we get

p(Fxn(k)+1, Fxm(k)) ≤
ϕ

(
max

{
p(Fxn(k), Fxm(k)−1), p(Fxn(k)+1, Fxn(k)), p(Fxm(k), Fxm(k)−1 ),

1
2
[p(Fxn(k), Fxm(k)) + p(Fxn(k)+1, Fxm(k)−1)]

})
≤ ϕ

(
max

{
p(Fxn(k), Fxm(k)−1), p(Fxn(k)+1, Fxn(k)), p(Fxm(k), Fxm(k)−1) ,

1
2
[p(Fxn(k), Fxm(k)) + p(Fxn(k)+1, Fxn(k)) + p(Fxn(k), Fxm(k)−1)]

})
:= ϕ(ξ(k)).

Therefore, from (13) and since � is a non-decreasing function, we get

p(Fxn(k), Fxm(k)) ≤ p(Fxn(k), Fn(k)+1) + ϕ(ξ(k)).

Letting k ® +∞ in the above inequality, using (7), (11), (12) and the continuity of �,

we have

ε

2
≤ ϕ

( ε

2

)
<

ε

2
,

a contradiction. Thus, our supposition that {Fxn} is not a Cauchy sequence was

wrong. Therefore, {Fxn} is a Cauchy sequence in the metric space (X, ps), and so we

have

lim
m,n→+∞ ps(Fxn, Fxm) = 0. (14)

Now, since (X, p) is complete, then from Lemma 1.1, (X, ps) is a complete metric

space. Therefore, the sequence {Fxn} converges to some x Î X, that is,

lim
n→+∞ ps(Fxn, x) = lim

n→+∞ ps(gxn+1, x) = 0.
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From the property (b) in Lemma 1.1, we have

p(x, x) = lim
n→+∞ p(Fxn, x) = lim

n→+∞ p(gxn+1, x) = lim
m,n→+∞ p(Fxn, Fxm). (15)

On the other hand, from property (p2) of a partial metric, we have

p(Fxn, Fxn) ≤ p(Fxn, Fxn+1) for all n ∈ N.

Letting n ® +∞ in the above inequality and using (7), we obtain

lim
n→+∞ p(Fxn, Fxn) = 0.

Therefore, from the definition of ps and using (14), we get limm,n®+∞ p(Fxn, Fxm) =

0. Thus, from (15), we have

p(x, x) = lim
n→+∞ p(Fxn, x) = lim

m,n→+∞ p(Fxn, Fxm) = 0. (16)

Now, since F is continuous, from (16) and using Lemma 2.1, we get

lim
n→+∞ p(F(Fxn), Fx) = p(Fx, Fx). (17)

Using the triangular inequality, we obtain

p(Fx, gx) ≤ p(Fx, F(Fxn)) + p(F(gxn+1), g(Fxn+1)) + p(g(Fxn+1), gx). (18)

Letting n ® +∞ in the above inequality, using (17), (15), (16), the partial compatibil-

ity of {F, g}, the continuity of g and Lemma 2.1, we have

p(Fx, gx) ≤ p(Fx, Fx) + p(gx, gx) = p(Fx, Fx). (19)

Now, suppose that p(Fx, gx) > 0. Then, from (1) with x = y, we get

p(Fx, Fx) ≤ ϕ (max{p(gx, gx), p(Fx, gx)}) = ϕ (p(Fx, gx)) < p(Fx, gx).

Therefore, from (19), we have

p(Fx, gx) < p(Fx, gx),

a contradiction. Thus, we have p(Fx, gx) = 0, which implies that Fx = gx, that is, x is

a coincidence point of F and g. Moreover, from (16) and since the pair {F, g} is partial

compatible, we have p(x, x) = 0 = p(gx, gx) = p(Fx, Fx). This completes the proof. ■
An immediate consequence of Theorem 2.1 is the following result.

Theorem 2.2 Let (X, ≼) be a partially ordered set and suppose that there is a partial

metric p on X such that (X, p) is a complete partial metric space. Suppose F : X ® X is

a continuous and non-decreasing mapping (with respect to ≼) such that

p(Fx, Fy) ≤ ϕ

(
max

{
p(x, y), p(x, Fx), p(y, Fy),

1
2
[p(x, Fy) + p(y, Fx)]

})
(20)

for all x, y Î X with y ≼ x, where � : [0, +∞) ® [0, +∞) is continuous non-decreasing

and �(t) <t for all t > 0. If there exists x0 Î X such that x0 ≼ Fx0, then there exists x Î
X such that Fx = x. Moreover, p(x, x) = 0.

Proof. Putting gx = Ix = x in Theorem 2.1, we obtain Theorem 2.2. ■
Now we shall present an example in which F: X ® X and � : [0, +∞) ® [0, +∞)

satisfy all hypotheses of our Theorem 2.2, but not the hypotheses of Theorems of
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Altun et al. [4], Altun and Erduran [3] with � given in an illustrative example in [3],

Matthews [22] and of many other known corresponding theorems.

Before giving our example, we need the following result.

Lemma 2.2 Consider X = [0, +∞) endowed with the partial metric p : X × X ® [0,

+∞) defined by p(x, y) = max{x, y} for all x, y ≥ 0. Let F : X ® X be a non-decreasing

function. If F is continuous with respect to the standard metric d(x, y) = |x - y| for all

x, y ≥ 0, then F is continuous with respect to the partial metric p.

Proof. Let {xn} be a sequence in X such that limn®+∞ p(xn, x) = p(x, x) for some x Î
X, that is, limn®+∞ max{xn, x} = x. Using Lemma 2.1, we have to prove that limn®+∞ p

(Fxn, Fx) = p(Fx, Fx), that is, limn®+∞ max{Fxn, Fx} = Fx.

Since F is a non-decreasing mapping, we have

max{Fxn, Fx} = F(max{xn, x}). (21)

Now, using that F is continuous with respect to the standard metric, we have

lim
n→+∞max{xn, x} = x ⇒ lim

n→+∞ F(max{xn, x}) = Fx.

Therefore, from (21), it follows that

lim
n→+∞max{Fxn, Fx} = Fx.

This makes end to the proof. ■
Example 2.1 Let X = [0, +∞) and (X, p) be a complete partial metric space, where p :

X × X ® ℝ+ is defined by p(x, y) = max{x, y}. Let us define a partial order ≼ on X as

follows:

x � y ⇔ x = y or (x, y ∈ [0, 1) with x ≤ y).

Define F : X ® X by

F(x) =

⎧⎪⎨
⎪⎩

x

1 + x
if x ∈ [0, 1),√

x
2

if x ≥ 1,

and let � : [0, +∞) ® [0, +∞) be defined by

ϕ(t) =

⎧⎨
⎩

t
1 + t

if t ∈ (0, 1],
t
2

if t > 1.

Clearly the function � Î j, that is, � is continuous non-decreasing and �(t) <t for

each t > 0. On the other hand, using Lemma 2.2, since F is non-decreasing (with respect

to the usual order) and continuous in X with respect to the standard metric, then it is

continuous with respect to the partial metric p. The function F is also non-decreasing

with respect to the partial order ≼.
We now show that F satisfies the nonlinear contractive condition (20) for all x, y Î X

with y ≼ x. By definition of F, we have
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p(Fx, Fy) = max
{

x
1 + x

,
y

1 + y

}

=
x

1 + x
= ϕ(max{x, y})
= ϕ(p(x, y)).

Thus,

p(Fx, Fy) ≤ ϕ

(
max

{
p(x, y), p(Fx, x), p(Fy, y),

1
2
[p(x, Fy) + p(Fx, y)]

})
.

Therefore, the contractive condition (20) is satisfied for all x, y Î X for which y ≼ x.

Also, for x0 = 0, we have x0 ≼ Fx0.

Therefore, all hypotheses of Theorem 2.2 are satisfied and F has a fixed point. Note

that it is easy to see that the hypothesis (23) as well as all other hypotheses in Theorems

2.3 and 2.4 below is also satisfied.

Observe that in this example, � does not satisfy the condition
∑∞

n=1 ϕn(t) < ∞ for

each t > 0 of Theorems in [3,4]. Indeed, let t0 Î (0, 1] be arbitrary. Then, it is easy to

show by induction that �n(t0) = t0/(1 + nt0). Thus,

∞∑
n=1

ϕn(t0) =
∞∑
n=1

t0
1 + nt0

= +∞.

Note that F does not satisfy the contractive condition (20) in Theorem 2.2 with a

function

ϕ(t) =
t2

1 + t
.

This function is given by Altun and Erduran in their illustrative example in [3]. It is

easy to show that for y ≼ x,

p(Fx, Fy) = max
{

x
1 + x

,
y

1 + y

}
=

x
1 + x

>
x2

1 + x

= ϕ

(
max

{
p(x, y), p(x, Fx), p(y, Fy),

1
2
[p(x, Fy) + p(y, Fx)]

})

≥ ϕ

(
max

{
p(x, y), p(x, Fx), p(y, Fy),

1
2
[p(x, Fy) + p(y, Fx)]

})
.

Now, we will prove the following result.

Theorem 2.3 Let (X, ≼) be a partially ordered set and suppose that there is a partial

metric p on X such that (X, p) is a complete partial metric space. Let F,g : X ® X be

two self-mappings of X such that FX ⊆ gX, F is a g-non-decreasing mapping and,

p(Fx, Fy) ≤ ϕ

(
max

{
p(gx, gy), p(gx, Fx), p(gy, Fy),

1
2
[p(gx, Fy) + p(gy, Fx)]

})
(22)

for all x, y Î X for which gx ≻ gy, where� Î j. Also suppose{
if {gxn} ⊂ X is a increasing sequence

with gxn → gz ∈ gX, then gxn ≺ gz, gz � g(gz) for all n
(23)
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holds. Also suppose gX is closed. If there exists x0 Î X with gx0 ≼ Fx0, then F and g

have a coincidence point x Î X such that p(Fx, Fx) = p(gx, gx) = 0. Further, if F and g

commute at their coincidence points, then F and g have a common fixed point.

Proof. Denote

M[F, g](x, y) := max
{
p(gx, gy), p(gx, Fx), p(gy, Fy),

1
2
[p(gx, Fy) + p(gy, Fx)]

}

for all x, y Î X.

As in the proof of Theorem 2.1, we can construct a sequence {xn} in X by gxn+1 =

Fxn for all n ≥ 0. Also, we can assume that Fxn ≠ Fxn+1 for all n ≥ 0; otherwise, we are

finished. Therefore, we have

gx1 ≺ gx2 ≺ · · · ≺ gxn ≺ gxn+1 ≺ · · · (24)

Again, as in the proof of Theorem 2.1, we can show that {Fxn} is a Cauchy sequence

in the complete metric space (X, ps), and therefore, there exists y Î X such that

p(y, y) = lim
n→+∞ p(Fxn, y) = lim

m,n→+∞ p(Fxn, Fxm) = 0. (25)

Since {Fxn} ⊂ gX and gX is closed, there exists x Î X such that y = gx. From (24) and

hypothesis (23), we have

gxn ≺ gx for all n, gx � g(gx). (26)

Now, we will show that x is a coincidence point of F and g. Using the triangular

inequality, we have

p(gx, Fx) ≤ p(gx, gxn+1) + p(Fxn, Fx).

From (26), using the considered contraction, we have

p(Fx, Fxn) ≤ ϕ(M[F, g](x, xn)).

Thus,

p(gx, Fx) ≤ p(gx, Fxn) + ϕ(M[F, g](x, xn)). (27)

Now, we have

M[F, g](x, xn) =

max
{
p(gx, Fxn−1), p(Fx, gx), p(Fxn , Fxn−1),

1
2
[p(gx, Fxn) + p(Fx, Fxn−1)]

}
≤ max

{
p(gx, Fxn−1), p(Fx, gx), p(Fxn , Fxn−1),

1
2
[p(gx, Fxn) + p(Fx, gx) + p(gx, Fxn−1)]

}
.

Since � is a non-decreasing function, using (25), the above inequality and n ® +∞ in

(27), we get

p(gx, Fx) ≤ ϕ(p(gx, Fx)).

If p(gx, Fx) > 0, we obtain p(gx, Fx) ≤ �(p(gx, Fx)) <p(gx, Fx): a contradiction. We

deduce that p(gx, Fx) = 0, which implies that gx = Fx, that is, x is a coincidence point

of F and g.
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Suppose now that F and g commute at x. Set w = Fx = gx. Then,

Fw = F(gx) = g(Fx) = gw. (28)

From the hypothesis (23), we have gx ≼ g(gx) = gw. If gx = gw, we get w = gw = Fw,

and the proof is finished. Then, suppose that gx ≺ gw. Applying the considered con-

traction, we get

p(Fw, Fx) ≤ ϕ(M[F, g](w, x)), (29)

where

M[F, g](w, x)

= max
{
p(gw, gx), p(Fw, gw), p(Fx, gx),

1
2
[p(gw, Fx) + p(Fw, gx)]

}

= max
{
p(Fw, Fx), p(Fw, Fw), p(Fx, Fx),

1
2
[p(Fw, Fx) + p(Fw, Fx)]

}
= max{p(Fw, Fx), p(Fw, Fw)}
= p(Fw, Fx).

Suppose that p(Fw, Fx) > 0, From (29), we get

p(Fw, Fx) ≤ ϕ(M[F, g](w, x)) = ϕ(p(Fw, Fx)) < p(Fw, Fx),

which is a contradiction. Thus, we have p(Fw, Fx) = 0, which implies that Fw = Fx =

w. Therefore, from (28), we have w = Fw = gw, and w is a common fixed point of F

and g. This completes the proof. ■
Remark 2.1 The result given by Theorem 2.3 is also valid if the contraction condition

(22) is satisfied for all x, y Î X with gx ≽ gy and (23) is replaced by{
if {gxn} ⊂ X is a increasing sequence

with gxn → gz ∈ gX, then gxn � gz, gz � g(gz) for all n

An immediate consequence of Theorem 2.3 is the following.

Theorem 2.4 Let (X, ≼) be a partially ordered set and suppose that there is a partial

metric p on X such that (X, p) is a complete partial metric space. Suppose F : X ® X is

a non-decreasing mapping such that

p(Fx, Fy) ≤ ϕ

(
max

{
p(x, y), p(x, Fx), p(y, Fy),

1
2
[p(x, Fy) + p(y, Fx)]

})
,

for all x, y Î X with y ≺ x, where � : [0, +∞) ® [0, +∞) is continuous non-decreasing

and �(t) < t for all t > 0. Suppose also that the condition{
if {xn} ⊂ X is a increasing sequence

with xn → x ∈ X, then xn ≺ x for all n
(30)

holds. If there exists x0 Î X such that x0 ≼ Fx0, then there exists x Î X such that Fx =

x. Moreover, p(x, x) = 0.

Now, we give a simple example to show that our result given by Theorem 2.3 is

more general than Theorem 3.6 of O’Regan and Petruşel [29].
Example 2.2 Let X = [0, +∞) endowed with the partial metric p(x, y) = max{x, y} for

all x, y Î X. We endow X with the usual order ≤. Consider the mappings F, g : X ® X
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and � : [0, +∞) ® [0, +∞) defined by

F(x) = 2x, g(x) = 4x, ϕ(t) = (3/4)t.

Let y ≤ x. We have

p(F(x), F(y)) = F(x) = 2x < 3 · 1
4

· 4x = 3
4
p(g(x), g(y)) = ϕ(p(g(x), g(y)).

Then, (22) is satisfied. It is easy to show that all the other hypotheses of Theorem 2.3

are also satisfied. Since F and g commute, we deduce that F and g have a common

fixed point z = 0, that is, 0 = F(0) = g(0).

On the other hand, if we endow X with the standard metric d(x, y) = |x - y| for all x,

y Î X, we have

d(F(x), F(y)) = |F(x) − F(y)| = 2|x − y| > ϕ(|x − y|)

for x ≠ y and for any � : [0, +∞) ® [0, +∞) satisfying �(t) < t for t >0. Therefore,

Theorem 3.6 of O’Regan and Petruşel [29]is not applicable.
Note that F also does not satisfy the contractive conditions in the rest theorems of

O’Regan and Petruşel [29].
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