On ε-optimality conditions for multiobjective fractional optimization problems

Moon Hee Kim ${ }^{1}$, Gwi Soo Kim ${ }^{2}$ and Gue Myung Lee ${ }^{2^{*}}$

* Correspondence: gmlee@pknu.ac. kr
${ }^{2}$ Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea Full list of author information is available at the end of the article

Abstract

A multiobjective fractional optimization problem (MFP), which consists of more than two fractional objective functions with convex numerator functions and convex denominator functions, finitely many convex constraint functions, and a geometric constraint set, is considered. Using parametric approach, we transform the problem (MFP) into the non-fractional multiobjective convex optimization problem (NMCP) with parametric $v \in \mathbb{R}^{p}$, and then give the equivalent relation between (weakly) ε^{-} efficient solution of (MFP) and (weakly) $\bar{\varepsilon}$-efficient solution of (NMCP) $\overline{\bar{p}}_{\overline{\bar{m}}}$. Using the equivalent relations, we obtain ε-optimality conditions for (weakly) ε-efficient solution for (MFP). Furthermore, we present examples illustrating the main results of this study. 2000 Mathematics Subject Classification: 90C30, 90C46.

Keywords: Weakly ε-efficient solution, ε-optimality condition, Multiobjective fractional optimization problem

1 Introduction

We need constraint qualifications (for example, the Slater condition) on convex optimization problems to obtain optimality conditions or ε-optimality conditions for the problem.
To get optimality conditions for an efficient solution of a multiobjective optimization problem, we often formulate a corresponding scalar problem. However, it is so difficult that such scalar program satisfies a constraint qualification which we need to derive an optimality condition. Thus, it is very important to investigate an optimality condition for an efficient solution of a multiobjective optimization problem which holds without any constraint qualification.
Jeyakumar et al. [1,2], Kim et al. [3], and Lee et al. [4], gave optimality conditions for convex (scalar) optimization problems, which hold without any constraint qualification. Very recently, Kim et al. [5] obtained ε-optimality theorems for a convex multiobjective optimization problem. The purpose of this article is to extend the ε-optimality theorems of Kim et al. [5] to a multiobjective fractional optimization problem (MFP).
Recently, many authors [5-15] have paid their attention to investigate properties of (weakly) ε-efficient solutions, ε-optimality conditions, and ε-duality theorems for multiobjective optimization problems, which consist of more than two objective functions and a constrained set.

SpringerOpen ${ }^{\bullet}$

In this article, an MFP, which consists of more than fractional objective functions with convex numerator functions, and convex denominator functions and finitely many convex constraint functions and a geometric constraint set, is considered. We discuss ε-efficient solutions and weakly ε-efficient solutions for (MFP) and obtain ε optimality theorems for such solutions of (MFP) under weakened constraint qualifications. Furthermore, we prove ε-optimality theorems for the solutions of (MFP) which hold without any constraint qualifications and are expressed by sequences, and present examples illustrating the main results obtained.

2 Preliminaries

Now, we give some definitions and preliminary results. The definitions can be found in [16-18]. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex function. The subdifferential of g at a is given by

$$
\partial g(a):=\left\{v \in \mathbb{R}^{n} \mid g(x) \geqq g(a)+\langle v, x-a\rangle, \quad \forall x \in \operatorname{dom} g\right\}
$$

where domg: $=\left\{x \in \mathbb{R}^{n} \mid g(x)<\infty\right\}$ and $\langle\cdot, \cdot\rangle$ is the scalar product on \mathbb{R}^{n}. Let $\varepsilon \geqq 0$. The ε-subdifferential of g at $a \in \operatorname{dom} g$ is defined by

$$
\partial_{\varepsilon} g(a):=\left\{v \in \mathbb{R}^{n} \mid g(x) \geqq g(a)+\langle v, x-a\rangle-\varepsilon, \quad \forall x \in \operatorname{dom} g\right\} .
$$

The conjugate function of $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is defined by

$$
g^{*}(v)=\sup \left\{\langle v, x\rangle-g(x) \mid x \in \mathbb{R}^{n}\right\}
$$

The epigraph of g, epig, is defined by

$$
\text { epi } g=\left\{(x, r) \in \mathbb{R}^{n} \times \mathbb{R} \mid g(x) \leqq r\right\}
$$

For a nonempty closed convex set $C \subset \mathbb{R}^{n}, \delta_{C}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is called the indicator of C if $\delta_{C}(x)=\left\{\begin{array}{cc}0 & \text { if } x \in C, \\ +\infty & \text { otherwise }\end{array}\right.$.

Lemma 2.1 [19]If $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper lower semicontinuous convex function and if $a \in \operatorname{dom} h$, then

$$
\mathrm{epi}^{*} h^{*} \bigcup_{\varepsilon \geqq 0}\left\{(v,\langle v, a\rangle+\varepsilon-h(a)) \mid v \in \partial_{\varepsilon} h(a)\right\}
$$

Lemma 2.2 [20]Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous convex function and $u: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup$ $\{+\infty\}$ be a proper lower semicontinuous convex function. Then

$$
\mathrm{epi}(h+u)^{*}=\mathrm{epi} h^{*}+\mathrm{epi} u^{*} .
$$

Now, we give the following Farkas lemma which was proved in [2,5], but for the completeness, we prove it as follows:
Lemma 2.3 Let $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=0,1, \ldots$, l be convex functions. Suppose that $\left\{x \in \mathbb{R}^{n} \mid\right.$ $\left.h_{i}(x) \leqq 0, i=1, \ldots, l\right\} \neq \varnothing$. Then the following statements are equivalent:
(i) $\left\{x \in \mathbb{R}^{n} \mid h_{i}(x) \leqq 0, i=1, \ldots, l\right\} \subseteq\left\{x \in \mathbb{R}^{n} \mid h_{0}(x) \geqq 0\right\}$
(ii) $0 \in \operatorname{epi} h_{0}^{*}+\mathrm{cl} \bigcup_{\lambda_{i} \geqq 0} \operatorname{epi}\left(\sum_{i=1}^{l} \lambda_{i} h_{i}\right)^{*}$.

Proof. Let $Q=\left\{x \in \mathbb{R}^{n} \mid h_{i}(x) \leqq 0, i=1, \ldots, l\right\}$. Then $\mathrm{Q} \neq \varnothing$ and by Lemma 2.1 in [2], epi $\delta_{\mathrm{Q}}^{*}=\mathrm{cl} \bigcup_{\lambda_{i} \geqq 0} \operatorname{epi}\left(\sum_{i=1}^{l} \lambda_{i} h_{i}\right)^{*}$. Hence, by Lemma 2.2, we can verify that (i) if and only if (ii).

Lemma 2.4 [16]Let $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}, i=, 1, \ldots, m$ be proper lower semi-continuous convex functions. Let $\varepsilon \geqq 0$. if $\bigcap_{i=1}^{m}$ ri $\operatorname{dom} h_{i} \neq 0$, where ri dom h_{i} is the relative interior of $\operatorname{dom} h_{i}$, then for all $x \in \bigcup_{i=1}^{m} \operatorname{dom} h_{i}$,

$$
\partial_{\varepsilon}\left(\sum_{i=1}^{m} h_{i}\right)(x)=\bigcup\left\{\sum_{i=1}^{m} \partial_{\varepsilon_{i}} h_{i}(x) \mid \varepsilon_{i} \geqq 0, i=1, \cdots, m, \sum_{i=1}^{m} \varepsilon_{i}=\varepsilon\right\} .
$$

3 e-optimality theorems

Consider the following MFP:
(MFP) Minimize $\frac{f(x)}{g(x)}:=\left(\frac{f_{1}(x)}{g_{1}(x)}, \cdots, \frac{f_{p}(x)}{g_{p}(x)}\right)$

$$
\text { subject to } \quad x \in Q:=\left\{x \in \mathbb{R}^{n} \mid h_{j}(x) \leqq 0, j=1, \ldots, m\right\}
$$

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, p$ be convex functions, $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, p$, concave functions such that for any $x \in Q, f_{i}(x) \geqq 0$ and $g_{i}(x)>0, i=1, \ldots, p$, and $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}, j$ $=1, \ldots, m$, convex functions. Let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{p}\right)$, where $\varepsilon_{i} \geqq 0, i=1, \ldots, p$.

Now, we give the definition of ε-efficient solution of (MFP) which can be found in [11].
Definition 3.1 The point $\bar{x} \in$ Qis said to be an ε-efficient solution of (MFP) if there does not exist $x \in Q$ such that

$$
\begin{aligned}
& \frac{f_{i}(x)}{g_{i}(x)} \leqq \frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}, \text { for all } i=1, \ldots, p \\
& \frac{f_{j}(x)}{g_{j}(x)}<\frac{f_{j}(\bar{x})}{g_{j}(\bar{x})}-\varepsilon_{j}, \text { for some } j \in\{1, \ldots, p\} .
\end{aligned}
$$

When $\varepsilon=0$, then the ε-efficiency becomes the efficiency for (MFP) (see the definition of efficient solution of a multiobjective optimization problem in [21]).

Now, we give the definition of weakly ε-efficient solution of (MFP) which is weaker than ε-efficient solution of (MFP).

Definition 3.2 A point $\bar{x} \in$ Qis said to be a weakly ε-efficient solution of (MFP) if there does not exist $x \in Q$ such that

$$
\frac{f_{i}(x)}{g_{i}(x)}<\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}, \text { for all } i=1, \ldots, p
$$

When $\varepsilon=0$, then the weak ε-efficiency becomes the weak efficiency for (MFP) (see the definition of efficient solution of a multiobjective optimization problem in [21]).

Using parametric approach, we transform the problem (MFP) into the nonfractional multiobjective convex optimization problem $(\mathrm{NMCP})_{v}$ with parametric $v \in \mathbb{R}^{p}$:

$$
\begin{aligned}
(\mathrm{NMCP})_{v} & \text { Minimize } \\
\text { subject to } & (f(x)-v g(x)):=\left(f_{1}(x)-v_{1} g_{1}(x), \ldots, f_{p}(x)-v_{p} g_{p}(x)\right)
\end{aligned}
$$

Adapting Lemma 4.1 in [22] and modifying Proposition 3.1 in [12], we can obtain the following proposition:

Proposition 3.1 Let $\bar{x} \in Q$. Then the following are equivalent:
(i) $\bar{x} i s$ an ε-efficient solution of (MFP).
(ii) \bar{x} is an $\bar{\varepsilon}$-efficient solution of $(N M C P)_{\bar{i}}$, where $\bar{v}:=\left(\frac{f_{1}(\bar{x})}{g_{1}(\bar{x})}-\varepsilon_{1}, \ldots, \frac{f_{p}(\bar{x})}{g_{p}(\bar{x})}-\varepsilon_{p}\right)$ and $\bar{\varepsilon}=\left(\varepsilon_{1} g_{1}(\bar{x}), \ldots, \varepsilon_{p} g_{p}(\bar{x})\right)$.
(iii) $Q \cap S(\bar{x})=\emptyset$ or

$$
\begin{aligned}
& \sum_{i=1}^{p}\left[f_{i}(x)-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(x)\right] \\
& \geqq 0=\sum_{i=1}^{p}\left[f_{i}(\bar{x})-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(\bar{x})\right]-\sum_{i=1}^{p} \varepsilon_{i} g_{i}(\bar{x}) \text { for any } x \in Q \cap S(\bar{x}),
\end{aligned}
$$

where $S(\bar{x})=\left\{x \in \mathbb{R}^{n} \left\lvert\, f_{i}(x)-\left(\frac{f(\bar{x})}{\delta_{i}(x)}-\varepsilon_{i}\right) g_{i}(x) \leqq 0=f_{i}(\bar{x})-\left(\frac{f(\bar{x})}{s_{i}(x)}-\varepsilon_{i}\right) g_{i}(\bar{x})-\bar{\varepsilon}_{i}\right., i=1, \ldots, p\right\}$.
Proof. (i) \Leftrightarrow (ii): It follows from Lemma 4.1 in [22].
(ii) \Rightarrow (iii): Let \bar{x} be an $\bar{\varepsilon}$-efficient solution of (NMCP) $)_{\bar{v}}$, where $\bar{v}:=\left(\frac{f_{1}(\bar{x})}{g_{1}(\bar{x})}-\varepsilon_{1}, \ldots, \frac{f_{p}(\bar{x})}{g_{p}(\bar{x})}-\varepsilon_{p}\right)$ and $\bar{\varepsilon}=\left(\varepsilon_{1} g_{1}(\bar{x}), \ldots, \varepsilon_{p} g_{p}(\bar{x})\right)$. Then $Q \cap S(\bar{x})=\emptyset$ or $Q \cap S(\bar{x}) \neq \emptyset$. Suppose that $Q \cap S(\bar{x}) \neq \emptyset$. Then for any $x \in Q \cap S(\bar{x})$ and all $i=1, \ldots p$,

$$
f_{i}(x)-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(x) \leqq f_{i}(\bar{x})-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(\bar{x})-\bar{\varepsilon}_{i} .
$$

Hence the $\bar{\varepsilon}$-efficiency of \bar{x} yields

$$
f_{i}(x)-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(x)=f_{i}(\bar{x})-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(\bar{x})-\bar{\varepsilon}_{i}
$$

for any $x \in Q \cap S(\bar{x})$ and all $i=1, \ldots, p$. Thus we have, for all $x \in Q \cap S(\bar{x})$,

$$
\sum_{i=1}^{p}\left[f_{i}(x)-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(x)\right]=\sum_{i=1}^{p}\left[f_{i}(\bar{x})-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(\bar{x})\right]-\sum_{i=1}^{p} \bar{\varepsilon}_{i} .
$$

(iii) \Rightarrow (ii): Suppose that $Q \cap S(\bar{x})=\emptyset$. Then there does not exist $x \in Q$ such that $x \in S(\bar{x})$; that is, there does not exist $x \in Q$ such that

$$
f_{i}(x)-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(x) \leqq f_{i}(\bar{x})-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(\bar{x})-\bar{\varepsilon}_{i}
$$

for all $i=1, \ldots, p$. Hence, there does not exist $x \in Q$ such that

$$
\begin{array}{ll}
f_{i}(x)-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(x) \leqq f_{i}(\bar{x})-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(\bar{x})-\bar{\varepsilon}_{i}, & i=1, \ldots, p \\
f_{j}(x)-\left(\frac{f_{j}(\bar{x})}{g_{j}(\bar{x})}-\varepsilon_{j}\right) g_{j}(x)<f_{j}(\bar{x})-\left(\frac{f_{j}(\bar{x})}{g_{j}(\bar{x})}-\varepsilon_{j}\right) g_{j}(\bar{x})-\bar{\varepsilon}_{j}, & \text { for some } j \in\{1, \ldots, p\} .
\end{array}
$$

Therefore, \bar{x} is an $\bar{\varepsilon}$-efficient solution of $(\mathrm{NMCP})_{\bar{v}}$, where $\bar{v}:=\left(\frac{f_{1}(\bar{x})}{g_{1}(\bar{x})}-\varepsilon_{1}, \ldots, \frac{f_{p}(\bar{x})}{g_{p}(\bar{x})}-\varepsilon_{p}\right)$.

Assume that $Q \cap S(\bar{x}) \neq \emptyset$. Then, from this assumption

$$
\begin{equation*}
\sum_{i=1}^{p}\left[f_{i}(x)-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(x)\right] \geqq \sum_{i=1}^{p}\left[f_{i}(\bar{x})-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(\bar{x})\right]-\sum_{i=1}^{p} \bar{\varepsilon}_{i} \tag{3.1}
\end{equation*}
$$

for any $x \in Q \cap S(\bar{x})$. Suppose to the contrary that \bar{x} is not an $\bar{\varepsilon}$-efficient solution of $(\mathrm{NMCP})_{\bar{v}}$. Then, there exist $\hat{x} \in Q$ and an index j such that

$$
\begin{aligned}
& f_{i}(\hat{x})-\bar{v}_{i} g_{i}(\hat{x}) \leqq f_{i}(\bar{x})-\bar{v} g_{i}(\bar{x})-\bar{\varepsilon}_{i}, i=1, \ldots, p \\
& f_{j}(\hat{x})-\bar{v}_{j} g_{j}(\hat{x})<f_{j}(\bar{x})-\bar{v}_{j} g_{j}(\bar{x})-\bar{\varepsilon}_{j}, \quad \text { for some } j \in\{1, \ldots, p\} .
\end{aligned}
$$

Therefore, $\hat{x} \in Q \cap S(\bar{x})$ and $\sum_{i=1}^{p}\left[f_{i}(\hat{x})-\left(\frac{f_{i}(\hat{x})}{z_{i}(\hat{x})}-\varepsilon_{i}\right) g_{i}(\hat{x})\right]<\sum_{i=1}^{p}\left[f_{i}(\bar{x})-\left(\frac{f_{i}(\hat{x})}{z_{i}(\hat{x})}-\varepsilon_{i}\right) g_{i}(\bar{x})\right]-\sum_{i=1}^{p} \bar{\varepsilon}_{i}$, which contradicts the above inequality. Hence, \bar{x} is an $\bar{\varepsilon}$-efficient solution of (NMCP) $\bar{v}_{\bar{v}}$.
We can easily obtain the following proposition:
Proposition 3.2 Let $\bar{x} \in$ Qand suppose that $f_{i}(\bar{x}) \geqq \varepsilon_{i} g_{i}(\bar{x}), \quad i=1, \ldots, p$. Then the following are equivalent:
(i) \bar{x} is a weakly ε-efficient solution of (MFP).
(ii) \bar{x} is a weakly $\bar{\varepsilon}$-efficient solution of $(N M C P)_{\bar{v}}$, where $\bar{\varepsilon}=\left(\varepsilon_{1} g_{1}(\bar{x}), \ldots, \varepsilon_{p} g_{p}(\bar{x})\right)$ and $\bar{\varepsilon}=\left(\varepsilon_{1} g_{1}(\bar{x}), \ldots, \varepsilon_{p} g_{p}(\bar{x})\right)$.
(iii) there exists $\bar{\lambda}:=\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{p}\right) \in \mathbb{R}_{+}^{p} \backslash\{0\}$ such that

$$
\begin{aligned}
& \sum_{i=1}^{p} \bar{\lambda}_{i}\left[f_{i}(x)-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(x)\right] \\
& \geqq 0=\sum_{i=1}^{p} \bar{\lambda}_{i}\left[f_{i}(\bar{x})-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(\bar{x})\right]-\sum_{i=1}^{p} \bar{\lambda}_{i} \varepsilon_{i} g_{i}(\bar{x}) \text { for any } x \in Q
\end{aligned}
$$

Proof. (i) \Leftrightarrow (ii): The proof is also following the similar lines of Proposition 3.1.
(ii) \Rightarrow (iii): Let $\phi(x)=\left(\phi_{1}(x), \ldots, \phi_{p}(x)\right), \forall x \in Q$, where $\varphi_{i}(x)=f_{i}(\bar{x})-\left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}\right) g_{i}(x), \quad i=1, \ldots, p$. Then, $\phi_{i}(x), i=1, \ldots, p$, are convex. Since $\bar{x} \in Q \quad$ is a weakly ε-efficient solution of (NMCP) $\bar{v}_{\bar{v}}$, where $\left(\varphi(Q)+\mathbb{R}_{+}^{p}\right) \cap\left(-\operatorname{int} \mathbb{R}_{+}^{p}\right)=\emptyset,\left(\varphi(Q)+\mathbb{R}_{+}^{p}\right) \cap\left(-\operatorname{int} \mathbb{R}_{+}^{p}\right)=\emptyset$, and hence, it follows from separation theorem that there exist $\bar{\lambda}_{i} \geqq 0, i=1, \ldots, p,\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{p}\right) \neq 0$ such that

$$
\sum_{i=1}^{p} \bar{\lambda}_{i} \varphi_{i}(x) \geqq 0 \quad \forall x \in Q
$$

Thus (iii) holds.
(iii) \Rightarrow (ii): If (ii) does not hold, that is, \bar{x} is not a weakly $\bar{\varepsilon}$-efficient solution of (NMCP) $)_{\bar{v}}$, then (iii) does not hold. \square

We present a necessary and sufficient ε-optimality theorem for ε-efficient solution of (MFP) under a constraint qualification, which will be called the closedness assumption.

Theorem 3.1 Let $\bar{x} \in Q a n d$ assume that $Q \cap S(\bar{x}) \neq \emptyset$ and $f_{i}(\bar{x}) \geqq \varepsilon_{i} g_{i}(\bar{x}), \quad i=1, \ldots, p i=1, \ldots, p$. Suppose that

$$
\bigcup_{\lambda_{j} \geqq 0} \sum_{j=1}^{m} \operatorname{epi}\left(\lambda_{j} h_{j}\right)^{*}+\bigcup_{\mu_{i} \geqq 0} \sum_{i=1}^{p}\left[\operatorname{epi}\left(\mu_{i} f_{i}\right)^{*}+\operatorname{epi}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)^{*}\right]
$$

is closed, where $\bar{v}_{i}=\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}, i=1, \ldots, p$. Then the following are equivalent.
(i) \bar{x} is an ε-efficient solution of (MFP).

$$
\binom{0}{0}^{\mathrm{T}} \in \sum_{i=1}^{p}\left[\operatorname{epi} f_{i}^{*}+\operatorname{epi}\left(-\bar{v}_{i} \delta_{i}\right)^{*}\right]+\bigcup_{\lambda_{j} \geqq 0} \sum_{j=1}^{m} \operatorname{epi}\left(\lambda_{j} h_{j}\right)^{*}
$$

(ii)

$$
+\bigcup_{\mu_{i} \geq 0} \sum_{i=1}^{p}\left[\operatorname{epi}\left(\mu_{i} f_{i}\right)^{*}+\operatorname{epi}\left(-\bar{\nu}_{i} \mu_{i} \delta_{i}\right)^{*}\right] .
$$

(iii) there exist $\alpha_{i} \geqq 0, u_{i} \in \partial_{\alpha_{i}} f_{i}(\bar{x}), \beta_{i} \geqq 0, \gamma_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}), i=1, \ldots, p, \lambda_{j} \geqq 0, \gamma_{j} \geqq$ $0, w_{j} \in \partial_{\gamma_{j}}\left(\lambda_{j} h_{j}\right)(\bar{x}), j=1, \ldots, m, \mu_{i} \geqq 0, q_{i} \geqq 0, s_{i} \in \partial_{q_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), z_{i} \geqq 0$, $t_{i} \in \partial_{z_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}) i=1, \ldots, p$ such that

$$
0=\sum_{i=1}^{p}\left(u_{i}+y_{i}\right)+\sum_{j=1}^{m} w_{j}+\sum_{i=1}^{p}\left(s_{i}+t_{i}\right)
$$

and

$$
\sum_{i=1}^{p}\left(\alpha_{i}+\beta_{i}+q_{i}+z_{i}\right)+\sum_{j=1}^{m} \gamma_{j}=\sum_{i=1}^{p} \varepsilon_{i}\left(1+\mu_{i}\right) g_{i}(\bar{x})+\sum_{j=1}^{m} \lambda_{j} h_{j}(\bar{x}) .
$$

Proof. Let $h_{0}(x)=\sum_{i=1}^{p}\left[f_{i}(x)-\bar{\nu}_{i} g_{i}(x)\right]$.
(i) \Leftrightarrow (by Proposition 3.1) $h_{0}(x) \geqq 0, \forall x \in Q \cap S(\bar{x})$.
$\Leftrightarrow\left\{x \mid f_{i}(x)-\bar{v}_{i} g_{i}(x) \leqq 0, i=1, \ldots, p, h_{j}(x) \leqq 0, j=1, \ldots, m\right\} \subset\left\{x \mid h_{0}(x) \geqq 0\right\}$.
\Leftrightarrow (by lemma 2.3)

$$
\begin{aligned}
\binom{0}{0}^{\mathrm{T}} & \in \sum_{i=1}^{p}\left[\operatorname{epi} f_{i}^{*}+\operatorname{epi}\left(-\bar{v}_{i} g_{i}\right)^{*}\right]+\mathrm{cl}\left\{\bigcup_{\lambda_{j} \geqq 0} \sum_{j=1}^{m} \operatorname{epi}\left(\lambda_{j} h_{j}\right)^{*}\right. \\
& \left.+\bigcup_{\mu_{i} \geqq 0} \sum_{i=1}^{p}\left[\operatorname{epi}\left(\mu_{i} f_{i}\right)^{*}+\operatorname{epi}\left(-\bar{v}_{i} \mu_{i} \delta_{i}\right)^{*}\right]\right\} .
\end{aligned}
$$

Thus by the closedness assumption, (i) is equivalent to (ii).
(ii) \Leftrightarrow (iii): (ii) \Leftrightarrow (by Lemma 2.1), there exist $\alpha_{i} \geqq 0, u_{i} \in \partial_{\alpha_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), i=1, \ldots, p, \beta_{i} \geqq$ $0, \gamma_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}), i=1, \ldots, p, \lambda_{j} \geqq 0, \gamma_{j} \geqq 0, w_{j} \in \partial_{\gamma_{j}}\left(\lambda_{j} h_{j}\right)(\bar{x}), j=1, \ldots, m, \mu_{i} \geqq 0, q_{i}$ $\geqq 0, s_{i} \in \partial_{q_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), i=1, \ldots, p, z_{i} \geqq 0, t_{i} \in \partial_{z_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}), i=1, \ldots, p$ such that

$$
\begin{aligned}
\binom{0}{0}^{\mathrm{T}} & =\sum_{i=1}^{p}\left[\binom{u_{i}}{\left\langle u_{i}, \bar{x}\right\rangle+\alpha_{i}-f_{i}(\bar{x})}^{\mathrm{T}}+\binom{y_{i}}{\left\langle y_{i}, \bar{x}\right\rangle+\beta_{i}-\left(-\bar{v}_{i} g_{i}\right)(\bar{x})}^{\mathrm{T}}\right] \\
& +\sum_{j=1}^{m}\binom{w_{j}}{\left\langle w_{j}, \bar{x}\right\rangle+\gamma_{j}-\left(\lambda_{j} h_{j}\right)(\bar{x})}^{\mathrm{T}} \\
& +\sum_{i=1}^{p}\left[\binom{s_{i}}{\left\langle s_{i}, \bar{x}\right\rangle+q_{i}-\left(\mu_{i} f_{i}\right)(\bar{x})}^{\mathrm{T}}+\binom{t_{i}}{\left\langle t_{i}, \bar{x}\right\rangle+z_{i}-\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x})}^{\mathrm{T}}\right] .
\end{aligned}
$$

\Leftrightarrow there exist $\alpha_{i} \geqq 0, u_{i} \in \partial_{\alpha_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), \beta_{i} \geqq 0, \gamma_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}), i=1, \ldots, p, \lambda_{j} \geqq 0, \gamma_{j}$ $\geqq 0, w_{j} \in \partial_{\gamma_{j}}\left(\lambda_{j} h_{j}\right)(\bar{x}), j=1, \ldots, m, \mu_{i} \geqq 0, q_{i} \geqq 0, s_{i} \in \partial_{q_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), z_{i} \geqq 0$, $t_{i} \in \partial_{z_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}) i=1, \ldots, p$ such that

$$
\begin{aligned}
& \quad 0=\sum_{i=1}^{p}\left(u_{i}+y_{i}\right)+\sum_{j=1}^{m} w_{j}+\sum_{i=1}^{p}\left(s_{i}+t_{i}\right) \\
& \text { and } \sum_{i=1}^{p}\left(\alpha_{i}+\beta_{i}+q_{i}+z_{i}\right)+\sum_{j=1}^{m} r_{i}=\sum_{i=1}^{p}\left[f_{i}(\bar{x})-\bar{v}_{i_{s}(\bar{x})}+\left(\mu_{i}\left(f_{i}(\bar{x})-\left(\bar{v}_{i} \mu_{i, i}\right)(\bar{x})+\sum_{j=1}^{m} \lambda_{i} h_{i}(\bar{x})\right] .\right.\right. \\
& \Leftrightarrow \text { (iii) holds. }
\end{aligned}
$$

Now we give a necessary and sufficient ε-optimality theorem for ε-efficient solution of (MFP) which holds without any constraint qualification.
Theorem 3.2 Let $\bar{x} \in Q$. Suppose that $Q \cap S(\bar{x}) \neq$ Øand $f_{i}(\bar{x}) \geqq \varepsilon_{i} g_{i}(\bar{x}), \quad i=1, \ldots, p, i$ $=1, \ldots, p$. Then \bar{x} is an ε-efficient solution of (MFP) if and only if there exist $\alpha_{i} \geqq 0$, $u_{i} \in \partial_{\alpha_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), i=1, \ldots, p, \beta_{i} \geqq 0, \gamma_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} \delta_{i}\right)(\bar{x}), i=1, \ldots, p, \lambda_{j}^{n} \geqq 0, \gamma_{j}^{n} \geqq 0$, $w_{j}^{n} \in \partial_{\gamma_{j}^{n}}\left(\lambda_{j}^{n} h_{j}\right)(\bar{x}), \quad j=1, \quad \ldots, \quad m, \quad \mu_{k}^{n} \geqq 0, \quad q_{k}^{n} \geqq 0, \quad s_{k}^{n} \in \partial_{q_{k}^{n}}\left(\mu_{k}^{n} f_{k}\right)(\bar{x}), \quad z_{k}^{n} \geqq 0$, $t_{k}^{n} \in \partial_{z_{k}^{n}}\left(-\bar{v}_{k} \mu_{k}^{n} g_{k}\right)(\bar{x}), k=1, \ldots, p$ such that

$$
0=\sum_{i=1}^{p}\left(u_{i}+y_{i}\right)+\lim _{n \rightarrow \infty}\left[\sum_{j=1}^{m} w_{j}^{n}+\sum_{k=1}^{p}\left(s_{k}^{n}+t_{k}^{n}\right)\right]
$$

and

$$
\begin{gathered}
\sum_{i=1}^{p} \varepsilon_{i} g_{i}(\bar{x})=\sum_{i=1}^{p}\left(\alpha_{i}+\beta_{i}\right)+\lim _{n \rightarrow \infty}\left\{\sum_{j=1}^{m}\left[\gamma_{j}^{n}-\left(\lambda_{j}^{n} h_{j}\right)(\bar{x})\right]\right. \\
\left.+\sum_{k=1}^{p}\left[q_{k}^{n}+z_{k}^{n}-\mu_{k}^{n} \varepsilon_{k} g_{k}(\bar{x})\right]\right\} .
\end{gathered}
$$

Proof. \bar{x} is an ε-efficient solution of (MFP) \Leftrightarrow (from the proof of Theorem 3.1)

$$
\begin{aligned}
\binom{0}{0}^{\mathrm{T}} \in & \in \sum_{i=1}^{p}\left[\operatorname{epi} f_{i}^{*}+\operatorname{epi}\left(-\bar{v}_{i} g_{i}\right)^{*}\right]+\mathrm{cl}\left\{\bigcup_{\lambda_{j} \geqq 0} \sum_{j=1}^{m} \operatorname{epi}\left(\lambda_{j} h_{j}\right)^{*}\right. \\
& \left.+\bigcup_{\mu_{i} \geq 0} \sum_{i=1}^{p}\left[\operatorname{epi}\left(\mu_{i} f_{i}\right)^{*}+\operatorname{epi}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)^{*}\right]\right\} .
\end{aligned}
$$

\Leftrightarrow (by Lemma 2.1) there exist $\alpha_{i} \geqq 0, u_{i} \in \partial_{\alpha_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), i=1, \ldots, p, \beta_{i} \geqq 0$, $y_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} g_{j}\right)(\bar{x}), i=1, \ldots, p, \lambda_{j}^{n} \geqq 0, \gamma_{j}^{n} \geqq 0, w_{j}^{n} \in \partial_{\gamma_{j}^{n}}\left(\lambda_{j}^{n} h_{j}\right)(\bar{x}), j=1, \ldots, m, \mu_{k}^{n} \geqq 0$, $s_{k}^{n} \in \partial_{q_{k}^{n}}\left(\mu_{k}^{n} f_{k}\right)(\bar{x}), s_{k}^{n} \in \partial_{q_{k}^{n}}\left(\mu_{k}^{n} f_{k}\right)(\bar{x}), z_{k}^{n} \geqq 0, t_{k}^{n} \in \partial_{z_{k}^{n}}\left(-\bar{v}_{k} \mu_{k}^{n} g_{k}\right)(\bar{x}), k=1, \ldots, p$, such that

$$
\left.\left.\left.\begin{array}{rl}
\binom{0}{0}^{\mathrm{T}} & =\sum_{i=1}^{p}\left[\binom{u_{i}}{\left\langle u_{i}, \bar{x}\right\rangle+\alpha_{i}-f_{i}(\bar{x})}^{\mathrm{T}}+\binom{y_{i}}{\left\langle y_{i}, \bar{x}\right\rangle+\beta_{i}-\left(-\bar{v}_{i} g_{i}\right)(\bar{x})}^{\mathrm{T}}\right] \\
& +\lim _{n \rightarrow \infty}\left\{\sum_{j=1}^{m}\binom{w_{j}^{n}}{\left\langle w_{j}^{n}, \bar{x}\right\rangle+\gamma_{j}^{n}-\left(\lambda_{j}^{n} h_{j}\right)(\bar{x})}^{\mathrm{T}}\right. \\
& +\sum_{k=1}^{p}\left[\binom{s_{k}^{n}}{\left\langle s_{k}^{n}, \bar{x}\right\rangle+q_{k}^{n}-\left(\mu_{k}^{n} f_{k}\right)(\bar{x})}^{\mathrm{T}}+\left(\left\langle t_{k}^{n}, \bar{x}\right\rangle+z_{k}^{n}-\left(-\bar{v}_{k} \mu_{k}^{n} g_{i}\right)(\bar{x})\right.\right.
\end{array}\right)^{\mathrm{T}}\right]\right\} .
$$

\Leftrightarrow there exist $\alpha_{i} \geqq 0, u_{i} \in \partial_{\alpha_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), i=1, \ldots, p, \beta_{i} \geqq 0, \gamma_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}), i=1, \ldots$, $p, \lambda_{j}^{n} \geqq 0, \gamma_{j}^{n} \geqq 0, w_{j}^{n} \in \partial_{\gamma_{j}^{n}}\left(\lambda_{j}^{n} h_{j}\right)(\bar{x}), j=1, \ldots, m, \mu_{k}^{n} \geqq 0, q_{k}^{n} \geqq 0, s_{k}^{n} \in \partial_{q_{k}^{n}}\left(\mu_{k}^{n} f_{k}\right)(\bar{x})$, $t_{k}^{n} \in \partial_{z_{k}^{n}}\left(-\bar{v}_{k} \mu_{k}^{n} g_{k}\right)(\bar{x}), t_{k}^{n} \in \partial_{z_{k}^{n}}\left(-\bar{v}_{k} \mu_{k}^{n} g_{k}\right)(\bar{x}), k=1, \ldots, p$, such that

$$
0=\sum_{i=1}^{p}\left(u_{i}+y_{i}\right)+\lim _{n \rightarrow \infty}\left[\sum_{j=1}^{m} w_{j}^{n}+\sum_{k=1}^{p}\left(s_{k}^{n}+t_{k}^{n}\right)\right]
$$

and

$$
\begin{aligned}
\sum_{i=1}^{p} \varepsilon_{i} g_{i}(\bar{x})=\sum_{i=1}^{p}\left(\alpha_{i}\right. & \left.+\beta_{i}\right)+\lim _{n \rightarrow \infty}\left\{\sum_{j=1}^{m}\left[\gamma_{j}^{n}-\left(\lambda_{j}^{n} h_{j}\right)(\bar{x})\right]\right. \\
& \left.+\sum_{k=1}^{p}\left[q_{k}^{n}+z_{k}^{n}-\mu_{k}^{n} \varepsilon_{k} g_{k}(\bar{x})\right]\right\}
\end{aligned}
$$

We present a necessary and sufficient ε-optimality theorem for weakly ε-efficient solution of (MFP) under a constraint qualification.

Theorem 3.3 Let $\bar{x} \in$ Qand assume that $f_{i}(\bar{x}) \geqq \varepsilon_{i} g_{i}(\bar{x}), \quad i=1, \ldots, p, i=1, \ldots, p$, and $\bigcup_{\lambda_{j} \geqq 0} \sum_{j=1}^{m} \operatorname{epi}\left(\lambda_{j} h_{j}\right)^{*}$ is closed. Then the following are equivalent.
(i) \bar{x} is a weakly ε-efficient solution of (MFP).
(ii) there exist $\mu_{i} \geqq 0, i=1, \ldots, p, \sum_{i=1}^{p} \mu_{i}=1$ such that

$$
\binom{0}{0}^{\mathrm{T}} \in \sum_{i=1}^{p}\left[\operatorname{epi}\left(\mu_{i} f_{i}\right)^{*}+\operatorname{epi}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)^{*}\right]+\bigcup_{\lambda_{j} \geqq 0} \sum_{j=1}^{m} \operatorname{epi}\left(\lambda_{j} h_{j}\right)^{*},
$$

where $\bar{\nu}_{i}=\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})}-\varepsilon_{i}, i=1, \ldots, p$.
(iii) there exist $\mu_{i} \geqq 0, \sum_{i=1}^{p} \mu_{i}=1, \alpha_{i} \geqq 0, u_{i} \in \partial_{\alpha_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), \beta_{i} \geqq 0, y_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x})$, $i=1, \ldots, p, \lambda_{j} \geqq 0, \gamma_{j} \geqq 0, w_{j} \in \partial_{\gamma_{j}}\left(\lambda_{j} h_{j}\right)(\bar{x}), j=1, \ldots, m$, such that

$$
0=\sum_{i=1}^{p}\left(u_{i}+y_{i}\right)+\sum_{j=1}^{m} w_{j}
$$

and

$$
\sum_{i=1}^{p} \mu_{i} \varepsilon_{i} g_{i}(\bar{x})=\sum_{i=1}^{p}\left(\alpha_{i}+\beta_{i}\right)+\sum_{j=1}^{m}\left[\gamma_{j}-\left(\lambda_{j} h_{j}\right)(\bar{x})\right] .
$$

Proof. (i) \Leftrightarrow (ii): \bar{x} is a weakly ε-efficient solution of (MFP)
\Leftrightarrow (by Proposition 3.2) there exist $\mu_{i} \geqq 0, i=1, \ldots, p, \sum_{i=1}^{p} \mu_{i}=1$ such that

$$
\sum_{i=1}^{p} \mu_{i}\left[f_{i}(x)-\bar{v}_{i} g_{i}(x)\right] \geqq 0 \quad \forall x \in Q
$$

\Leftrightarrow there exist $\mu_{i} \geqq 0, i=1, \ldots, p, \sum_{i=1}^{p} \mu_{i}=1$ such that

$$
\left\{x \mid h_{j}(x) \leqq 0, j=1, \ldots, m\right\} \subset\left\{x \mid \sum_{i=1}^{p} \mu_{i}\left[f_{i}(x)-\bar{v}_{i} g_{i}(x)\right] \geqq 0\right\}
$$

\Leftrightarrow (by Lemma 2.3) there exist $\mu_{i} \geqq 0, i=1, \ldots, p, \sum_{i=1}^{p} \mu_{i}=1$ such that

$$
\binom{0}{0}^{\mathrm{T}} \in \sum_{i=1}^{p}\left[\operatorname{epi}\left(\mu_{i} f_{i}\right)^{*}+\operatorname{epi}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)^{*}\right]+\mathrm{cl}\left\{\bigcup_{\lambda_{j} \geqq 0} \sum_{j=1}^{m} \operatorname{epi}\left(\lambda_{j} h_{j}\right)^{*}\right\}
$$

Thus, by the closedness assumption, (i) is equivalent to (ii).
(ii) \Leftrightarrow (iii): (ii) \Leftrightarrow (by Lemma 2.1) there exist $\mu_{i} \geqq 0, \sum_{i=1}^{p} \mu_{i}=1, \alpha_{i} \geqq 0$, $u_{i} \in \partial_{\alpha_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), \beta_{i} \geqq 0, \gamma_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}), i=1, \ldots, p, \lambda_{j} \geqq 0, \gamma_{j} \geqq 0, w_{j} \in \partial_{\gamma_{j}}\left(\lambda_{j} h_{j}\right)(\bar{x}), j$ $=1, \ldots, m$, such that

$$
\begin{aligned}
\binom{0}{0}^{\mathrm{T}} & =\sum_{i=1}^{p}\left[\binom{u_{i}}{\left\langle u_{i}, \bar{x}\right\rangle+\alpha_{i}-\left(\mu_{i} f_{i}\right)(\bar{x})}^{\mathrm{T}}+\left(\left\langle y_{i}, \bar{x}\right\rangle+\beta_{i}-\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x})\right)^{\mathrm{T}}\right] \\
& +\sum_{j=1}^{m}\left(\left\langle w_{j}, \bar{x}\right\rangle+\gamma_{j}-\left(\lambda_{j} h_{j}\right)(\bar{x})\right)^{\mathrm{T}} .
\end{aligned}
$$

\Leftrightarrow (iii) holds. \square
Now, we propose a necessary and sufficient ε-optimality theorem for weakly ε-efficient solution of (MFP) which holds without any constraint qualification.
Theorem 3.4 Let $\bar{x} \in$ Qand assume that $f_{i}(\bar{x}) \geqq \varepsilon_{i} g_{i}(\bar{x}), \quad i=1, \ldots, p$. Then \bar{x} is a weakly ε-efficient solution of (MFP) if and only if there exist $\mu_{i} \geqq 0, i=1, \ldots, p$, $\sum_{i=1}^{p} \mu_{i}=1, \alpha_{i} \geqq 0, u_{i} \in \partial_{\alpha_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), i=1, \ldots, p, \beta_{i} \geqq 0, \gamma_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}), i=1, \ldots, p$, $\gamma_{j}^{n} \geqq 0, \gamma_{j}^{n} \geqq 0, w_{j}^{n} \in \partial_{\gamma_{j}^{n}}\left(\lambda_{j}^{n} h_{j}\right)(\bar{x}), j=1, \ldots, m$, such that

$$
0=\sum_{i=1}^{p}\left(u_{i}+y_{i}\right)+\lim _{n \rightarrow \infty} \sum_{j=1}^{m} w_{j}^{n}
$$

and

$$
\sum_{i=1}^{p} \mu_{i} \varepsilon_{i} g_{i}(\bar{x})=\sum_{i=1}^{p}\left(\alpha_{i}+\beta_{i}\right)+\lim _{n \rightarrow \infty} \sum_{j=1}^{m}\left[\gamma_{j}^{n}-\left(\lambda_{j}^{n} h_{j}\right)(\bar{x})\right] .
$$

Proof. \bar{x} is a weakly ε-efficient solution of (MFP)
$\Leftrightarrow\left(\left(\right.\right.$ from the proof of Theorem 3.3) there exist $\mu_{i} \geqq 0, i=1, \ldots, p, \sum_{i=1}^{p} \mu_{i}=1$ such that

$$
\binom{0}{0}^{\mathrm{T}} \in \sum_{i=1}^{p}\left[\operatorname{epi}\left(\mu_{i} f_{i}\right)^{*}+\operatorname{epi}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)^{*}\right]+\mathrm{cl}\left\{\bigcup_{\lambda_{j} \geqq 0} \sum_{j=1}^{m} \operatorname{epi}\left(\lambda_{j} h_{j}\right)^{*}\right\}
$$

\Leftrightarrow (by Lemma 2.1) there exist $\mu_{i} \geqq 0, i=1, \ldots, p, \sum_{i=1}^{p} \mu_{i}=1, \alpha_{i} \geqq 0, u_{i} \in \partial_{\alpha_{i}}\left(\mu_{i} f_{i}\right)(\bar{x})$, $i=1, \ldots, p, \beta_{i} \geqq 0, \gamma_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}), i=1, \ldots, p, \lambda_{j}^{n} \geqq 0, \gamma_{j}^{n} \geqq 0, w_{j}^{n} \in \partial_{\gamma_{j}^{n}}\left(\lambda_{j}^{n} h_{j}\right)(\bar{x}), j$ $=1, \ldots, m$, such that

$$
\begin{aligned}
\binom{0}{0}^{\mathrm{T}}= & \sum_{i=1}^{p}\left[\binom{u_{i}}{\left\langle u_{i}, \bar{x}\right\rangle+\alpha_{i}-\left(\mu_{i} f_{i}\right)(\bar{x})}^{\mathrm{T}}+\left(\left\langle y_{i}, \bar{x}\right\rangle+\beta_{i}-\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x})\right)^{\mathrm{T}}\right] \\
& +\lim _{n \rightarrow \infty}\left\{\sum_{j=1}^{m}\left(\left\langle w_{j}^{n}, \bar{x}\right\rangle+\gamma_{j}^{n}-\left(\lambda_{j}^{n} h_{j}\right)(\bar{x})\right)^{\mathrm{T}}\right\} .
\end{aligned}
$$

\Leftrightarrow there exist $\mu_{i} \geqq 0, i=1, \ldots, p, \sum_{i=1}^{p} \mu_{i}=1, \alpha_{i} \geqq 0, u_{i} \in \partial_{\alpha_{i}}\left(\mu_{i} f_{i}\right)(\bar{x}), i=1, \ldots, p, \beta_{i} \geqq$ $0, y_{i} \in \partial_{\beta_{i}}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)(\bar{x}), i=1, \ldots, p, \lambda_{j}^{n} \geqq 0, \gamma_{j}^{n} \geqq 0, w_{j}^{n} \in \partial_{\gamma_{j}^{n}}\left(\lambda_{j}^{n} h_{j}^{n}\right)(\bar{x}), j=1, \ldots, m$, such that

$$
0=\sum_{i=1}^{p}\left(u_{i}+y_{i}\right)+\lim _{n \rightarrow \infty} \sum_{j=1}^{m} w_{j}^{n}
$$

and

$$
\sum_{i=1}^{p} \mu_{i} \varepsilon_{i} g_{i}(\bar{x})=\sum_{i=1}^{p}\left(\alpha_{i}+\beta_{i}\right)+\lim _{n \rightarrow \infty} \sum_{j=1}^{m}\left[\gamma_{j}^{n}-\left(\gamma_{j}^{n} h_{j}\right)(\bar{x})\right] .
$$

\square
Now, we give examples illustrating Theorems 3.1, 3.2, 3.3, and 3.4.
Example 3.1 Consider the following MFP:
$(\mathrm{MFP})_{1}$ Minimize $\left(x_{1}, \frac{x_{2}}{x_{1}}\right)$
subject to $\quad\left(x_{1}, x_{2}\right) \in Q:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid-x_{1}+1 \leqq 0, \quad-x_{2}+1 \leqq 0\right\}$.
Let $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$, and $f_{1}\left(x_{1}, x_{2}\right)=x_{1}, g_{1}\left(x_{1}, x_{2}\right)=1, f_{2}\left(x_{1}, x_{2}\right)=x_{2}, g_{2}\left(x_{1}, x_{2}\right)=$ $x_{1}, h_{1}\left(x_{1}, x_{2}\right)=-x_{1}+1$ and $h_{2}\left(x_{1}, x_{2}\right)=-x_{2}+1$.
(1)Let $\left(\bar{x}_{1}, \bar{x}_{2}\right)=\left(\frac{3}{2}, \frac{9}{4}\right)$. Then $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ is an ε-efficient solution of (MFP) ${ }_{1}$.

Let $\bar{v}_{1}=\frac{f_{1}\left(\bar{x}_{1}, \bar{x}_{2}\right)}{g_{1}\left(\bar{x}_{1}, \bar{x}_{2}\right)}-\varepsilon_{1}$ and $\bar{v}_{2}=\frac{f_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right)}{g_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right)}-\varepsilon_{2}$. Then $\bar{v}_{1}=\bar{v}_{2}=1$, and

$$
Q \cap S\left(\bar{x}_{1}, \bar{x}_{2}\right)
$$

$$
=Q \cap\left\{\left(\bar{x}_{1}, \bar{x}_{2}\right) \in \mathbb{R}^{2} \mid f_{1}\left(\bar{x}_{1}, \bar{x}_{2}\right)-\bar{v}_{1} g_{1}\left(\bar{x}_{1}, \bar{x}_{2}\right) \leqq 0, f_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right)-\bar{v}_{2} g_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right) \leqq 0\right\}
$$

$$
=\{(1,1)\} .
$$

Thus, $\quad Q \cap S\left(\bar{x}_{1}, \bar{x}_{2}\right) \neq \emptyset$. It is clear that $f_{1}\left(\bar{x}_{1}, \bar{x}_{2}\right) \geqq \varepsilon_{1} g_{1}\left(\bar{x}_{1}, \bar{x}_{2}\right)$ and $f_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right) \geqq \varepsilon_{2} g_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right)$. Let $A=\bigcup_{\substack{\lambda_{2} \geq 0 \\ \lambda_{2} \geq 0}}, \sum_{j=1}^{2} \operatorname{epi}\left(\lambda_{j} h_{j}\right)^{*}+\bigcup_{\substack{\mu_{1} \geq 0,0 \\ \mu_{2} \geq 0}} \sum_{j=1}^{2}\left[\operatorname{epi}\left(\mu_{j} f_{j}\right)^{*}+\operatorname{epi}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)^{*}\right]$. Then

$$
\begin{aligned}
A & =\bigcup_{\substack{\lambda_{1} \geq 0, \lambda_{2} \geq 0 \\
\mu_{1} \geq 0, \mu_{2} \geq 0}} \operatorname{epi}\left(\sum_{j=1}^{2} \lambda_{j} h_{j}+\sum_{i=1}^{2} \mu_{i}\left(f_{i}-\bar{v}_{i} g_{i}\right)\right)^{*} \\
& =\operatorname{cone} \operatorname{co}\{(-1,0,-1),(0,-1,-1),(1,0,1),(-1,1,0),(0,0,1)\}
\end{aligned}
$$

where $c o D$ is the convexhull of a set D and cone coD is the cone generated by coD. Thus A is closed. Let $B=\sum_{i=1}^{2}\left[\operatorname{epi} f_{i}^{*}+\operatorname{epi}\left(-\bar{v}_{i} g_{i}\right)^{*}\right]+A$. Then

$$
B=\{(1,0)\} \times[0, \infty)+\{(0,0)\} \times[1, \infty)+\{(0,1)\} \times[0, \infty)+\{(-1,0)\} \times[0, \infty)+\text { A. Since }(0,-
$$ $1,-1) \in A,(0,0,0) \in B$. Thus (ii) of Theorem 3.1 holds. Let $\alpha_{1}=\beta_{1}=\gamma_{1}=q_{1}=z_{1}=\alpha_{2}$ $=\beta_{2}=\gamma_{2}=q_{2}=z_{2}=0$, and let $\mu_{1}=\mu_{2}=1$, and $\lambda_{1}=0$ and $\lambda_{1}=2$. Moreover, $\partial f_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(0,1)\}, \quad \partial f_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(0,1)\}, \quad \partial\left(-\bar{v}_{1} g_{1}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(0,0)\}, \quad \partial\left(-\bar{v}_{2} g_{2}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(-1,0)\}$, $\partial\left(\lambda_{2} h_{2}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(0,-2)\}, \quad \partial\left(\lambda_{2} h_{2}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(0,-2)\}, \partial\left(\mu_{1} f_{1}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(1,0)\}$, $\partial\left(-\bar{v}_{1} \mu_{1} g_{1}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(0,0)\}, \partial\left(-\bar{v}_{1} \mu_{1} g_{1}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(0,0)\}, \partial\left(-\bar{v}_{2} \mu_{2} g_{2}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(-1,0)\}$.

Thus, $\quad \sum_{i=1}^{2} \partial\left(f_{i}-\bar{v}_{i} g_{i}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)+\sum_{i=1}^{2} \partial\left(\lambda_{i} h_{i}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)+\sum_{i=1}^{2} \partial\left(\mu_{i} f_{i}-\bar{v}_{i} \mu_{i} g_{i}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(0,0)\}$ and $\sum_{i=1}^{2}\left(\alpha_{i}+\beta_{i}+q_{i}+z_{i}\right)+\sum_{j=1}^{2} \gamma_{j}=0=\sum_{i=1}^{2} \varepsilon_{i}\left(1+\mu_{i}\right) g_{i}\left(\bar{x}_{1}, \bar{x}_{2}\right)+\sum_{i=1}^{2} \lambda_{j} h_{j}\left(\bar{x}_{1}, \bar{x}_{2}\right)$.

Thus, (iii) of Theorem 3.1 holds.
(2) Let $\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\left(\frac{3}{2}, \frac{15}{4}\right)$. Then $\left(\tilde{x}_{1}, \tilde{x}_{2}\right)$ is not an ε-efficient solution of (MFP) $)_{1}$, but $\left(\tilde{x}_{1}, \tilde{x}_{2}\right)$ is a weakly ε-efficient solution of (MFP) ${ }_{1}$.

Let $C=\bigcup_{\substack{\lambda_{1} \geq 0 \\ \lambda_{2} \geq 0}}, \sum_{i=1}^{2} \operatorname{epi}\left(\lambda_{i} h_{i}\right)^{*}$. Then

$$
C=\operatorname{cone} \operatorname{co}\{(-1,0,-1),(0,-1,-1),(0,0,1)\} .
$$

Hence, C is closed. Moreover, $\quad f_{1}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)-\varepsilon_{1} g_{1}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=1 \geqq 0$, and $f_{2}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)-\varepsilon_{2} g_{2}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=3 \geqq 0$. Let $\bar{v}_{1}=\frac{f_{1}\left(\bar{x}_{1}, \bar{x}_{2}\right)}{g_{1}\left(\bar{x}_{1}, \bar{x}_{2}\right)}-\varepsilon_{1}$ and $\bar{v}_{2}=\frac{f_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right)}{g_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right)}-\varepsilon_{2}$. Then, $\tilde{v}_{2}=2, \tilde{v}_{2}=2$. Let $\mu_{1}=1$ and $\mu_{2}=1$. Then,

$$
\sum_{i=1}^{2}\left[\operatorname{epi}\left(\mu_{i} f_{i}\right)^{*}+\operatorname{epi}\left(-\tilde{v}_{i} \mu_{i} g_{i}\right)^{*}\right]
$$

$$
=\{(1,0)\} \times \mathbb{R}_{+}+\{(0,0)\} \times[1, \infty)+\{(0,0)\} \times \mathbb{R}_{+}
$$

Since $(-1,0,-1) \in C,(0,0,0) \in \sum_{i=1}^{2}\left[\mathrm{epi}\left(\mu_{i} f_{i}\right)^{*}+\mathrm{epi}\left(-\tilde{v}_{i} \mu_{i} g_{i}\right)^{*}\right]+C$. So, (ii) of Theorem 3.3 holds. Let $\alpha_{1}=\beta_{1}=\gamma_{1}=\alpha_{2}=\beta_{2}=\gamma_{2}=0, \lambda_{1}=1$ and $\lambda_{2}=0$. Then,

$$
\sum_{i=1}^{2} \partial\left(\mu_{i} f_{i}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)+\sum_{i=1}^{2} \partial\left(-\tilde{v}_{i} \mu_{i} g_{i}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)+\sum_{j=1}^{2} \partial\left(\lambda_{j} h_{j}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\{(0,0)\}
$$

and

$$
\sum_{i=1}^{2} \mu_{i} \varepsilon_{i} g_{i}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\frac{1}{2}=\sum_{i=1}^{2}\left(\alpha_{i}+\beta_{i}\right)+\sum_{j=1}^{2}\left[\gamma_{j}-\left(\lambda_{j} h_{j}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)\right] .
$$

Thus, (iii) of Theorem 3.3 holds.
Example 3.2 Consider the following MFP:
$(\mathrm{MFP})_{2}$ Minimize $\left(-x_{1}+1, \frac{x_{2}}{-x_{1}+1}\right)$ subject to $\left[\max \left\{0, x_{1}\right\}\right]^{2} \leqq 0, \quad-x_{2}+1 \leqq 0$.

Let $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$, and $f_{1}\left(x_{1}, x_{2}\right)=-x_{1}+1, g_{1}\left(x_{1}, x_{2}\right)=1, f_{2}\left(x_{1}, x_{2}\right)=x_{2}, g_{2}\left(x_{1}\right.$, $\left.x_{2}\right)=-x_{1}+1, h_{1}\left(x_{1}, x_{2}\right)=\left[\max \left\{0, x_{1}\right\}\right]^{2}$ and $h_{2}\left(x_{1}, x_{2}\right)=-x_{2}+1$.
(1) Let $\left(\bar{x}_{1}, \bar{x}_{2}\right)=\left(-\frac{1}{2}, \frac{9}{4}\right)$. Then, $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ is an ε-efficient solution of $(M F P)_{2}$. Let $A=\bigcup_{\substack{\lambda_{1} \geqq 0 \\ \lambda_{2} \geqq 0}} \sum_{j=1}^{2} \operatorname{epi}\left(\lambda_{j} h_{j}\right)^{*}+\bigcup_{\substack{\mu_{1} \geqq 0 \\ \mu_{2} \geqq 0}} \sum_{i=1}^{2}\left[\operatorname{epi}\left(\mu_{i} f_{i}\right)^{*}+\operatorname{epi}\left(-\bar{v}_{i} \mu_{i} g_{i}\right)^{*}\right]$. Then, $\operatorname{cl} A=\operatorname{cone} \operatorname{co}\{(0,-1$, $-1),(1,0,0),(-1,0,0),(1,1,1),(0,0,1)\}$. Here, $(1,0,0) \in \mathrm{cl} A$, but $(1,0,0) \in A$, where $\mathrm{cl} A$ is the closure of the set A. Thus, A is not closed. Let $Q=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{n} \mid h_{1}\left(x_{1}, x_{2}\right)\right.$ $\left.\leqq 0, h_{2}\left(x_{1}, x_{2}\right) \leqq 0\right\}$. Then, $Q \cap S\left(\bar{x}_{1}, \bar{x}_{2}\right)=\{(1,1)\}$. Let $v_{i}=\frac{f_{i}\left(\bar{x}_{1}, \bar{x}_{2}\right)}{g_{i}\left(\bar{x}_{1}, \bar{x}_{2}\right)}-\varepsilon_{i}, i=1$, 2. Then, $\bar{\nu}_{1}=\bar{v}_{2}=1$. Let $\alpha_{1}=\beta_{1}=\alpha_{2}=\beta_{2}=0, \lambda_{1}^{n}=0, \lambda_{2}^{n}=1, \gamma_{1}^{n}=\gamma_{2}^{n}=0, w_{1}^{n}=(0,0)$, $w_{2}^{n}=(0,-1)$. Let $u_{1}=(-1,0) u_{2}=(0,1), y_{1}=(0,0)$ and $y_{2}=(1,0)$. Let $q_{1}^{n}=q_{2}^{n}=z_{1}^{n}=z_{1}^{n}=0$, and $\mu_{1}^{n}=\mu_{2}^{n}=0$. Let $s_{1}^{n}=s_{2}^{n}=(0,0)$ and $t_{1}^{n}=t_{2}^{n}=\{(0,0)\}$. Then, $u_{i} \in \partial f_{i}\left(\bar{x}_{1}, \bar{x}_{2}\right), i=1,2, y_{i} \in \partial\left(-\bar{v}_{i} g_{i}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right), i=1,2, w_{j}^{n} \in \partial\left(\lambda_{j}^{n} h_{j}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right), j=1,2$, $s_{k}^{n} \in \partial\left(\mu_{k}^{n} f_{k}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right), k=1,2$, and $t_{k}^{n} \in \partial\left(-\bar{v}_{k} \mu_{k}^{n} g_{k}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right), k=1,2$. Moreover,

$$
0=\sum_{i=1}^{2}\left(u_{i}+y_{i}\right)+\lim _{n \rightarrow \infty}\left[\sum_{j=1}^{2} w_{j}^{n}+\sum_{i=1}^{2}\left(s_{k}^{n}+t_{k}^{n}\right)\right]
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{2} \varepsilon_{i} g_{i}\left(\bar{x}_{1}, \bar{x}_{2}\right) \\
& =\sum_{i=1}^{2}\left(\alpha_{i}+\beta_{i}\right)+\lim _{n \rightarrow \infty} \sum_{j=1}^{2}\left[\gamma_{j}^{n}-\left(\lambda_{j}^{n} h_{j}\right)\left(\bar{x}_{1}, \bar{x}_{2}\right)\right]+\sum_{k=1}^{2}\left[q_{k}^{n}+z_{k}^{n}-\mu_{k}^{n} \varepsilon_{k} g_{k}\left(\bar{x}_{1}, \bar{x}_{2}\right)\right]
\end{aligned}
$$

Thus, Theorem 3.2 holds.
(2) Let $\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\left(-\frac{1}{2}, \frac{15}{4}\right)$. Then, $\left(\tilde{x}_{1}, \tilde{x}_{2}\right)$ is a weakly ε-efficient solution of $(\mathrm{MFP})_{2}$, but not an ε-efficient solution of $(\mathrm{MFP})_{2}$. Let $B=\bigcup_{\substack{\lambda_{1} \geq 0 \\ \lambda_{2} \geq 0}}$, epi $\left(\sum_{i=1}^{2} \lambda_{i} h_{i}\right)^{*}$. Then, $\mathrm{cl} B=$ cone co $\{(0,-1,-1),(1,0,0),(0,0,1)\}$. However, $(1,0,0) \notin B$. Thus, B is not closed. Moreover, $f_{2}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)-\varepsilon_{2} g_{2}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=3 \geqq 0, \quad f_{2}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)-\varepsilon_{2} g_{2}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=3 \geqq 0$. Let $\tilde{v}_{2}=\frac{f_{2}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)}{g_{2}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)}-\varepsilon_{2}$ and $\tilde{v}_{2}=\frac{f_{2}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)}{g_{2}\left(\tilde{x}_{1}, \tilde{x}_{2}\right)}-\varepsilon_{2}$. Then, $\tilde{v}_{1}=1$ and $\tilde{v}_{2}=2$. Let $\mu_{1}=1, \mu_{2}=0$, $\alpha_{1}=\beta_{1}=\alpha_{2}=\beta_{2}=0$ and $r_{2}^{n}=0, \lambda_{2}^{n}=0$. Let $\gamma_{1}^{n}=\frac{1}{2}+\frac{1}{4 n}, \lambda_{1}^{n}=n, \gamma_{2}^{n}=0, \lambda_{2}^{n}=0, n \in \mathbb{N}$. Then, $\quad \partial\left(\mu_{1} f_{1}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\{(-1,0)\}, \partial\left(\mu_{2} f_{2}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\{(0,0)\}, \quad \partial\left(-\tilde{v}_{1} \mu_{1} g_{1}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\{(0,0)\}$, $\partial_{\gamma_{1}^{n}}\left(\lambda_{1}^{n} h_{1}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\left[0,-n+\sqrt{n^{2}+4 n\left(\frac{1}{2}+\frac{1}{4 n}\right)}\right] \times\{0\}=[0,1] \times\{0\}$, $\partial_{\gamma_{2}^{n}}\left(\lambda_{2}^{n} h_{2}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\{(0,0)\}, \partial_{\gamma_{2}^{n}}\left(\lambda_{2}^{n} h_{2}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\{(0,0)\}$. Let $u_{1}=(-1,0)$ and $u_{2}=y_{1}=y_{2}$ $=(0,0)$. Then, $u_{1} \in \partial\left(\mu_{1} f_{1}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right), u_{2} \in \partial\left(\mu_{2} f_{2}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right), \quad y_{1} \in \partial\left(-\tilde{v}_{1} \mu_{1} g_{1}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)$, $\gamma_{2} \in \partial\left(-\tilde{v}_{2} \mu_{2} g_{2}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)$. Let $w_{1}^{n}=(1,0)$ and $w_{2}^{n}=(0,0)$. Then, $w_{1}^{n} \in \partial_{\gamma_{1}^{n}}\left(\lambda_{1}^{n} h_{1}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)$ and $w_{2}^{n} \in \partial_{\gamma_{2}^{n}}\left(\lambda_{2}^{n} h_{2}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)$. Thus, $\sum_{i=1}^{2}\left(u_{i}+y_{i}\right)+\lim _{n \rightarrow \infty} \sum_{j=1}^{2} w_{j}^{n}=(-1,0)+(1,0)=(0,0)$, $\lim _{n \rightarrow \infty} \sum_{i=1}^{2}\left[\gamma_{j}^{n}-\left(\lambda_{j}^{n} h_{j}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)\right]=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{4 n}\right)=\frac{1}{2}$ and
$\lim _{n \rightarrow \infty} \sum_{i=1}^{2}\left[\gamma_{j}^{n}-\left(\lambda_{j}^{n} h_{j}\right)\left(\tilde{x}_{1}, \tilde{x}_{2}\right)\right]=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{4 n}\right)=\frac{1}{2}$. Hence, Theorem 3.4 holds.

Acknowledgements

This study was supported by the Korea Science and Engineering Foundation (KOSEF) NRL program grant funded by the Korea government(MEST)(No. ROA-2008-000-20010-0).

Author details

${ }^{1}$ School of Free Major, Tongmyong University, Busan 608-711, Korea ${ }^{2}$ Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea

Authors' contributions

The authors, together discussed and solved the problems in the manuscript. All Authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 31 January 2011 Accepted: 21 June 2011 Published: 21 June 2011

References

1. Jeyakumar, V, Lee, GM, Dinh, N: New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J Optim. 14(2), 534-547 (2003)
2. Jeyakumar, V, Wu, ZY, Lee, GM, Dinh, N: Liberating the subgradient optimality conditions from constraint qualification. J Global Optim. 36(1), 127-137 (2006)
3. Kim, GS, Lee, GM: On ε-approximate solutions for convex semidefinite optimization problems. Taiwanese J Math. 11(3), 765-784 (2007)
4. Lee, GM, Lee, JH: ε-Duality theorems for convex semidefinite optimization problems with conic constraints. J Inequal Appl 13 (2010). Art. ID363012
5. Kim, GS, Lee, GM: On ε-optimality theorems for convex vector optimization problems. To appear in Journal of Nonlinear and Convex Analysis
6. Govil, MG, Mehra, A: ε-Optimality for multiobjective programming on a Banach space. Eur J Oper Res. 157(1), 106-112 (2004)
7. Gutiárrez, C, Jimá, B, Novo, V: Multiplier rules and saddle-point theorems for Helbig's approximate solutions in convex Pareto problems. J Global Optim. 32(3), 367-383 (2005)
8. Hamel, A: An ε-Lagrange multiplier rule for a mathematical programming problem on Banach spaces. Optimization. 49(1-2), 137-149 (2001)
9. Liu, JC: ε-Duality theorem of nondifferentiable nonconvex multiobjective programming. J Optim Theory Appl. 69(1), 153-167 (1991)
10. Liu, JC: ε-Pareto optimality for nondifferentiable multiobjective programming via penalty function. J Math Anal Appl. 198(1), 248-261 (1996)
11. Loridan, P: Necessary conditions for ε-optimality. Optimality and stability in mathematical programming. Math Program Stud. 19, 140-152 (1982)
12. Loridan, P: ε-Solutions in vector minimization problems. J Optim Theory Appl. 43(2), 265-276 (1984)
13. Strodiot, JJ, Nguyen, VH, Heukemes, N: ε-Optimal solutions in nondifferentiable convex programming and some related questions. Math Program. 25(3), 307-328 (1983)
14. Yokoyama, K: Epsilon approximate solutions for multiobjective programming problems. J Math Anal Appl. 203(1), 142-149 (1996)
15. Yokoyama, K, Shiraishi, S: ε-Necessary conditions for convex multiobjective programming problems without Slater's constraint qualification (preprint).
16. Hiriart-Urruty, JB, Lemarechal, C: Convex Analysis and Minimization Algorithms, vols. I and II. Springer-Verlag, Berlin (1993)
17. Rockafellar, RT: Convex Analysis. Princeton University Press, Princeton, NJ (1970)
18. Zalinescu, C: Convex Analysis in General Vector Space. World Scientific Publishing Co. Pte. Ltd, Singapore (2002)
19. Jeyakumar, V: Asymptotic dual conditions characterizing optimality for convex programs. J Optim Theory Appl. 93(1), 153-165 (1997)
20. Jeyakumar, V, Lee, GM, Dinh, N: Characterizations of solution sets of convex vector minimization problems. Eur. J Oper Res. 174(3), 1380-1395 (2006)
21. Sawaragi, Y, Nakayama, H, Tanino, T: Theory of Multiobjective Optimization. Academic Press, New York (1985)
22. Gupta, P, Shiraishi, S, Yokoyama, K: ε-Optimality without constraint qualification for multiobjective fractional problem. J Nonlinear Convex Anal. 6(2), 347-357 (2005)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: doi:10.1186/1687-1812-2011-6
 Cite this article as: Kim et al.: On ε-optimality conditions for multiobjective fractional optimization problems. Fixed Point Theory and Applications 2011 2011:6.

