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Abstract

In this article, we introduce composite iterative schemes for finding a zero point of a
finite family of maximal monotone operators in a reflexive Banach space. Then, we
prove strong convergence theorems by using a shrinking projection method.
Moreover, we also apply our results to a system of convex minimization problems in
reflexive Banach spaces.
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Introduction
Let E be a real Banach space and C a nonempty subset of E. Let E* be the dual space

of E. We denote the value of x* Î E* at x 2 E by 〈x*, x〉. Let A : E ® 2E* be a set-

valued mapping. We denote dom A by domain of A, that is, dom A = {x Î E : Ax ≠

∅}and also denote G(A) by the graph of A, that is, G(A) = f (x, x*) Î E × E* : x* Î
Ax}. A set-valued mapping A is said to be monotone if 〈x* - y*, x - y〉 ≥ 0 whenever (x,

x*); (y, y*) Î G(A). It is said to be maximal monotone if its graph is not contained in

the graph of any other monotone operator on E. It is known that if A is maximal

monotone, then the set A -1(0*) = {z Î E : 0* Î Az} is closed and convex.

The problem of finding zero points for maximal monotone operators plays an impor-

tant role in optimizations. This is because it can be reduced to a convex minimization

problem and a variational inequality problem. Many authors have studied the conver-

gence of such problems in several settings, (see [1-6]). Initiated by Martinet [7], in a

Hilbert space, Rockafellar [8] introduced the following iterative schemes:
{
x1 = x ∈ E,
xn+1 = Jλnxn, ∀n ≥ 1,

(1:1)

where {ln} ⊂ (0, ∞) and Jl is the resolvent of A defined by Jl = (I + lA)-1 for all l
>0, and A is a maximal monotone operator on E. Such an algorithm is called the prox-

imal point algorithm. He proved that the sequence {xn} generated by (1.1) converges

weakly to an element in A-1 (0) provided lim infn®∞ ln > 0. Later, Kamimura and

Takahashi [9] introduced the following iteration in a Hilbert space:

xn+1 = αnxn + (1 − αn)Jλnxn, ∀n ≥ 1, (1:2)
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where {an} ⊂ [0, 1] and {ln} ⊂ (0, ∞). The weak convergence theorems are also

established in a Hilbert space under suitable conditions imposed on {an} and {ln}.
In 2005, Kohsaka and Takahashi [10] studied the above iteration process in a more

general setting, reflexive Banach spaces. In fact, those authors proposed the following

algorithm:

xn+1 = ∇f ∗ (
αn∇f (xn) + (1 − αn)∇f (Jλnxn)

)
, ∀n ≥ 1, (1:3)

where {an}⊂ [0, 1], {ln} ⊂ (0, ∞), f : E ® ℝ is a Bregman function and Jl = (∇f + lA)
-1 ∇f for all l > 0. They also proved a weak convergence theorem of the proposed

algorithm.

Very recently, in 2010, Reich and Sabach [11] proposed an algorithm for finding a

zero point of maximal monotone operators Ai : E ® 2E* (i = 1, 2,..., N) in a general

reflexive Banach space E as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E,

yin = Resf
λi
nAi

(xn + ein),

Ci
n =

{
z ∈ E : Df (z, yin) ≤ Df (z, xn + ein)

}
,

Cn =
⋂N

i=1 C
i
n,

Qn =
{
z ∈ E : 〈∇f (x0) − ∇f (xn), z − xn〉 ≤ 0

}
,

xn+1 = Pf
Cn∩Qn

(x0), ∀n ≥ 0,

(1:4)

where {λi
n}Ni=1 ⊂ (0,∞), {en}Ni=1 is an error sequence in E with ein → 0 and Pf

K
the

Bregman projection with respect to f from E onto a closed and convex subset K of E.

Those authors showed that the sequence {xn} defined by (1.4) converges strongly to a

common element in
⋂N

i=1 A
−1
i (0∗) under some mild conditions.

Motivated by the previous ones, we first introduce a composite iterative scheme

which is different from (1.4) for finding a zero point of maximal monotone operators

Ai : E ® 2E* (i = 1, 2,..., N) in reflexive Banach spaces. Using the shrinking projection

technique, introduced by Takahashi et al. [12], we then prove that a sequence gener-

ated by the proposed algorithm converges strongly to an element in
⋂N

i=1 A
−1
i (0∗)

under some appropriate control conditions. Finally, we also apply our result to a sys-

tem of convex minimization problems.

Preliminaries and lemmas
Let E be a real reflexive Banach space with a norm ||·|| and E* be the dual space of E.

Throughout this article, f : E ® (-∞, +∞] is a proper, lower semi-continuous, and con-

vex function, and the Fenchel conjugate of f is the function f*: E* ® (-∞, +∞] defined

by

f ∗(x∗) = sup
{〈x∗, x〉 − f (x) : x ∈ E

}
.

We denote by dom f the domain of f, that is, the set {x Î E : f(x) <+∞). For any x Î
int dom f and y Î E, the right-hand derivative of f at x in the direction y is defined by

f o(x, y) := lim
t→0+

f (x + ty) − f (x)
t

.
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The function f is said to be Gâteaux differentiable at x limt→0+
f (x + ty) − f (x)

t
exists

for any y. In this case, fo(x, y) coincides with ∇f (x), the value of the gradient ∇f of f at
x. The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable for

any x Î int dom f. The function f is said to be Fréchet differentiable at x if this limit is

attained uniformly in ||y|| = 1. Finally, f is said to be uniformly Fréchet differentiable

on a subset C of E if the limit is attained uniformly for x Î C and ||y|| = 1.

Let E be a reflexive Banach space. The Legendre function is defined from a general

Banach space E into (-∞, +∞] (see [13]). According to [13], the function f is Legendre

if and only if it satisfies the following conditions:

(L1) The interior of the domain of f (denoted by int dom f ) is nonempty, f* is Gâte-

aux differentiable on int dom f, and dom ∇f = int dom f ;

(L2) The interior of the domain f*(denoted by int dom f*) is nonempty, f* is Gâteaux

differentiable on int dom f*, and dom ∇f* = int dom f*.

Since E is reflexive, we always have (∂f)-1 = ∂f* (see [14]). This fact, when combined

with the conditions (L1) and (L2), implies the following equalities [15]:

∇f
ran ∇f
ran ∇f ∗

=
=
=

(∇f ∗)−1,
dom ∇f ∗ = int domf ∗,
dom ∇f = int domf .

Also, the conditions (L1) and (L2), in conjunction with [13], imply that the functions

f and f* are strictly convex on the interior of their respective domains. Several interest-

ing examples of the Legendre functions are presented in [13,16]. Especially, the func-

tions
1
s
|| · ||s with s Î (1, ∞) are Legendre, where the Banach space E is smooth and

strictly convex and, in particular, a Hilbert space. Throughout this article, we assume

that the convex function f : E ® (∞, +∞] is Legendre.

Lemma 2.1. [17]If f : E ® ℝ is uniformly Fréchet differentiable and bounded on

bounded subsets of E, then ∇ f is uniformly continuous on bounded subsets of E from

the strong topology of E to the strong topology of E*.

Let f : E ® (-∞, +∞] be a convex and Gâteaux differentiable function. The function

Df : dom f × int dom f ® [0, +∞) is defined as follows:

Df (y, x) := f (y) − f (x) − 〈∇f (x), y − x
〉

is called the Bregman distance with respect to f [18].

Recall that the Bregman projection [19] of x Î int dom f onto the nonempty, closed,

and convex set C ⊂ dom f is necessarily the unique vector Pf
C(x) ∈ C satisfying

Df

(
Pf
C(x), x

)
= inf

{
Df (y, x) : y ∈ C

}
.

Let f : E ® (-∞, +∞] be a convex and Gâteaux differentiable function. The function f

is said to be totally convex at x Î int dom f if its modulus of total convexity at x, that

is, the function νf : int dom f × [0, +∞) ® [0, +∞] defined by

νf (x, t) := inf
{
Df (y, x) : y ∈ dom f , ||y − x|| = t

}

is positive, whenever t >0. The function f is said to be totally convex when it is

totally convex at every point x Î int dom f. In addition, the function f is said to be

Cholamjiak et al. Fixed Point Theory and Applications 2011, 2011:7
http://www.fixedpointtheoryandapplications.com/content/2011/1/7

Page 3 of 10



totally convex on bounded sets if νf (B, t) is positive for any nonempty bounded subset

B of E and t >0, where the modulus of total convexity of the function f on the set B is

the function νf : int dom f × [0, +∞) ® [0, +∞] defined by

νf (B, t) := inf
{
νf (x, t) : x ∈ B ∩ dom f

}
.

Let C be a nonempty, closed, and convex subset of E. Let f : E ® ℝ be a Gâteaux

differentiable and totally convex function and let x Î E. It is known from [20] that

z = Pf
C(x) if and only if 〈∇f (x) - ∇f(z), y - z〉 ≤ 0 for all y Î C. We also have

Df (y,P
f
C(x)) +Df (P

f
C(x), x) ≤ Df (y, x), ∀x ∈ E, y ∈ C. (2:1)

Recall that the function f is said to be sequentially consistent [20] if, for any two

sequences, {xn} and {yn}, in E such that the first is bounded:

lim
n→∞Df (yn, xn) = 0 ⇒ lim

n→∞ ||yn − xn|| = 0.

The following lemmas were proved by Reich and Sabach [11].

Lemma 2.2. [11]Let f : E ® ℝ be a Gâteaux differentiable and totally convex func-

tion. If x0 Î E and the sequence
{
Df (xn, x0)

}∞
n=1is bounded, then the sequence {xn}∞n=1is

also bounded.

We know that the resolvent of A, denoted by ResfA : E → 2E, is defined as follows

[21]:

ResfA(x) = (∇f + A)−1 ◦ ∇f (x).

It is known that F(ResfA) = A−1(0∗), and ResfA is single-valued (see [21]). If f is a

Legendre function which is bounded, uniformly Fréchet differentiable on bounded,

subsets of E, then F̂(ResfA) = F(ResfA) (see [22]). The Yosida approximation Al : E ® E,

l > 0, is also defined by

Aλ(x) =
1
λ

(
∇f (x) − ∇f

(
ResfλA(x)

))

for all x Î E. From Proposition 2.7 in [11], we know that (ResfλA(x),Aλ(x)) ∈ G(A)

and 0* Î Ax if and only if 0* Î Al x for all x Î E and l > 0.

Lemma 2.3. [11]Let A : E ® 2E*be a maximal monotone operator such that A -1(0*)

≠ ∅. Then,

Df (p, Res
f
λA(x)) +Df (Res

f
λA(x), x) ≤ Df (p, x)

for all l > 0, p Î A -1(0*) and x Î E.

Strong convergence theorems
Now, in this section, we prove our main results of this article.

Theorem 3.1. Let E be a real reflexive Banach space and f : E ® ℝ a Legendre func-

tion which is bounded, uniformly Fréchet differentiable and totally convex on bounded

subsets of E. Let Ai : E ® 2E* (i = 1, 2,..., N) be maximal monotone operators such that

F :=
⋂N

i=1 A
−1
i (0∗) �= ∅. Let {en}∞n=1 ⊂ Ebe such that limn® ∞ en = 0. Define a sequence

{xn}∞n=1in E as follows:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 ∈ E,
C1 = E,

yn = Resf
λN
n AN

◦ Resf
λN−1
n AN−1

◦ · · · ◦ Resf
λ1
nA1

(xn + en),

Cn+1 =
{
z ∈ Cn : Df (z, yn) ≤ Df (z, xn + en)

}
,

xn+1 = Pf
Cn+1

(x1), ∀n ≥ 1.

(3:1)

If lim infn→∞λi
n > 0for each i = 1, 2,..., N, then the sequence {xn} converges strongly to

a point Pf
F(x1)

Proof. We divide our proof into six steps as follows:

Step 1. F ⊂ Cn for all n ≥ 1.

Since A−1
i (0∗) is closed and convex for each i = 1, 2,..., N, we get that

F :=
⋂N

i=1 A
−1
i (0∗) is a nonempty, closed and convex subset of E. It is easy to see that

Cn is closed and convex for all n ≥ 1. Indeed, for each z Î Cn, it follows that Df (z, yn)

≤ Df (z, xn + en) is equivalent to〈∇f (xn + en) − ∇f (yn), z
〉 ≤ f (yn) − f (xn + en) +

〈∇f (xn + en), xn + en
〉 − 〈∇f (yn), yn

〉
.

This shows that Cn is closed and convex for all n ≥ 1. It is obvious that F ⊂ C1 = E.

Now, suppose that F ⊂ Ck for some k ∈ N. For any p Î F, by Lemma 2.3, we have

Df (p, yk) = Df

(
p, Resf

λN
k AN

◦ Resf
λN−1
k AN−1

◦ · · · ◦ Resf
λ1
kA1

(xk + ek)
)

≤ Df

(
p, Resf

λN−1
k AN−1

◦ Resf
λN−2
k AN−2

◦ · · · ◦ Resf
λ1
kA1

(xk + ek)
)

· ··
≤ Df

(
p, Resf

λ2
kA2

◦ Resf
λ1
kA1

(xk + ek)
)

≤ Df

(
p, Resf

λ1
kA1

(xk + ek)
)

≤ Df (p, xk + ek).

(3:2)

This implies that F ⊂ Ck+1. By induction, we can conclude that F ⊂ Cn for all n ≥ 1.

Step 2. limn®∞ Df (xn, x0) exists.

From xn = Pf
Cn
(x1) and xn+1 = Pf

Cn+1
(x1) ∈ Cn+1 ⊂ Cn we have

Df (xn, x1) ≤ Df (xn+1, x1), ∀n ≥ 1. (3:3)

By (2.1), for any p Î F ⊂ Cn, we have

Df (xn, x1) = Df (P
f
Cn
(x1), x1) ≤ Df (p, x1) − Df (p, xn) ≤ Df (p, x1). (3:4)

Combining (3.3) and (3.4), we know that limn® ∞ Df (xn, x1) exists.

Step 3. limn® ∞ ||∇f(yn) - ∇f(xn + en)|| = 0

Since xm = Pf
Cm
(x1) ∈ Cm ⊂ Cn for m >n ≥ 1, by (2.1), it follows that

Df (xm, xn) = Df

(
xm,P

f
Cn
(x1)

)
≤ Df

(
xm, x1) − Df (P

f
Cn
(x1), x1

)

= Df (xm, x1) − Df (xn, x1).

Letting m, n ® ∞, we have Df (xm, xn) ® 0. Since f is totally convex on bounded

subsets of E, f is sequentially consistent by Butnariu and Resmerita [20]. It follows that

||xm - xn|| ® 0 as m, n ® ∞. Therefore, {xn} is a Cauchy sequence. By the
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completeness of the space E, we can assume that xn ® q Î E as n ® ∞. In particular,

we obtain

lim
n→∞ ||xn+1 − xn|| = 0.

Since en ® 0, we also obtain

lim
n→∞ ||xn+1 − (xn + en)|| = 0. (3:5)

Since xn+1 = Pf
Cn+1

(x1) ∈ Cn+1

Df (xn+1, yn) ≤ Df (xn+1, xn + en)

= f (xn+1) − f (xn + en) − 〈∇f (xn + en), xn+1 − (xn + en)
〉
.

We know from [23] that, if f is bounded on bounded subsets of E, then ∇f is also

bounded on bounded subsets of E. Moreover, if f is uniformly Fréchet differentiable on

bounded subsets of E, then f is uniformly continuous on bounded subsets of E (see

[24]). Using (3.5), we have

lim
n→∞Df (xn+1, yn) = 0.

Also, we have

lim
n→∞ ||xn+1 − yn|| = 0

and hence,

lim
n→∞ ||yn − xn|| = 0

and, since en ® 0,

lim
n→∞ ||yn − (xn + en)|| = 0. (3:6)

Since f is uniformly Fréchet differentiable on bounded subsets of E, ∇f is norm-to-

norm uniformly continuous on bounded subsets of E by Lemma 2.1. Hence, we have

lim
n→∞ ||∇f (yn) − ∇f (xn + en)|| = 0. (3:7)

Step 4. lim
n→∞

∥∥∇f
(
�i

n(xn + en)
) − ∇f

(
�i−1

n (xn + en)
)∥∥ = 0 ∀i = 1, 2, . . . ,N.

Denote �i
n = Resf

λi
nAi

◦ Resf
λi−1
n Ai−1

◦ · · · ◦ Resf
λ1
nA1

for each i Î {1, 2,..., N} and �0
n = I for

each n ≥ 1. We note that yn = �N
n (xn + en) for each n ≥ 1. For any p Î F, by (3.2), it

follows that

Df (p,�N−1
n (xn + en)) ≤ Df (p,�N−2

n (xn + en))

≤ Df (p,�N−3
n (xn + en))

· ··
≤ Df (p, (xn + en)).

(3:8)
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Since p ∈ A−1
N (0∗), by Lemma 2.3 and (3.8), it follows that

Df (yn,�N−1
n (xn + en))

≤ Df (p,�N−1
n (xn + en)) − Df (p, yn)

≤ Df (p, (xn + en)) − Df (p, yn)

= f (yn) − f (xn + en) − 〈∇f (xn + en), p − (xn + en)〉 + 〈∇f (yn), p − yn〉
= f (yn) − f (xn + en) − 〈∇f (xn + en), p − yn〉
+ 〈∇f (xn + en), (xn + en) − yn〉 + 〈∇f (yn), p − yn〉

= f (yn) − f (xn + en) + 〈∇f (yn) − ∇f (xn + en), p − yn〉
+ 〈∇f (xn + en), (xn + en) − yn〉.

From (3.6) and (3.7), we get that limn→∞Df (yn,�N−1
n (xn + en)) = 0. Since f is sequen-

tially consistent,

lim
n→∞ ||yn − �N−1

n (xn + en)|| = 0. (3:9)

Thus, from (3.6) and (3.9), it follows that

lim
n→∞ ||(xn + en) − �N−1

n (xn + en)|| = 0 (3:10)

and hence,

lim
n→∞

∥∥∇f (xn + en) − ∇f (�N−1
n (xn + en))

∥∥ = 0. (3:11)

Again, since p ∈ A−1
N (0∗), by Lemma 2.3 and (3.8), we know that

Df (�N−1
n (xn + en),�N−2

n (xn + en))

≤ Df (p,�N−2
n (xn + en)) − Df (p,�N−1

n (xn + en))

≤ Df (p, (xn + en)) − Df (p,�N−1
n (xn + en)).

From (3.10) and (3.11), we have

lim
n→∞Df (�

N−1
n (xn + en),�N−2

n (xn + en)) = 0.

Since f is sequentially consistent, it follows that

lim
n→∞

∥∥�N−1
n (xn + en) − �N−2

n (xn + en)
∥∥ = 0. (3:12)

From (3.10) and (3.12), we have

lim
n→∞

∥∥(xn + en) − �N−2
n (xn + en)

∥∥ = 0,

and hence,

lim
n→∞

∥∥∇f (xn + en) − ∇f (�N−2
n (xn + en))

∥∥ = 0.

In a similar way, we can show that

limn→∞||�N−2
n (xn+en)−�N−3

n (xn+en)|| = ··· = limn→∞||�1
n(xn+en)−(xn+en)|| = 0,

limn→∞||(xn + en) − �N−3
n (xn + en)|| = · · · = limn→∞||(xn + en) − �1

n(xn + en)|| = 0 and
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lim
n→∞

∥∥∇f (xn + en) − ∇f (�N−3
n (xn + en))

∥∥
= lim

n→∞
∥∥∇f (xn + en) − ∇f (�N−4

n (xn + en))
∥∥

· · ·
= lim

n→∞
∥∥∇f (xn + en) − ∇f (�1

n(xn + en))
∥∥

= 0.

Hence, we can conclude that

lim
n→∞

∥∥∇f (�i
n(xn + en)) − ∇f (�i−1

n (xn + en))
∥∥ = 0 (3:13)

for each i = 1,2,..., N.

Step 5. q ∈ ⋂N
i=1 A

−1
i (0∗).

For each i = 1, 2,..., N, we note that �i
n(xn + en) = Resf

λi
nAi

�i−1
n (xn + en) and so

∥∥Aλi
n
�i−1

n (xn + en)
∥∥ =

1
λi
n

∥∥ ∇f (�i−1
n (xn + en)) − ∇f (�i

n(xn + en))
∥∥ .

From (3.13) and lim infn→∞λi
n > 0, we have

lim
n→∞ ||Aλi

n
�i−1

n (xn + en)|| = 0. (3:14)

We note that (�i
n(xn + en),Aλi

n
�i−1

n (xn + en)) ∈ G(Ai) for each i = 1, 2,..., N. If (w, w*)

Î G(Ai) for each i = 1, 2,..., N , then it follows from the monotonicity of Ai that〈
w∗ − Aλi

n
�i−1

n (xn + en),w − �i
n(xn + en)

〉 ≥ 0.

Since xn ® q and en ® 0, xn + en ® q. Therefore, �i
n(xn + en) → q for each i = 1,

2,..., N. Thus, from (3.14), we have

〈w∗,w − q〉 ≥ 0.

By the maximality of Ai, we have q ∈ A−1
i (0∗) for each i = 1, 2,..., N. Hence,

q ∈ F :=
⋂N

i=1
A−1
i (0∗).

Step 6. q = Pf
F(x1).

From xn = Pf
Cn
(x1), we have

〈∇f (x1) − ∇f (xn), xn − z
〉 ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn, we also have
〈∇f (x1) − ∇f (xn), xn − z

〉 ≥ 0, ∀z ∈ F. (3:15)

Letting n ® ∞ in (3.15), we obtain
〈∇f (x1) − ∇f (q), q − z

〉 ≥ 0, ∀z ∈ F.

Hence, we have q = Pf
F(x1). This completes the proof.

As a direct consequence of Theorem 3.1, we also obtain the following result con-

cerning a system of convex minimization problems in reflexive Banach spaces:
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Theorem 3.2. Let E be a real reflexive Banach space and f : E ® ℝ a Legendre func-

tion which is bounded, uniformly Fréchet differentiable, and totally convex on bounded

subsets of E. Let gi : E ® (- ∞, ∞] (i = 1, 2,..., N) be proper lower semi-continuous con-

vex functions such that F :=
⋂N

i=1
(∂g−1

i ) (0) �= ∅. Let {en}∞n=1 ⊂ Ebe a sequence in E

such that limn® ∞ en = 0. Define a sequence {xn}∞n=1in E as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E,

C1 = E,

z1n = arg miny∈E
{
g1(y) +

1
λ1
n
Df (y, xn + en)

}
,

· · ·

zN−1
n = arg miny∈E

{
gN − 1(y) +

1

λN−1
n

Df (y, z
N−2
n )

}
,

yn = arg miny∈E
{
gN(y) +

1
λN
n
Df (y, z

N−1
n )

}
,

Cn+1 =
{
z ∈ Cn : Df (z, yn) ≤ Df (z, xn + en)

}
,

xn+1 = Pf
Cn+1

(x1), ∀n ≥ 1.

(3:16)

If lim infn→∞λi
n > 0for each i = 1, 2,..., N, then the sequence {xn} converges strongly to

a point Pf
F(x1).

Proof. By Rockafellar’s theorem [25,26], ∂gi are maximal monotone operators for each

i = 1, 2,..., N. Let li >0 for each i = 1, 2,..., N. Then zi = Resf
λi∂gi

(x) if and only if

0 ∈ ∂gi(zi) +
1
λi

(∇f (zi) − ∇f (x)
)

= ∂

(
gi +

1
λi
(f − ∇f (x))

)
(zi),

which is equivalent to

zi = arg min
y∈E

{
gi(y) +

1
λi
(f (y) − 〈y,∇f (x)〉)

}

= arg min
y∈E

{
gi(y) +

1
λi
Df (y, x)

}
.

Using Theorem 3.1, we can complete the proof.

Remark 3.3. By means of the composite iterative scheme together with the shrinking

projection method, we can construct the proximal point algorithms for finding a com-

mon element in the set
⋂N

i=1 A
−1
i (0∗). Moreover, our algorithm is different from that of

Reich and Sabach [11] which is based on a finite intersection of sets.

Remark 3.4. Theorems 3.1 and 3.2 also hold in a uniformly convex and uniformly

smooth Banach space with the generalized duality mapping.
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