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Abstract

A multiobjective fractional optimization problem (MFP), which consists of more than
two fractional objective functions with convex numerator functions and convex
denominator functions, finitely many convex constraint functions, and a geometric
constraint set, is considered. Using parametric approach, we transform the problem
(MFP) into the non-fractional multiobjective convex optimization problem (NMCP),
with parametric v e R”, and then give the equivalent relation between (weakly) &
efficient solution of (MFP) and (weakly) g-efficient solution of (NMCP);. Using the
equivalent relations, we obtain g-optimality conditions for (weakly) ¢-efficient solution
for (MFP). Furthermore, we present examples illustrating the main results of this
study.

2000 Mathematics Subject Classification: 90C30, 90C46.

Keywords: Weakly e-efficient solution, e-optimality condition, Multiobjective fractional
optimization problem

1 Introduction

We need constraint qualifications (for example, the Slater condition) on convex opti-
mization problems to obtain optimality conditions or e-optimality conditions for the
problem.

To get optimality conditions for an efficient solution of a multiobjective optimization
problem, we often formulate a corresponding scalar problem. However, it is so difficult
that such scalar program satisfies a constraint qualification which we need to derive an
optimality condition. Thus, it is very important to investigate an optimality condition
for an efficient solution of a multiobjective optimization problem which holds without
any constraint qualification.

Jeyakumar et al. [1,2], Kim et al. [3], and Lee et al. [4], gave optimality conditions for
convex (scalar) optimization problems, which hold without any constraint qualification.
Very recently, Kim et al. [5] obtained ¢-optimality theorems for a convex multiobjective
optimization problem. The purpose of this article is to extend the ¢-optimality theo-
rems of Kim et al. [5] to a multiobjective fractional optimization problem (MFP).

Recently, many authors [5-15] have paid their attention to investigate properties of
(weakly) e-efficient solutions, ¢-optimality conditions, and &-duality theorems for multi-
objective optimization problems, which consist of more than two objective functions
and a constrained set.
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In this article, an MFP, which consists of more than fractional objective functions
with convex numerator functions, and convex denominator functions and finitely
many convex constraint functions and a geometric constraint set, is considered. We
discuss e-efficient solutions and weakly ¢-efficient solutions for (MFP) and obtain &-
optimality theorems for such solutions of (MFP) under weakened constraint qualifica-
tions. Furthermore, we prove g-optimality theorems for the solutions of (MFP) which
hold without any constraint qualifications and are expressed by sequences, and present
examples illustrating the main results obtained.

2 Preliminaries

Now, we give some definitions and preliminary results. The definitions can be found in
[16-18]. Let g : R” — R U {+o} be a convex function. The subdifferential of g at a is
given by

9g(a) ={ve R"| g(x) = g(a) + (v,x—a), Vxe domg},
where domg: = {x € R” | g(x) < o} and (., ) is the scalar product on R”, Let ¢ 2 0.
The e-subdifferential of g at a € domyg is defined by
9:8(a) ={veR"|g(x) =2g(a)+{v,x—a)—e, Vxedomg}.
The conjugate function of g : R” — R U {+co} is defined by
g"(v) = sup{ (v,x) — g(x) | x € R"}.
The epigraph of g, epig, is defined by
epig={(x,r) e R" x R | g(x) < r}.

For a nonempty closed convex set C € R”, dc : R” — R U {+eo} is called the indicator

0 ifxeC,

of C'if 6c(x) = { +00 otherwise’
Lemma 2.1 [19]If ki : R” — R U {+} is a proper lower semicontinuous convex func-

tion and if a € dombh, then

epih* = | J (v, (v,a) + & — h(a))v € d;h(a)}.

£20

Lemma 2.2 [20]Let i : R” — R be a continuous convex function and u : R” — R U
{+co} be a proper lower semicontinuous convex function. Then

epi(h + u)* = epih™ + epiu’*.

Now, we give the following Farkas lemma which was proved in [2,5], but for the
completeness, we prove it as follows:

Lemma 2.3 Let hi; : R”" - R, i = 0, 1, ..., [ be convex functions. Suppose that {x € R" |
hix) £0,i=1, .. I} # D. Then the following statements are equivalent:

()fxe R" | hi(x) £0,i=1,., 0 S {xe R"| hylx) 2 0}

(i1) 0 € epihg + | epi(¥ i, Aihi)*
120

i
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Proof. Let Q = {x e R" | h(x) £0,i=1, .., [}. Then Q # & and by Lemma 2.1 in [2],

. . 1
epidf, =l Ago epi(Q_icy Aihi)", Hence, by Lemma 2.2, we can verify that (i) if and only

if (ii).

Lemma 2.4 [16]Let h; : R” — R U {+oo}, i =, 1, ..., m be proper lower semi-continuous
convex functions. Let ¢ Z 0. if ()i, ri domh; # 0, where ri domb; is the relative interior
of domh,, then for all x € | J;", dombh;

ag(i hi)(x) = U{i dhi(x) | 620, i=1,---,m, iei = &)
i=1 i=1 i=1

3 ¢-optimality theorems
Consider the following MFP:

ﬂ@:<ﬁW)“,ﬁw>
8(®) " \&i(®)" g(x)
subjectto x€ Q:={x e R"|hj(x) £0, j=1,...,m}.

(MFP) Minimize

Let f;: R” > R, i = 1, ..., p be convex functions, g; : R” - R, i = 1, ..., p, concave
functions such that for any x € Q, fi(x) 2 0 and gi(x) >0, i = 1, .., p, and ; : R" > R, j
=1, .., m, convex functions. Let ¢ = (&1, .., €,), where &; 2 0, i = 1, .., p.

Now, we give the definition of ¢-efficient solution of (MFP) which can be found in
[11].

Definition 3.1 The point X € Qis said to be an e-efficient solution of (MFP) if there
does not exist x € Q such that

fitx) . fi(%)
i(x) = &(X)
o _ it
gi(x) &%)

—g, foralli=1,...,p,

—¢j, forsomej e {1,...,p}.

When ¢ = 0, then the ¢-efficiency becomes the efficiency for (MFP) (see the defini-
tion of efficient solution of a multiobjective optimization problem in [21]).

Now, we give the definition of weakly ¢-efficient solution of (MFP) which is weaker
than ¢-efficient solution of (MFP).

Definition 3.2 A point X € Qis said to be a weakly ¢-efficient solution of (MFP) if
there does not exist x € Q such that

fitx) _ f®

L —g,foralli=1,...,p.
gi(x)  &i(x)

When ¢ = 0, then the weak &-efficiency becomes the weak efficiency for (MFP) (see
the definition of efficient solution of a multiobjective optimization problem in [21]).

Using parametric approach, we transform the problem (MFP) into the nonfractional
multiobjective convex optimization problem (NMCP), with parametric v € R”:

(NMCP), Minimize (f(x) —vg(x)) = (fi(x) — v1g1(x), ..., fp(x) — vp8p(x))
subjectto x € Q.
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Adapting Lemma 4.1 in [22] and modifying Proposition 3.1 in [12], we can obtain
the following proposition:

Proposition 3.1 Let x € Q. Then the following are equivalent:

(i) xis an e-efficient solution of (MFP).

(ii) xis an g-efficient solution of (NMCP);, where v := <£‘]((?) — €1, g((?) — 8p> and

& =(e181(%), ..., €& (X)).
(iii)) QN S(x) = @ or

p
fi(x)
filx) — _y — &) &ix)
>[o- (e ~) 5]
0= Z [ﬁ(x) (f(( )) — 8i> gi(a'c)j| — ésigi(a'c) for any x € QN S(x),
where SE) = (x € &1 fi(x)~(4) — ) 8100 £ 0= i@ -() —&1) @5 i=1,....p.

Proof. (i) & (ii): It follows from Lemma 4.1 in [22].
(i) = (iii)): Let x be an g-efficient solution of (NMCP); where

V= (fl@ —ey,.., P 8p> and &= (e181(X),...,&8p(x)). Then QNS(x)=9 or

81(%) 8 (%)
QN S(x) #P. Suppose that Q N S(x) #?. Then for anyx € QN S(x)andalli=1,...p,
- (O L o) < £ _(ff(’_“)_ Y o) — &
i = (59 - ) a0 <50 - (199 - e ) gt - .

Hence the g-efficiency of x yields
fi(%) e fi(x) N
= (29 =) s -5 - (16— e) s -5
for any x € QN S(x) and all i = 1, ..., p. Thus we have, for all x € Q N S(x),
p - 4 p 4
fi(%) o (fi®) . _
= (29 =) s] - X[ - (11D ~a) s@)| - L.
z[ v~ 6)sw] = X[ - (10 -e)sw] - L
(iii) = (ii): Suppose that QN S(x) = #. Then there does not exist x € Q such that
x € S(x); that is, there does not exist x € Q such that
fi(%) fi(®)
8i(X) 8i(X)
for all i = 1, ..., p. Hence, there does not exist x € Q such that

Jilx) = (f - ) 8i(x) < fi(®) - (f(( ))
)
%)

®
®
fio) - (f (( )) fsj) gx) < () (f’((

= (29 =) s <5 - (10 — o)) -5

—ei)gi(a'c)—éi, i=1,...,p,

— sj) g(x) — &, forsomeje({l,...,p}.

Therefore, x is an  g-efficient solution of (NMCP);, where

17:: (fl("_f) —81,...,£Z((§)) _€P>‘
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Assume that Q N S(x) # @. Then, from this assumption

i [ - (F9 — ) g)] 2 i @ - (19 - o) s - ilg 6

for any x € QN S(X). Suppose to the contrary that x is not an g-efficient solution of
(NMCP);. Then, there exist X € Q and an index j such that

fi®) — vigi(%) < fi(x) — vi(X) — &, i=1,....p,
fi(%) — vjgi(%) < fj(x) — vjg;(x) — &, forsomej e ({1,...,p}.

Therefore, x € QN S(k) and Y7, [ﬁ(x) (f(“) —s,) g,(x)] <3, [f(x) (x(» )g,(x)] g,
which contradicts the above inequality. Hence, x is an g-efficient solution of (NMCP);.

We can easily obtain the following proposition:

Proposition 3.2 Let X € Qand suppose that fi(X) = €igi(x), i=1,...,p. Then the fol-
lowing are equivalent:

(i) xis a weakly ¢-efficient solution of (MFP).

(ii) xis a  weakly  g-efficient  solution  of (NMCP);,  where
& =(e181(%), ..., 68 (X))and & = (8181(X), ..., £pgp(X)).

(iii) there exists A == (Aq, ..., )_Lp) cR) \ {0} such that

M@

% [fi) - (09 - o) )]

]
—_

=5 T — (@ ] = S 5eo(
20=) X [fi(x) — (g‘;(a?) — si> gi(x)] — > Aigigi(x) for any x € Q.
i=1 i=1
Proof. (i) « (ii): The proof is also following the similar lines of Proposition 3.1.
(i) = (iii): Let o) = (1(x), ..., ¢p), VYx € Q, where

wi(x) = fi(x) — (ﬁ((’;)) — si) gi(x), i=1,---,p. Then, ¢(x), i = 1,..., p, are convex. Since

xeQ is a  weakly ¢-efficient  solution of (NMCP);,  where
(@(Q) + RY) N (—intRY) = & (¢(Q) + RY) N (—intRY) = ¢ and hence, it follows from
separation theorem that there exist ; > 0, i = 1, .., p, (A1, ..., Ay) # 0 such that

p
Z}_L,‘(pi(x) 2 0 VxeQ.
i=1
Thus (iii) holds.
(iii) = (ii): If (ii) does not hold, that is, x is not a weakly g-efficient solution of
(NMCP);, then (iii) does not hold. &
We present a necessary and sufficient e-optimality theorem for ¢-efficient solution of
(MFP) under a constraint qualification, which will be called the closedness assumption.
Theorem 3.1 Let X € Qand assume that QN S(x) #Vand
fi(x) 2 6igi(x), i=1,...,pi =1, .., p. Suppose that

m P
U D epitahy)* + (U D [epiluifi)* + epi(—wirig)*]

220 j=1 1i=0 i=1

is closed, where v; = fl(( )) —¢i, i =1, .., p. Then the following are equivalent.
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(i) xis an e-efficient solution of (MFP).

T
0 *
<0> Gzi: [epif;" + epi(—7ig)* UDOZ epi(iyhy)*
(ii)
* U Z[epi(“’"fi)*+epi(—17iuigi)*],
ui=0 i=1

(iii) there exist o; Z 0, u; € 8y,fi(X), B 2 0, yi € 9, (—Vini&)(X), i = 1, .., p, A, 20, 7 2
0, wjed,(Nh)(X), j = 1, ., m u;, 2 0, q; 2 0, s;i€d(nifi)(X), z; 2 0,
ti € 8, (—Vipigi)(X)i = 1, ..., p such that

p m p
O=Z(u,—+y,~)+2w]-+2(si+t,—)
i=1 j=1 i=1
and

Z (i + Bi + Gi + i) + Z yj = Zei(l + )&i(®) + D Ahi(%).
i=1 j=1
Proof. Let ho(x) = i:[fi(x) — Uigi(x) ]

(i) < (by Proposition 3.1) kg(x) 2 0, Vx € Q N S(X).
o {xlfi(x) —vigi(x) £0,i=1, ., p, hjx) £0,j =1, ., m} € {x | ho(x) 2 0}.
< (by lemma 2.3)

0 T p
(0) GZ epif* + epi(—vig)" +cl UZepl(A]h)

i=1 Aj >0 j=1
p

+ U Z [epi(pifi)™ + epi(—Pipigi)*]
wi20 i=1

Thus by the closedness assumption, (i) is equivalent to (ii).

(i) < (iii): (ii) & (by Lemma 2.1), there exist ¢;; 2 0, u; € 9y, (ifi))(X), i = 1, ..., p, B; 2
0, yi € 9g,(—vipig)(x), i = 1, ..., p, lj 20, Y Z20,we 3],].()»]‘;1]')(3_6),}' =1, ., m u; 20, q;
20,5 €dq(nif)x),i=1,.,p 220t € d,(—Viung)(x), i = 1, .., p such that

(g)T - [( (i, % +l:1 —ﬁ(a’c))T ’ ((Yi: X) + Bi ! (—17181')(50))1
*}1(%, )+ = (xh)(x)>

i :1 |:< {si X) + qi B (Mzﬁ)(x))T ( (i, X) +Zi—tz—17imgi)(5€)>1'

< there exist ¢; 2 0, u; € Og; (nifi)) (%), B; 20,y € 8ﬁi(—ﬁiuigi)(3'c), i=1,.,p /lj 20, Y%
2 0, wj € 8;,].()»1']’1]')(9_(?), ] =1, .., m, Ui 2 0, qi 2 0, s;e 8(7[(/,L,'ﬁ)(3_€), Z; 2 0,
ti € 9, (—vipnigi)(X)i = 1, ..., p such that

Ms LM~
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p
0=Z(ui+yl Zw] Z(si+ti)

i=1

» " » m
and) (i +Bi+di+z)+y_ vi= . |:fi(’_‘) = Uigi(X) + (ifi) (%) — (ipnigi) (%) + Z)vhj(x):| .

i=1 j=1 i=1 =1

< (iii) holds. O

Now we give a necessary and sufficient ¢-optimality theorem for ¢-efficient solution
of (MFP) which holds without any constraint qualification.

Theorem 3.2 Let X € Q. Suppose that QN S(X) # Band fi(X) = eigi(x), i=1,.
=1, .., p. Then xis an e-efficient solution of (MFP) if and only if there exist o;
Ui € O, (ifi)(X), i =1, ..., p, B: 20, yi € 3 (—Vipigi) (%), i = 1, ..., p, )\]ﬂ 20, V
whedp(MI)X), j o= 1, ., m, up 20, g0, spedp(uifi)&),
ty € 0z (—Vepy8) (%), k = 1, ..., p such that

=
S ~.

v II\/ ||V
o o O

N
i

0= Z(ul+yl)+hrn Zw +Z(s;’§+t,':)

k=1
and
p p m
Ses® = 3 (w+p)+ lim L[y ) @)
i=1 i=1 j=1

p
+ Y [ap+2 - MZSkgk(J_C)]} -
k=1

Proof. x is an ¢-efficient solution of (MFP)
< (from the proof of Theorem 3.1)

0 T p
(0) GZ epif;" + epi(—vigi)*] + UZepl(Ah)

i=1 MEO j=1

+

p
Z [epi(uifi)™ + epi(—Dinigi)*]

wiZ20 i=1

< (by Lemma 2.1) there exist o; 2 0, u; € 3o, (uifi)(X), i = 1, ..., p, B; 2 0,
Vi € g, (—Vipig)(X), i = 1, ., p, A 20, 7" 20, w} € 0y (AIy)(X), j = 1, ..., m, puf 20,
S € g (1pfie) (%), 8, € Ogr (upfi) (%), 2y 2 0, 6 € Oz (— ety &) (X), k = 1, ..., p, such that

(g>i[<< v ﬁ(x)>T (y,,,—c>+,3f(_aigi)(@ﬂ

i=

m n T
w'
li j _
MRS ;<< Wl E) +y — (Ayh,-)(x))

P Sn T t" T
+k2=1:|:(<sk’ )+ gy — (,ukfk)(x)) (tk, X) +zp — ( ﬁkuz‘gi)(&)> :“
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< there exist o; 2 0, u; € 3y, (nifi)(X), i = 1, .., p, Bi 2 0, yi € g (—Vinig) (%), i = 1, ...,
P W Z 0 Y 20w € B GI)E), = 1, e, i 20, g 20, 5 € dp(upfi) (D),
ty € 0z (—Viery8e) (%), t; € Ozp(—vrpay,8k)(X), k = 1, ..., p, such that

p m p
0=Z(ui+yi)+r}irgo Zw}‘+Z(s;’z‘+tz‘)
i=1 j=1 k=1

and
p p m
D eigi(®) = (it i)+ im {3 [y = Gyhy) ()]
j=1

i=1 i=1 j

p
> lan+4 - MZSkgk(%)]} :
k=1

We present a necessary and sufficient ¢-optimality theorem for weakly ¢-efficient
solution of (MFP) under a constraint qualification.

Theorem 3.3 Let X € Qand assume that fi(X) = eigi(X), i=1,...,pi=1, .., p, and
U0 Z;Zl epi(Ajhy)is closed. Then the following are equivalent.

(i) xis a weakly e-efficient solution of (MFP).

(ii) there exist y; 2 0,i = 1, ..., p, Zil wi = lsuch that

0 T P m
( 0) < 2 [epi(uifi)* +epi(—wimigi)*] + | ) D epi(ajhy)*,

i 2j20 j=1

(iii) there exist y; 2 0, Z?:l wi=10; 20, u; € o, (ifi)(X), B; 2 0, yi € 3p,(—Vipigi)(%),
i=1.,p 420 %20 w € dyAh)(x),j = 1, .., m, such that

p m
0= Z(ui+yi)+2wj
i=1 j=1

and
p p m
Z wicigi(x) = Z (ai + Bi) + Z [ — (k) (®)]-
i-1 i1 i1

Proof. (i) < (ii): x is a weakly e-efficient solution of (MFP)

< (by Proposition 3.2) there exist 4; 20, i = 1, ..., p, Zle wi = 1 such that

p
> wilfi(x) —vigi(x)] 20 VxeQ

i=1
& there exist 4; 2 0, i =1, .., p, Yb_, jt; = 1 such that

p
{x|hj(x) £0,j=1,...,m} C {x]| Zui [fi(x) — vigi(x)] = 0}

i=1
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< (by Lemma 2.3) there exist 4#; 2 0, i = 1, ..., p, Z?=1 ;i = 1 such that
0 T p
(2) & 3 Lepitusy +epit-mg et | D et
i=1 220 j=1

Thus, by the closedness assumption, (i) is equivalent to (ii).

(i) < (iii): (ii) © (by Lemma 2.1) there exist y; 2 0, Zl (=1l a; 20,
uj € aai(uifi)(;c)’ ﬁi 20, Vi € aﬁi(_piﬂigi)(;c)’ i=1.,p l}' 20, Y 20, wj € ayj()\.jhj)(J_C),j
=1, .., m, such that

(8>T - |:(<”i/ X) + Oliui (Miﬁ)(@)T+ ((Yu X)+ Bi —YE thhgt)(x)) T}

(b )
(wjo %) + v — (1)) )

-

1

+
EME "

< (iii) holds. O

Now, we propose a necessary and sufficient g-optimality theorem for weakly e-effi-
cient solution of (MFP) which holds without any constraint qualification.

Theorem 3.4 Let X € Qand assume that fi(x) 2 €;gi(x), i=1,...,p. Then xis a
weakly e-efficient solution of (MFP) if and only if there exist u; 2 0, i = 1, ..., p,

P omi=10;20,ui € 0 (wifi)(X), i = 1, .y p, B 20, i € 9, (—Viptig) (%), i = 1, ..., p,
Y20,y 20w €0, (A'h)(X), j = 1, ..., m, such that

p m
= . . 1 n
0= (wey)+ lim ) u
1= 1=

and

m

ZMI eigi(®) = Z(ozl +fi) + lim Z[ () ® ]

Proof. x is a weakly e-efficient solution of (MFP)
< ((from the proof of Theorem 3.3) there exist y#; 2 0, i = 1, ..., p, Zil i = 1such
that

T P
0
(0) e; epi(uifi)* +epi(—vipigi)*] + L>J Zlepl(kh)
i= Aj20 J=

& (by Lemma 2.1) there exist yt; 20, i = 1, .., p, Y0 i = 1, &; 2 0, U € 0y, (1ifi) (%),
i=1,.p Bi 20,y €0p(—ipig)(®), i = 1, ., p, A} 20, 20, w € 3, (A'hy)(%),
=1, .., m, such that

( )T i[( (i, % +a1i (Mlﬁ)(x))T ((Yirﬁ_c>+ﬁi —yé—i_}imgi)(ﬁ))j

i=1

w"

m T
+ Jlim 1D <<w )yl (x;lh,-)(x))

j=1
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& there exist ¢t; 20, i =1, ., p, Y0 pi= 1,042 0, 4 € 9o, (wifi) (%) i = 1, ..., p, B; 2
0, yi € 9, (—Vinig)(X), i = 1, ., p, A 20, %" 20, wj' € 3,0 (A'h')(%), j = 1, ..., m, such

that
p m
0= Z(u,- + i) +JLIEOwa
i=1 j=1
and
p p m
> i@ = 3 (e + i) + lim 3 [ = ()@
i=1 i=1 j=1
O

Now, we give examples illustrating Theorems 3.1, 3.2, 3.3, and 3.4.
Example 3.1 Consider the following MFP:

(MEP), Minimize (xl,x2>
X1
subjectto  (x1,%) € Q:={(x1,%2) € R?| —x; +1 X0, —x2+1=Z0).
Let ¢ = (811 82) = (;l ;)’ andﬁ(xlﬂ x2) = X1, gl(xb xZ) = 1) _fZ(xl’ x2) = X2, gZ(xlr x2) =

X1, h(x1, %3) = -x1 + 1 and hy(xq, x5) = -x9 + 1.
(1)Let (X1,X2) = (;, Z) Then (X1, X,)is an e-efficient solution of (MFP);.

Let 17 = f1(3f1,952) —gand vy = fz(Jfllﬁfz) — &y Then v =1y = 1, and
81(%1,%2) 22(%1,%2)
QN S(F1,72)
= QN {(x1,X2) € R*|fi(%1,X2) — 1181 (%1, %2) < 0, 2(X1, %2) — 1282 (X1, %2) < 0}

Thus, QNS(x1,%)#@. It is clear that fi(X1,%) 2 €181 (X1, %2 )and
fz (J_Cl, J_Cz) > &% (J_Cl, J_Cz). Let A= Ut;g 2]2:1 epi(Ahy) "+ Uﬁgg 21'2:1 [epi(fi)*+ epi(—vinigi)*],
Then

2 2 *
A= U epi ijhj + Zul(fl — i&i)
j=1 i=1

A1>0, 1,>0
#1=0, >0

= cone co{(—1,0,-1),(0,—-1,-1),(1,0,1),(—1,1,0),(0,0,1)},

where coD is the convexhull of a set D and cone coD is the cone generated by coD.
Thus A is closed. Let B = Y7 [epif + epi(—¥;g:)*] + A. Then

B = {(1, 0)} x [0, «)+{(0, 0)} x [1, )+{(0, 1)} x [0, «)+{(-1, 0)} x [0, e0)+A. Since (0,-
1,-1) € A, (0,0, 0) € B. Thus (ii) of Theorem 3.1 holds. Let o, =By =1 = q1 = 21 = 0%y
=Py =Y =¢qs =2,=0, and let uy, = pup = 1, and A, = 0 and A, = 2. Moreover,
3f2(x1,%2) ={(0,1)}, df2(k1,x%2) ={(0,1)}, 3(—1&)(*1,X2) ={(0,0)}, 9(—1282)(x1,%2) ={(—1,0)},
3(A2h2) (%1, X2) = {(0, —2)}, d(A2ha)(x1,%2) = {(0, —2)}9(p1 /1) (31, %2) = {(1, 0)},
3(—v11181)(%1,%2) = {(0,0)}, d(—v1e181)(X1,X2) = {(0,0)}, 3(—v20282) (X1, X2) = {(—1,0)}.

Thus, YL, 0(fi — vigi) (%1, %)+ X5, d0ihi) (%1, %2) + X, 0(ifi — vipeigi) (%, %2) = {(0, 0))and
Shy (it Birdi+z) + Yry 1= 0= &1+ u)gi(Er, %) + Yny Ajhy(Er, o).
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Thus, (iii) of Theorem 3.1 holds.
(2) Let (%1,%) = (;, 145 ). Then (X1,X,)is not an e-efficient solution of (MFP),, but
(X1, X2)is a weakly e-efficient solution of (MFP);.

Let € = Unz0. 301 ePi(Aihi)". Then
C = cone co{(—-1,0,-1),(0,—-1,-1), (0,0, 1)}.

Hence, C is closed. Moreover, fi1(%1,%)—181(%1,%) =120, and

~ o~ ~ o~ - fl(J_C11£2) —
X)) — , =320.Letvy =" _ " — dv,="""_""_
fz(xl xz) Szgz(xl xz) = el v a (xl,xz) gana vy gz(xl,xz)

V) =2,0p =2 Let yy = 1 and py = 1. Then,

— &y. Then,

2

> lepi(uifi)* + epi(—pirig)’]

i=1

={(1,0)} x Ry + {(0,0)} x [1,00) +{(0,0)} x R,.

Since (-1, 0,-1) € C, (0,0,0) € Ziz:l [epi(wifi)* + epi(—viuigi)*] + C. So, (ii) of Theo-
rem 3.3 holds. Let oy = B1 =71 = 0y = B = Yo =0, A1 = 1 and A, = 0. Then,

2 2 2
D 0(uwifi) (Fr &) + Y 0(—Tiig) (%1, %2) + Yy d(Ahy) (%1, 2) = {(0,0))
i=1 i=1 j=1
and
2 1 2 2
> wieigi(Fr, %) = )= D i+ Bi)+ Y Ly — (hh)(Er E).
i=1 i=1 j=1

Thus, (iii) of Theorem 3.3 holds.
Example 3.2 Counsider the following MFP:

X2
—X1 + 1
subject to [max{0,x;}]> £0, —x,+1=<0.

(MFP), Minimize (—x1 +1,

Let ¢ = (e1,&2) = (;, ;), and fi(x1, x3) = -x1 + 1, g1(x1, %) = 1, folxy, %2) = %o, @2(x1,
x3) = %1 + L, ey, %) = [max{0, x1}])> and ha(x1, x5) = %5 + 1.

(1) Let (¥1,X;) = (—;, Z) Then, (X1,%2)is an ¢-efficient solution of (MFP),. Let
A:UA@O/ ij:l epi(}‘jhi)**'Um;O. Z§=1[€Pi(ﬂiﬁ)*+ epi(—l_/,-u,igi)*]. Then, clA = cone co{(0, -1,

2220 1220
-1), (1, 0, 0), (-1, 0, 0), (1, 1, 1), (0, O, 1)}. Here, (1, 0, 0) € clA, but (1, 0, 0) € A, where
clA is the closure of the set A. Thus, A is not closed. Let Q = {(x1, x5) € R” | hy(x1, x5)

S 0, (w1, %2) S 0} Then, QN S(&r, &) = ((1,1)). Let vy = LG72) — ey i = 1, 2. Then,
Ji=h=1 Let 0y = B1 = Ga = Bo = 0, A"=0, Al =1, y' =y =0, ' =(0,0),
wy =(0,—1). Let u; = (-1, 0) uy = (0, 1), y; = (0, 0) and y, = (1, 0). Let
41 =q5 =2} =21 =0, and u} =p5 =0. Let s =55 = (0,0)and t} =15 = {(0,0)}. Then,
ui € 0fi(X1,%2), i = 1, 2, yi € 0(—1i&) (X1, %2), i = 1, 2, wj € 0(A7hy) (%1, X2), j = 1, 2,
Sy € A(upfi)(X1,X2), k = 1, 2, and t;, € (Ve 8k)(X1,X2), k = 1, 2. Moreover,
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2 2 2
0= Z(u,-+y,-) +1limy,_, o Zw]" +Z(SZ +1,)
i=1 i=1

j=1
and
2
Zeigi(ﬂ_cl,ﬂ_cz)
i=1
2 2 2
=) o+ Bi) +limyoe Y [ — (PG X))+ Y Ld) + 2 — ppengu(®1, X))
i=1 j=1 k=1

Thus, Theorem 3.2 holds.

(2) Let (X1, %) = (—;, 145 ). Then, (%1,X2)is a weakly e-efficient solution of (MFP),, but

- 2

not an e-efficient solution of (MFP),. Let B= Ui%g, epi(_ iy Aihi)*, Then, clB = cone co
2=

{(0, -1, -1), (1, 0, 0), (0, O, 1)}. However, (1, 0, 0) ¢ B. Thus, B is not closed. Moreover,

fr(%1,%2) — €282(%1,%2) =3 20, fa(%1,%2) — €282(%1, %) =3 2 0. Let
X1, % . X1, X - ~
"'2 - f2(~1 ~2) — 82dl’ld v, = f2(~1 ~2) — &) Then; vy = land vy = 2. Let Ui = 1, Ho = 0,
gz(xhxz) gz(xlrxz)

a1 =Pfi=0=P=0and 1y =0, A5 =0.Letyf' =)+ L, Al =n,y)=0,15=0,ne N.
Then,  3(p1f1)(F1, %) = {(—1,0)}, 8(u2f2)(%1, %) = {(0,0)}, (=1 181) (%1, %2) = {(0,0)},
By (W21 ) (1, %) = [o, —n+ n? v an(} + 41n)] x {0} = [0,1] x {0},

Oy (M3h2)(X1,X2) = {(0, 0)}, 3y (A3h2) (X1, %2) = {(0, O)}. Let uy = (-1, 0) and uy = y1 = y,
= (0, 0). Then, uy € d(u1f1)(¥1,%2), uz € d(paf2)(¥1,%2), y1 € A(—V1p181) (%1, X2),
V2 € 3(—2p282) (%1, %2). Let w} = (1, 0)and w = (0,0). Then, wi € d,r(A'Th1)(X1, X2)and
wh € By (Wsha) (%1, %2). Thus, Y iy (wi +yi) + limy oo 3wl = (=1,0) + (1,0) = (0,0),

limy oo 320 (1 = GG 82) | =l (3 + ) = Jand

lim, o0 Zle [7/]” — (A;‘hj)(icl,icz)] = lim,_ o (; + 41n) = ; Hence, Theorem 3.4 holds.
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