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The aim of this work is to prove some iteration procedures in cone metric spaces.
This extends some recent results of T-stability.
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1. Introduction
Let E be a real Banach space. A subset P ⊂ E is called a cone in E if it satisfies in the

following conditions:

(i) P is closed, nonempty and P ≠ {0}.

(ii) a, b Î R, a, b ≥ 0 and x, y Î P imply that ax + by Î P.

(iii) x Î P and -x Î P imply that x = 0.

The space E can be partially ordered by the cone P ⊂ E, by defining; x ≤ y if and

only if y - x Î P, Also, we write x ≪ y if y - x Î int P, where int P denotes the interior

of P. A cone P is called normal if there exists a constant k > 1 such that 0 ≤ x ≤ y

implies ||x|| ≤ k||y||.

In the following we suppose that E is a real Banach space, P is a cone in E and ≤ is a

partial ordering with respect to P.

Definition 1.1. ([1]) Let X be a nonempty set. Assume that the mapping d: X × X ®
E satisfies in the following conditions:

(i) 0 ≤ d(x, y) for all x, y Î X and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y Î X.

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z Î X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

If T is a self-map of X, then by F(T) we mean the set of fixed points of T. Also, N0

denotes the set of nonnegative integers, i.e., N0 = N ∪ {0}.

Definition 1.2. ([2]) If 0 <a < 1, 0 <b, γ <
1
2

we say that a map T: X ® X is

Zamfirescu with respect to (a, b, g), if for each pair x, y Î X, T satisfies at least one of

the following conditions:

Z(1). d(Tx, Ty) ≤ ad(x, y),
Z(2). d(Tx, Ty) ≤ b(d(x, Tx) + d(y, Ty)),

Z(3). d(Tx, Ty) ≤ g (d(x, Ty) + d(y, Tx)).

Usually for simplicity, T is called a Zamfirescu operator if T is Zamfirescu with

respect to some (a, b, g), for some scalars a, b, g with above restrictions. Also, T is
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called a f-Zamfirescu operator if the relations Z(1), Z(2) and Z(3) hold for all x Î X

and all y Î F(T).

Definition 1.3. ([3]) Let (X, d) be a cone metric space. A map T: X ® X is called a

quasi-contraction if for some constant l Î (0, 1) and for every x, y Î X, there exists

u Î C(T; x, y) ≡ {d(x, y), d(x, Tx), d(y, Ty), d(y, Tx), d(x, Ty)} such that d(Tx, Ty) ≤

lu. If this inequality holds for all x Î X and y Î F(T), we say that T is a f-quasi-

contraction.

Lemma 1.4. ([4]) If T is a quasi-contraction with 0 < λ < 1
2 , then T is a Zamfirescu

operator.

Lemma 1.5. ([4]) Let P be a normal cone, and let {an} and {bn} be sequences in E

satisfying the inequality an+1 ≤ han + bn, where h Î (0, 1) and bn ® 0 as n ® ∞. Then

limn an = 0.

Definition 1.6. A self-map T of a metric space (X, d) is called nonexpansive if d(Tx,

Ty) ≤ d(x, y) for all x, y Î X.

Definition 1.7. A self-map T of (X, d) is called affine if T(ax + (1- a)y) = aTx +

(1 -a)Ty for all x, y Î X, and a Î [0, 1].

Definition 1.8. A self-map T of (X, d) is called semi-compact if the convergence

||xn - Txn||®0 implies that there exist a subsequence {xnk} of {xn} and x* Î X

such that xnk → x∗ .

2. Main results
In this section we want to prove some iteration procedures in cone spaces. This

extends some recent results of T-stability ([4]). Khamsi [5] has shown that any normal

cone metric space can have a metric type defined on it. Consequently, our results are

consistent for any metric spaces. Let (X, d) be a cone metric space and {Tn}n be a

sequence of self-maps of x with ∩nF(Tn) ≠ ∅. Let x0 be a point of X, and assume that

xn+1 = f(Tn, xn) is an iteration procedure involving {Tn}n, which yields a sequence {xn}

of points from X.

Definition 2.1. The iteration xn+1 = f(Tn, xn) is said {Tn}-semistable (or semistable

with respect to {Tn}) if {xn} converges to a fixed point q in ∩nF(Tn), and whenever {yn}

is a sequence in X with limn d(yn, f (Tn, yn)) = 0, and d(yn, f (Tn, yn)) = o(tn) for some

sequence {tn} ⊂ R+, then we have yn ® q.

In practice, such a sequence {yn} could arise in the following way. Let x0 be a point

in X. Set xn+1 = f(Tn, xn). Let y0 = x0. Now x1 = f(T0, x0). Because of rounding or dis-

cretization in the function T0, a new value y1 approximately equal to x1 might be

obtained instead of the true value of f(T0, x0). Then to approximate y2, the value f(T1,

y1) is computed to yield y2, approximation of f(T1, y1). This computation is continued

to obtain {yn} as an approximate sequence of {xn}.

In the following we extend the definition of stability from a single self-map (see [6])

to a sequence of single-maps.

Definition 2.2. The iteration xn+1 = f(Tn, xn) is said {Tn}-stable (or stable with

respect to {Tn}n∈N0) if {xn} converges to a fixed point q in ∩nF(Tn), and whenever {yn} is

a sequence in X with limn d(yn+1 , f(Tn, yn)) = 0, we have yn ® q.

Note that if Tn = T for all n , then Definition 2.2. gives the definition of

T-stability ([6]).
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Definition 2.3. For a sequence of self-maps {Tn}n∈N0, the iteration xn+1 = Tnxn is

called the Picard’s S-iteration.

The stability of some iterations have been studied in metric spaces in [7,8]. Here we

want to investigate the semistability and stability of Picard’s S-iteration.

Theorem 2.4. Let (X, d) be a cone metric space, P a normal cone and {Tn}n = N0 be

a sequence of self-maps of X with ∩nF(Tn) ≠ ∅. Suppose that there exist nonnegative

bounded sequences {an}, {bn} with supnbn < 1, such that

d(Tnx, q) ≤ an d(x,Tnx) + bn d(x, q) (*)

for each n Î N0, x Î X and q Î ∩nF(Tn). Then the Picard’s S-iteration is semistable

with respect to {Tn}n.

Proof. First we note that relation (*) implies that ∩nF(Tn) is a singleton. Indeed, if

p and q belong to ∩nF(Tn), then by (*) we get

d(p, q) = d(Tnp, q) ≤ and(p,Tnp) + bnd(p, q) ≤ αd(p, q),

where a = supnbn. This implies that p = q. So let ∩nF(Tn) = {q0} and {yn} ⊂ X be such

that limn d(yn+1 , Tnyn) = limn d(Tnyn, yn) = 0. Now we show that yn ® q0. For this by

using the relation (*) we have:

d(yn+1, q0) ≤ d(yn+1,Tnyn) + d(Tnyn, q0)

≤ d(yn+1,Tnyn) + and(Tnyn, yn) + bnd(yn, q0)

= cn + αd(yn, q0),

where cn = d(yn+1 , Tnyn) + an d(Tnyn, yn) tends to 0 as n ® ∞, and 0 ≤ a < 1. Now

by Lemma 1.5, yn ® q0 and so the Picard’s S-iteration is {Tn}n-semistable. This com-

pletes the proof.□
Corollary 2.5. Let (X, d) be a cone metric space, P a normal cone and {Tn}n∈N0 be a

sequence of self-maps of X with ∩nF(Tn) ≠ ∅. If there exists a nonnegative sequence

{ln} with supnln < 1 such that d(Tnx, Tny) ≤ ln d(x, y) for each x, y Î X and n Î N0,

then the Picard’s S-iteration is semistable with respect to {Tn}n.

Corollary 2.6. Let (X, d) be a cone metric space, P a normal cone and {Tn}n∈N0 be a

sequence of self-maps of X with ∩nF(Tn) ≠ ∅. If for all n Î N0, Tn is a f-Zamfirescu

operator with respect to (an, bn, gn) with supngn < 1/2, then the Picard’s S-iteration is

semistable with respect to {Tn}n.

Proof. It is sufficient to show that condition (*) in Theorem 2.4 is consistent. Clearly

the conditions Z(1) and Z(2) imply that (*) holds. Also, note that by using condition Z

(3) for Tn we have:

d(Tnx, q) ≤ γn(d(q,Tnx) + d(x, q)),

where q Î ∩n F(Tn). Thus we get

d(Tnx, q) ≤ γnd(x,Tnx) + 2γnd(x, q).

Since supngn < 1/2, so clearly (*) holds.□
Corollary 2.7. Under the conditions of Corollary 2.6 if Tn is a Zamfirescu operator

for all n, then the Picard’s S-iteration is semistable with respect to {Tn}n.

Corollary 2.8. Let (X, d) be a cone metric space, P a normal cone and {Tn}n∈N0 be

a sequence of self-maps of X with ∩nF(Tn) ≠ ∅. If for all n Î N0, Tn is a f-quasi-
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contraction with ln such that supnln < 1, then the Picard’s S-iteration is semistable

with respect to {Tn}n.

Proof. It is sufficient to show that condition (*) holds. For every x Î X and q Î ∩nF
(Tn) we have d(Tnx, q) ≤ gn un for some un Î C(Tn; x, q). Hence

d(Tnx, q) ≤ tnd(x,Tnx) + snd(x, q),

where sn, tn Î {0, ln}. This completes the proof. □
Theorem 2.9. Under the conditions of Theorem 2.4, suppose that there exists a

sequence of nonnegative scalars {λn}n∈N0 with supnln < 1/2, such that for all x, y Î X,

n ≥ 1 we have d(Tnx, Tn-1 y) ≤ lnun where un = d(Tnx, y) or un = d(Tn-1 y, y). Then

the Picard’s S-iteration is semistable with respect to {Tn}n.

Proof. It is sufficient to show that d(yn, Tnyn) ® 0 whenever d(yn+1, Tnyn) ® 0. Put

bn = d(yn, Tnyn) and cn = d(yn, Tn-1yn-1). We have

bn ≤ d(yn,Tn−1yn−1) + d(Tnyn,Tn−1yn−1) ≤ cn + snbn−1,

where sn = ln or sn = λn
1−λn

. Hence by Lemma 1.5, bn ® 0, and so by the proof of

Theorem 2.4, the proof is complete.□
Now we want to investigate the semistability in the cone normed spaces.

Definition 2.10. Let X be a vector space over the field F. Assume that the function

p: X ® E having the properties:

(a) p(x) ≥ 0 for all x in X.

(b) p(x + y) ≤ p(x) + p(y) for all x, y in X.

(c) p(ax) = |a|p(x) for all a Î F and x Î X.

Then p is called a cone seminorm on X. A cone norm is a cone seminorm p such

that

(d) x = 0 if p(x) = 0.

We will denote a cone norm by ||·||c and (X, ||·||c) is called a cone normed space.

Also, dc(x, y) = ||x - y||c defines a cone metric on X.

Lemma 2.11. Let P be a normal cone, and the sequences {tn} and (sn} be such that 0

≤ tn+1 ≤ tn + sn for all n ≥ 1. If ∑nÎN sn converges, then limn ||tn|| exists.

Proof. Let t1 = 0 and P be normal with constant k. Since tn+1 - tn ≤ sn, thus ∑n (tn+1 -

tn) ≤ ∑nsn. Hence ||∑n (tn+1 - tn)|| ≤ k ||∑nsn|| < ∞. So limk ‖ ∑k
n=1(tn+1 − tn) ‖ exists.

But
∑k

n=1(tn+1 − tn) = tk+1 − t1 . Thus indeed limn ||tn|| exists.□

Theorem 2.12. Let (X, ||·||c) be a cone normed space with respect to a normal cone

P in the real Banach space E, and {Tn}n∈N0 be a sequence of self-maps of X with ∩nF
(Tn) ≠ ∅, T0 = I and dc(Tnx, q) ≤ (1 + an) dc(x, q) for all n Î N0, x Î X and q Î ∩nF

(Tn) where
∑

n∈N0
αn < ∞. Suppose that there exists a sequence {bn} ⊂ (0, 1] such

that
∑

n
1−βn
n < ∞ and the sequence {xn}n obtained by the iteration procedure xn+1 =

bnxn + (1 - bn)Snxn be bounded where Sn = 1
n (T0 + T1 + · · · + Tn−1) . Then lim dc(xn, q)

exists for all q Î ∩nF(Tn). Moreover, if for all m, Tm is a continuous semi-compact

mapping and dc(Tmxn, xn) ® 0 as n ® ∞, then {xn} converges to a point in ∩nF(Tn).

Proof. Let q Î ∩nF(Tn) and put a = ∑nan, g0 = sup dc(xn, q) and bn = dc(xn, q) for

each n. By taking a0 = 0, we get
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bn+1 = dc(xn+1, q)

= dc(βnxn + (1 − βn)Snxn, q)

≤ βndc(xn, q) + (1 − βn)dc(Snxn, q)

= βnbn + (1 − βn)dc(Snxn, q).

But,

dc(Snxn, q) = dc

(
1
n
(xn + T1xn + · · · + Tn−1xn), q

)

≤ 1
n

n−1∑
i=0

dc(Tixn, q)

≤ 1
n

n−1∑
i=0

(1 + αi)dc(xn, q)

=
1
n
bn

n−1∑
i=0

(1 + αi)

= bn +
1
n

n−1∑
i=1

bnαi.

Hence we get

bn+1 ≤ βnbn + (1 − βn)

(
bn +

1
n
bn

n−1∑
i=1

αi

)

= bn +
1
n
(1 − βn)

n−1∑
i=1

αibn

≤ bn +
1
n
(1 − βn)αbn

≤ bn +
1
n
(1 − βn)αγ0.

But
∑

n
1−βn
n < ∞ , so by lemma 2.11 we conclude that limn bn exits and so the

proof of the first part is complete. Now let Tm ’s be continuous semi-compact and for

all m, dc(Tmxn, xn) ® 0 as n ® ∞. Since Tm is semi-compact, there exists a subse-

quence {xnk} of {xn} and q Î X such that dc(xnk , q) → 0. But Tm is continuous, thus

for all m, dc(Tmxnk ,Tmq) → 0 as k ® ∞.

Now for all m we have

dc(Tmq, q) ≤ dc(Tmq,Tmxnk) + dc(Tmxnk , q) + dc(q, xnk)

which tends to 0 as k ® ∞. Hence Tmq = q for all m. So q Î ∩mF(Tm) and

dc(xnk , q) → 0. Also, we saw by the first part of the proof, limn dc(xnk , q)exists. This

implies that dc(xnk , q) → 0 and so the proof is complete.□
Theorem 2.13. Let (X, ||·||c) be a cone normed space with respect to a normal cone

P in the real Banach space E, and {Tn}n∈N0 be a sequence of self-maps of X with T0 = I,

∩nF(Tn) ≠ ∅, and ||Tmx - Tm-1x || ≤ ||Tm-1x - Tm-2x|| for all x Î X, m ≥ 2. Consider

the iteration procedure xn+1 = f (Tn, xn) = anxn + (1 - an)Snxn where

Sn = 1
n (T0 + T1 + · · · + Tn−1) and an Î [0, 1). If there exist a ≥ 0 and b Î (0, 1) such
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that

dc(f (Tn, yn), q) ≤ a dc(f (Tn, xn), yn) + b dc(yn, q) (*)

for all sequences {yn} with dc(T1yn, yn) = o( 1
(1−αn)(n−1) ), and all q Î ∩nF(Tn), then the

given iteration is {Tn}-semistable.

Proof. First note that the relation (*) implies that ∩nF(Tn) is a singleton. Indeed, if p

and q belong to F(T), then by setting yn = p in (*) for all n, we get dc(p, q) ≤ bdc(p, q).

This implies that p = q. Now let F(T) = {q0} and {yn} ⊂ X be such that limn dc(yn+1, f

(Tn, yn) = limn((1- an)(n- 1)) dc(T1yn, yn) = 0. Now we show that yn ® q0. To see this

note that by using the relation (*) we have:

dc(yn+1, q0) ≤ dc(yn+1, f (Tn, yn)) + dc(f (Tn, yn), q0)

≤ dc(yn+1, f (Tn, yn)) + adc(f (Tn, yn), yn) + bdc(yn, q0)

= cn + bdc(yn, q0),

where cn = dc(yn+1, f (Tn, yn)) + a dc(f (Tn, yn), yn). By Lemma 1.5, it suffices to show

that cn ® 0. For this we show that dc(f (Tn, yn), yn) ® 0 as n ® ∞. We have

dc(f (Tn, yn), yn) = ‖ f (Tn, yn) − yn‖c
= ‖ αnyn + (1 − αn)Snyn − yn‖c
= (1 − αn) ‖ yn − Snyn‖c

≤ 1 − αn

n

n−1∑
i=1

‖ (Tiyn − yn)‖c.

But for i ≥ 1, we have

‖ Tiyn − yn‖c ≤ dc(Tiyn − Ti−1yn) + · · · + dc(T1yn − yn)

≤ idc(1Tyn, yn).

Therefore,

dc(f (Tn, yn), yn) ≤ 1 − αn

n

n−1∑
i=1

idc(T1yn, yn) =
(1 − αn)(n − 1)

2
dc(T1yn, yn),

which tends to 0 since dc(T1ynyn) = o( 1
(1−αn)(n−1) ) . Thus yn ® q0 and so the iteration

xn+1 = f(Tn, xn) is {Tn}-semistable. This completes the proof.□
Corollary 2.14. Let (X, ||·||c) be a cone normed space with respect to a normal cone

P in the real Banach space E, and {Tn}n∈N0 be a sequence of self-maps of X with T0 = I,

∩nF(Tn) ≠ ∅, and ||Tmx - Tm-1x|| ≤ ||Tm-1x- Tm-2x|| for all x Î X, m ≥ 2. Consider the

iteration procedure xn+1 = Snxn where Sn = 1
n (T0 + T1 + · · · + Tn−1) . If there exist non-

negative bounded sequences {an} and {bn} with supnbn < 1, such that

dc(Snyn, q) ≤ andc(Snyn, yn) + bndc(yn, q)

for all sequences {yn} with dc(T1yn, yn) = o( 1
n−1 ) , and for all q Î ∩nF(Tn), then the

given iteration is {Tn}-semistable.

Corollary 2.15. Let (X, ||·||c) be a cone normed space with respect to a normal cone

P in the real Banach space E, and {Tn}n∈N0 be a sequence of self-maps of X with T0 = I,
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∩nF(Tn) ≠ ∅, and ||Tmx - Tm-1x|| ≤ ||Tm-1x- Tm-2x|| for all x Î X, m ≥ 2. Consider the

iteration procedure xn+1 = Snxn where Sn = 1
n (T0 + T1 + · · · + Tn−1) . If there exist a ≥ 0

and b Î (0, 1) such that

dc(Snyn, q) ≤ adc(Snyn, yn) + bdc(yn, q)

for all sequences {yn} with dc(T1yn, yn) = o( 1
n−1 ) , and for all q Î∩nF(Tn), then the

given iteration is {Tn}-semistable.

Theorem 2.16. Let (X, ||·||c) be a cone normed space with respect to a normal cone

P in the real Banach space E, and {Tn}n∈N0 be a sequence of affine self-maps of X with

T0 = I, ∩nF(Tn) ≠ ∅, and dc(Tmx - Tm-1y) ≤ dc(Tm-1x- Tm-2y) for all x Î X, m ≥ 2. Con-

sider the iteration procedure xn+1 = f(Tn, xn) = (1 - an)xn + anTnzn where zn = (1 - bn)
xn + bnTnxn and an, bn Î [0, 1]. Suppose that there exist a ≥ 0 and b Î (0, 1) such

that

dc(f (Tn, yn), q) ≤ a dc(f (Tn, yn), yn) + b dc(yn, q) (*)

for all sequences {yn} with dc(T1yn, yn) = o( 1
nαn

), and all q Î ∩nF(Tn). Then the given

iteration is {Tn}-semistable.

Proof. If p and q belong to ∩nF(Tn), then by setting yn = p in (*) for all n, we get dc(p,

q) ≤ bdc(p, q). This implies that p = q. Now let ∩nF(Tn) = {q0} and {yn} ⊆ X be such

that

lim
n

dc(yn+1, f (Tn, yn)) = lim
n

nαndc(T1yn, yn) = 0.

Now we show that yn ® q0. To see this note that by using the notation (*) we have:

dc(yn+1, q0) ≤ dc(yn+1, f (Tn, yn)) + dc(f (Tn, yn), q0)

≤ dc(yn+1, f (Tn, yn)) + adc(f (Tn, yn), yn) + bdc(yn, q0)

= cn + bdc(yn, q0),

where cn = dc(yn+1, f (Tn, yn)) + a dc(f (Tn, yn), yn). By Lemma 1.5, it is sufficient to

show that cn ® 0. For this we show that dc(f (Tn, yn), yn) ® 0 as n ® ∞. Note that

dc(f (Tn, yn), yn) = ‖ f (Tn, yn) − yn‖c
= ‖ (1 − αn)yn + αnTn(zn) − yn‖c
= αn ‖ Tnzn − yn‖c
= αn ‖ Tn((1 − βn)yn + βnTnyn) − yn‖c
= αn ‖ ((1 − βn)Tnyn + βnT2

n yn) − yn‖c
≤ αn(1 − βn)dc(Tnyn, yn) + αnβndc(T2

n yn, yn)

≤ αn(1 − βn)[dc(Tnyn,Tn−1yn) + · · · + dc(T1yn, yn)]

+ αnβn[dc(T2
n yn,Tn−1Tnyn) + · · · + dc(T1Tnyn,Tnyn)]

≤ αn(1 − βn)dc(T1yn, yn) + nαnβndc(T1Tnyn,Tnyn)

≤ αn(1 − βn)dc(T1yn, yn) + nαnβndc(TnT1yn,Tnyn)

≤ αn(1 − βn)dc(T1yn, yn) + nαnβndc(T1yn, yn)

= [nαn(1 − βn) + nαnβn]dc(T1yn, yn)

= nαndc(T1yn, yn)
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which tends to 0 since dc(T1yn, yn) = o( 1
nαn

), . Thus yn ® q0 and so the iteration xn+1

= f(Tn, xn) is {Tn}-semistable. This completes the proof.□
Corollary 2.17. Let (X, ||·||c) be a cone normed space with respect to a normal cone

P in the real Banach space E, and {Tn}n∈N0 be a sequence of self-maps of X with T0 = I,

∩nF(Tn) ≠ ∅, and ||Tmx - Tm-1x|| ≤ ||Tm-1x- Tm-2x|| for all Î X, m ≥ 2. Consider the

iteration procedure xn+1 = f(Tn, xn) = anxn + (1 - an)Tnxn where

Sn = 1
n (T0 + T1 + · · · + Tn−1) and an Î [0, 1). If there exist a ≥ 0 and b Î (0, 1) such

that

dc(f (Tn, yn), q) ≤ adc(f (Tn, xn), yn) + bdc(yn, q)

for all sequences {yn} with dc(Tyn, yn) = o( n+n2
1−αn

) , and all q Î ∩nF(Tn), then the given

iteration is {Tn}-semistable.
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