RESEARCH Open Access

On ε -optimality conditions for multiobjective fractional optimization problems

Moon Hee Kim¹, Gwi Soo Kim² and Gue Myung Lee^{2*}

²Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea Full list of author information is available at the end of the article

Abstract

A multiobjective fractional optimization problem (MFP), which consists of more than two fractional objective functions with convex numerator functions and convex denominator functions, finitely many convex constraint functions, and a geometric constraint set, is considered. Using parametric approach, we transform the problem (MFP) into the non-fractional multiobjective convex optimization problem (NMCP) $_{v}$ with parametric $v \in \mathbb{R}^{p}$, and then give the equivalent relation between (weakly) ε -efficient solution of (MFP) and (weakly) $\overline{\varepsilon}$ -efficient solution of (MMCP) $_{\overline{v}}$. Using the equivalent relations, we obtain ε -optimality conditions for (weakly) ε -efficient solution for (MFP). Furthermore, we present examples illustrating the main results of this study.

2000 Mathematics Subject Classification: 90C30, 90C46.

Keywords: Weakly ε -efficient solution, ε -optimality condition, Multiobjective fractional optimization problem

1 Introduction

We need constraint qualifications (for example, the Slater condition) on convex optimization problems to obtain optimality conditions or ε -optimality conditions for the problem.

To get optimality conditions for an efficient solution of a multiobjective optimization problem, we often formulate a corresponding scalar problem. However, it is so difficult that such scalar program satisfies a constraint qualification which we need to derive an optimality condition. Thus, it is very important to investigate an optimality condition for an efficient solution of a multiobjective optimization problem which holds without any constraint qualification.

Jeyakumar et al. [1,2], Kim et al. [3], and Lee et al. [4], gave optimality conditions for convex (scalar) optimization problems, which hold without any constraint qualification. Very recently, Kim et al. [5] obtained ε -optimality theorems for a convex multiobjective optimization problem. The purpose of this article is to extend the ε -optimality theorems of Kim et al. [5] to a multiobjective fractional optimization problem (MFP).

Recently, many authors [5-15] have paid their attention to investigate properties of (weakly) ε -efficient solutions, ε -optimality conditions, and ε -duality theorems for multi-objective optimization problems, which consist of more than two objective functions and a constrained set.

^{*} Correspondence: gmlee@pknu.ac.

In this article, an MFP, which consists of more than fractional objective functions with convex numerator functions, and convex denominator functions and finitely many convex constraint functions and a geometric constraint set, is considered. We discuss ε -efficient solutions and weakly ε -efficient solutions for (MFP) and obtain ε -optimality theorems for such solutions of (MFP) under weakened constraint qualifications. Furthermore, we prove ε -optimality theorems for the solutions of (MFP) which hold without any constraint qualifications and are expressed by sequences, and present examples illustrating the main results obtained.

2 Preliminaries

Now, we give some definitions and preliminary results. The definitions can be found in [16-18]. Let $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a convex function. The subdifferential of g at a is given by

$$\partial g(a) := \{ v \in \mathbb{R}^n \mid g(x) \ge g(a) + \langle v, x - a \rangle, \quad \forall x \in \text{dom}g \},$$

where dom*g*: = $\{x \in \mathbb{R}^n \mid g(x) < \infty\}$ and $\langle \cdot, \cdot \rangle$ is the scalar product on \mathbb{R}^n . Let $\varepsilon \ge 0$. The ε -subdifferential of g at $a \in \text{dom} g$ is defined by

$$\partial_{\varepsilon}g(a) := \{ v \in \mathbb{R}^n \mid g(x) \ge g(a) + \langle v, x - a \rangle - \varepsilon, \quad \forall x \in \text{dom}g \}.$$

The conjugate function of $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is defined by

$$g^*(v) = \sup\{\langle v, x \rangle - g(x) \mid x \in \mathbb{R}^n\}.$$

The epigraph of g, epig, is defined by

$$\operatorname{epig} = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} \mid g(x) \le r\}.$$

For a nonempty closed convex set $C \subseteq \mathbb{R}^n$, $\delta_C : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is called the indicator of C if $\delta_C(x) = \begin{cases} 0 & \text{if } x \in C, \\ +\infty & \text{otherwise} \end{cases}$

Lemma 2.1 [19] If $h : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper lower semicontinuous convex function and if $a \in \text{dom}h$, then

$$\mathrm{epi} h^* = \bigcup_{\varepsilon \geq 0} \{ (v, \langle v, a \rangle + \varepsilon - h(a)) | v \in \partial_{\varepsilon} h(a) \}.$$

Lemma 2.2 [20] Let $h: \mathbb{R}^n \to \mathbb{R}$ be a continuous convex function and $u: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous convex function. Then

$$epi(h+u)^* = epih^* + epiu^*.$$

Now, we give the following Farkas lemma which was proved in [2,5], but for the completeness, we prove it as follows:

Lemma 2.3 Let $h_i : \mathbb{R}^n \to \mathbb{R}$, i = 0, 1, ..., l be convex functions. Suppose that $\{x \in \mathbb{R}^n \mid h_i(x) \leq 0, i = 1, ..., l\} \neq \emptyset$. Then the following statements are equivalent:

(i)
$$\{x \in \mathbb{R}^n \mid h_i(x) \leq 0, i = 1, ..., l\} \subseteq \{x \in \mathbb{R}^n \mid h_0(x) \geq 0\}$$

(ii)
$$0 \in \operatorname{epi} h_0^* + \operatorname{cl} \bigcup_{\lambda_i \geq 0} \operatorname{epi} (\sum_{i=1}^l \lambda_i h_i)^*$$
.

Proof. Let $Q = \{x \in \mathbb{R}^n \mid h_i(x) \leq 0, i = 1, ..., l\}$. Then $Q \neq \emptyset$ and by Lemma 2.1 in [2], $\operatorname{epi}\delta_Q^* = \operatorname{cl}\bigcup_{\lambda_i \geq 0} \operatorname{epi}(\sum_{i=1}^l \lambda_i h_i)^*$. Hence, by Lemma 2.2, we can verify that (i) if and only if (ii).

Lemma 2.4 [16] Let $h_i: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, i = 1, ..., m be proper lower semi-continuous convex functions. Let $\varepsilon \geq 0$. if $\bigcap_{i=1}^m \operatorname{ridom} h_i \neq \emptyset$, where $\operatorname{ridom} h_i$ is the relative interior of $\operatorname{dom} h_i$ then for all $x \in \bigcup_{i=1}^m \operatorname{dom} h_i$,

$$\partial_{\varepsilon}\left(\sum_{i=1}^{m}h_{i}\right)(x)=\bigcup\left\{\sum_{i=1}^{m}\partial_{\varepsilon_{i}}h_{i}(x)\mid \varepsilon_{i}\geq 0,\ i=1,\cdots,m,\ \sum_{i=1}^{m}\varepsilon_{i}=\varepsilon\right\}.$$

3 ε -optimality theorems

Consider the following MFP:

(MFP) Minimize
$$\frac{f(x)}{g(x)} := \left(\frac{f_1(x)}{g_1(x)}, \dots, \frac{f_p(x)}{g_p(x)}\right)$$

subject to $x \in Q := \{x \in \mathbb{R}^n | h_j(x) \le 0, j = 1, \dots, m\}.$

Let $f_i: \mathbb{R}^n \to \mathbb{R}$, i=1,...,p be convex functions, $g_i: \mathbb{R}^n \to \mathbb{R}$, i=1,...,p, concave functions such that for any $x \in Q$, $f_i(x) \ge 0$ and $g_i(x) > 0$, i=1,...,p, and $h_j: \mathbb{R}^n \to \mathbb{R}$, j=1,...,m, convex functions. Let $\varepsilon = (\varepsilon_1,...,\varepsilon_p)$, where $\varepsilon_i \ge 0$, i=1,...,p.

Now, we give the definition of ε -efficient solution of (MFP) which can be found in [11].

Definition 3.1 The point $\bar{x} \in Q$ is said to be an ε -efficient solution of (MFP) if there does not exist $x \in Q$ such that

$$\frac{f_i(x)}{g_i(x)} \le \frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i, \text{ for all } i = 1, \dots, p,$$

$$\frac{f_j(x)}{g_j(x)} < \frac{f_j(\bar{x})}{g_i(\bar{x})} - \varepsilon_j, \text{ for some } j \in \{1, \dots, p\}.$$

When ε = 0, then the ε -efficiency becomes the efficiency for (MFP) (see the definition of efficient solution of a multiobjective optimization problem in [21]).

Now, we give the definition of weakly ε -efficient solution of (MFP) which is weaker than ε -efficient solution of (MFP).

Definition 3.2 A point $\bar{x} \in Q$ is said to be a weakly ε -efficient solution of (MFP) if there does not exist $x \in Q$ such that

$$\frac{f_i(x)}{g_i(x)} < \frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i$$
, for all $i = 1, \dots, p$.

When $\varepsilon = 0$, then the weak ε -efficiency becomes the weak efficiency for (MFP) (see the definition of efficient solution of a multiobjective optimization problem in [21]).

Using parametric approach, we transform the problem (MFP) into the nonfractional multiobjective convex optimization problem $(NMCP)_{\nu}$ with parametric $\nu \in \mathbb{R}^{p}$:

(NMCP)_v Minimize
$$(f(x) - vg(x)) := (f_1(x) - v_1g_1(x), \dots, f_p(x) - v_pg_p(x))$$

Adapting Lemma 4.1 in [22] and modifying Proposition 3.1 in [12], we can obtain the following proposition:

Proposition 3.1 *Let* $\bar{x} \in Q$. *Then the following are equivalent:*

(i) \bar{x} is an ε -efficient solution of (MFP).

(ii) \bar{x} is an $\bar{\varepsilon}$ -efficient solution of $(NMCP)_{\bar{v}}$, where $\bar{v} := \left(\frac{f_1(\bar{x})}{g_1(\bar{x})} - \varepsilon_1, \dots, \frac{f_p(\bar{x})}{g_p(\bar{x})} - \varepsilon_p\right)$ and $\bar{\varepsilon} = (\varepsilon_1 g_1(\bar{x}), \dots, \varepsilon_p g_p(\bar{x}))$.

(iii) $Q \cap S(\bar{x}) = \emptyset$ or

$$\sum_{i=1}^{p} \left[f_i(x) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i \right) g_i(x) \right]$$

$$\geq 0 = \sum_{i=1}^{p} \left[f_i(\bar{x}) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i \right) g_i(\bar{x}) \right] - \sum_{i=1}^{p} \varepsilon_i g_i(\bar{x}) \text{ for any } x \in Q \cap S(\bar{x}),$$

where $S(\bar{x}) = \{x \in \mathbb{R}^n \mid f_i(x) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i\right)g_i(x) \le 0 = f_i(\bar{x}) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i\right)g_i(\bar{x}) - \bar{\varepsilon}_i, \ i = 1, \dots, p\}.$

Proof. (i) \Leftrightarrow (ii): It follows from Lemma 4.1 in [22].

(ii) \Rightarrow (iii): Let \bar{x} be an $\bar{\varepsilon}$ -efficient solution of $(NMCP)_{\bar{v}}$, where $\bar{v} := \left(\frac{f_1(\bar{x})}{g_1(\bar{x})} - \varepsilon_1, \dots, \frac{f_p(\bar{x})}{g_p(\bar{x})} - \varepsilon_p\right)$ and $\bar{\varepsilon} = (\varepsilon_1 g_1(\bar{x}), \dots, \varepsilon_p g_p(\bar{x}))$. Then $Q \cap S(\bar{x}) = \emptyset$ or $Q \cap S(\bar{x}) \neq \emptyset$. Suppose that $Q \cap S(\bar{x}) \neq \emptyset$. Then for any $x \in Q \cap S(\bar{x})$ and all $i = 1, \dots, p$,

$$f_i(x) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i\right)g_i(x) \leq f_i(\bar{x}) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i\right)g_i(\bar{x}) - \bar{\varepsilon}_i.$$

Hence the $\bar{\varepsilon}$ -efficiency of \bar{x} yields

$$f_i(x) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i\right)g_i(x) = f_i(\bar{x}) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i\right)g_i(\bar{x}) - \bar{\varepsilon}_i$$

for any $x \in Q \cap S(\bar{x})$ and all i = 1, ..., p. Thus we have, for all $x \in Q \cap S(\bar{x})$,

$$\sum_{i=1}^{p} \left[f_i(x) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i \right) g_i(x) \right] = \sum_{i=1}^{p} \left[f_i(\bar{x}) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i \right) g_i(\bar{x}) \right] - \sum_{i=1}^{p} \bar{\varepsilon}_i.$$

(iii) \Rightarrow (ii): Suppose that $Q \cap S(\bar{x}) = \emptyset$. Then there does not exist $x \in Q$ such that $x \in S(\bar{x})$; that is, there does not exist $x \in Q$ such that

$$f_i(x) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i\right)g_i(x) \leq f_i(\bar{x}) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i\right)g_i(\bar{x}) - \bar{\varepsilon}_i$$

for all i = 1, ..., p. Hence, there does not exist $x \in Q$ such that

$$f_{i}(x) - \left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})} - \varepsilon_{i}\right)g_{i}(x) \leq f_{i}(\bar{x}) - \left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})} - \varepsilon_{i}\right)g_{i}(\bar{x}) - \bar{\varepsilon}_{i}, \quad i = 1, \dots, p,$$

$$f_{j}(x) - \left(\frac{f_{j}(\bar{x})}{g_{i}(\bar{x})} - \varepsilon_{j}\right)g_{j}(x) < f_{j}(\bar{x}) - \left(\frac{f_{j}(\bar{x})}{g_{i}(\bar{x})} - \varepsilon_{j}\right)g_{j}(\bar{x}) - \bar{\varepsilon}_{j}, \quad \text{for some } j \in \{1, \dots, p\}.$$

Therefore, \bar{x} is an $\bar{\varepsilon}$ -efficient solution of $(NMCP)_{\bar{v}}$, where $\bar{v} := \left(\frac{f_1(\bar{x})}{g_1(\bar{x})} - \varepsilon_1, \dots, \frac{f_p(\bar{x})}{g_p(\bar{x})} - \varepsilon_p\right)$.

Assume that $Q \cap S(\bar{x}) \neq \emptyset$. Then, from this assumption

$$\sum_{i=1}^{p} \left[f_i(x) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i \right) g_i(x) \right] \ge \sum_{i=1}^{p} \left[f_i(\bar{x}) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i \right) g_i(\bar{x}) \right] - \sum_{i=1}^{p} \bar{\varepsilon}_i, \quad (3.1)$$

for any $x \in Q \cap S(\bar{x})$. Suppose to the contrary that \bar{x} is not an $\bar{\varepsilon}$ -efficient solution of $(NMCP)_{\bar{\nu}}$. Then, there exist $\hat{x} \in Q$ and an index j such that

$$f_i(\hat{x}) - \bar{\nu}_i g_i(\hat{x}) \leq f_i(\bar{x}) - \bar{\nu} g_i(\bar{x}) - \bar{\varepsilon}_i, \ i = 1, \dots, p,$$

$$f_i(\hat{x}) - \bar{\nu}_i g_i(\hat{x}) < f_i(\bar{x}) - \bar{\nu}_i g_i(\bar{x}) - \bar{\varepsilon}_i, \quad \text{for some } j \in \{1, \dots, p\}.$$

Therefore, $\hat{x} \in Q \cap S(\bar{x})$ and $\sum_{i=1}^{p} \left[f_i(\hat{x}) - \left(\frac{f_i(\hat{x})}{g_i(\hat{x})} - \varepsilon_i \right) g_i(\hat{x}) \right] < \sum_{i=1}^{p} \left[f_i(\bar{x}) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i \right) g_i(\bar{x}) \right] - \sum_{i=1}^{p} \bar{\varepsilon}_i$, which contradicts the above inequality. Hence, \bar{x} is an $\bar{\varepsilon}$ -efficient solution of (NMCP) \bar{v} . We can easily obtain the following proposition:

Proposition 3.2 Let $\bar{x} \in Q$ and suppose that $f_i(\bar{x}) \geq \varepsilon_i g_i(\bar{x})$, i = 1, ..., p. Then the following are equivalent:

- (i) \bar{x} is a weakly ε -efficient solution of (MFP).
- (ii) \bar{x} is a weakly $\bar{\varepsilon}$ -efficient solution of $(NMCP)_{\bar{v}}$, where $\bar{\varepsilon} = (\varepsilon_1 g_1(\bar{x}), \dots, \varepsilon_p g_p(\bar{x}))$ and $\bar{\varepsilon} = (\varepsilon_1 g_1(\bar{x}), \dots, \varepsilon_p g_p(\bar{x}))$.
 - (iii) there exists $\bar{\lambda} := (\bar{\lambda}_1, \dots, \bar{\lambda}_p) \in \mathbb{R}^p_+ \setminus \{0\}$ such that

$$\sum_{i=1}^{p} \bar{\lambda}_{i} \left[f_{i}(x) - \left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})} - \varepsilon_{i} \right) g_{i}(x) \right]$$

$$\geq 0 = \sum_{i=1}^{p} \bar{\lambda}_{i} \left[f_{i}(\bar{x}) - \left(\frac{f_{i}(\bar{x})}{g_{i}(\bar{x})} - \varepsilon_{i} \right) g_{i}(\bar{x}) \right] - \sum_{i=1}^{p} \bar{\lambda}_{i} \varepsilon_{i} g_{i}(\bar{x}) \text{ for any } x \in Q.$$

Proof. (i) \Leftrightarrow (ii): The proof is also following the similar lines of Proposition 3.1.

(ii) \Rightarrow (iii): Let $\phi(x) = (\phi_1(x), ..., \phi_p(x))$, $\forall x \in Q$, where $\varphi_i(x) = f_i(\bar{x}) - \left(\frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i\right)g_i(x)$, i = 1, ..., p. Then, $\phi_i(x)$, i = 1, ..., p, are convex. Since $\bar{x} \in Q$ is a weakly ε -efficient solution of (NMCP) $_{\bar{v}}$, where $(\varphi(Q) + \mathbb{R}^p_+) \cap (-\mathrm{int}\mathbb{R}^p_+) = \emptyset$, $(\varphi(Q) + \mathbb{R}^p_+) \cap (-\mathrm{int}\mathbb{R}^p_+) = \emptyset$, and hence, it follows from separation theorem that there exist $\bar{\lambda}_i \geq 0$, i = 1, ..., p, $(\bar{\lambda}_1, ..., \bar{\lambda}_p) \neq 0$ such that

$$\sum_{i=1}^p \bar{\lambda}_i \varphi_i(x) \ge 0 \quad \forall x \in Q.$$

Thus (iii) holds.

(iii) \Rightarrow (ii): If (ii) does not hold, that is, \bar{x} is not a weakly $\bar{\epsilon}$ -efficient solution of $(NMCP)_{\bar{\nu}_{\ell}}$, then (iii) does not hold. \Box

We present a necessary and sufficient ε -optimality theorem for ε -efficient solution of (MFP) under a constraint qualification, which will be called the closedness assumption.

Theorem 3.1 Let $\bar{x} \in Q$ and assume that $Q \cap S(\bar{x}) \neq \emptyset$ and $f_i(\bar{x}) \geq \varepsilon_i g_i(\bar{x})$, i = 1, ..., pi = 1, ..., p. Suppose that

$$\bigcup_{\lambda_i \geq 0} \sum_{j=1}^m \operatorname{epi}(\lambda_j h_j)^* + \bigcup_{\mu_i \geq 0} \sum_{i=1}^p \left[\operatorname{epi}(\mu_i f_i)^* + \operatorname{epi}(-\bar{\nu}_i \mu_i g_i)^* \right]$$

is closed, where $\bar{v}_i = \frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i$, i = 1, ..., p. Then the following are equivalent.

(i) \bar{x} is an ε -efficient solution of (MFP).

(ii)
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{T} \in \sum_{i=1}^{p} \left[epif_{i}^{*} + epi(-\bar{\nu}_{i}g_{i})^{*} \right] + \bigcup_{\lambda_{j} \geq 0} \sum_{j=1}^{m} epi(\lambda_{j}h_{j})^{*}$$

$$+ \bigcup_{\mu_{i} \geq 0} \sum_{i=1}^{p} \left[epi(\mu_{i}f_{i})^{*} + epi(-\bar{\nu}_{i}\mu_{i}g_{i})^{*} \right].$$

(iii) there exist $\alpha_i \geq 0$, $u_i \in \partial_{\alpha_i} f_i(\bar{x})$, $\beta_i \geq 0$, $\gamma_i \in \partial_{\beta_i} (-\bar{v}_i \mu_i g_i)(\bar{x})$, i = 1, ..., p, $\lambda_j \geq 0$, $\gamma_j \geq 0$, $w_j \in \partial_{\gamma_j} (\lambda_j h_j)(\bar{x})$, j = 1, ..., m, $\mu_i \geq 0$, $q_i \geq 0$, $s_i \in \partial_{q_i} (\mu_i f_i)(\bar{x})$, $z_i \geq 0$, $t_i \in \partial_{z_i} (-\bar{v}_i \mu_i g_i)(\bar{x})$ i = 1, ..., p such that

$$0 = \sum_{i=1}^{p} (u_i + y_i) + \sum_{j=1}^{m} w_j + \sum_{i=1}^{p} (s_i + t_i)$$

and

$$\sum_{i=1}^{p} (\alpha_i + \beta_i + q_i + z_i) + \sum_{j=1}^{m} \gamma_j = \sum_{i=1}^{p} \varepsilon_i (1 + \mu_i) g_i(\bar{x}) + \sum_{j=1}^{m} \lambda_j h_j(\bar{x}).$$

Proof. Let
$$h_0(x) = \sum_{i=1}^{p} [f_i(x) - \bar{v}_i g_i(x)].$$

- (i) \Leftrightarrow (by Proposition 3.1) $h_0(x) \ge 0$, $\forall x \in Q \cap S(\bar{x})$.
- $\Leftrightarrow \{x|f_i(x) \bar{v}_ig_i(x) \leq 0, i = 1, ..., p, h_i(x) \leq 0, j = 1, ..., m\} \subset \{x \mid h_0(x) \geq 0\}.$
- \Leftrightarrow (by lemma 2.3)

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{\mathrm{T}} \in \sum_{i=1}^{p} \left[\operatorname{epi} f_{i}^{*} + \operatorname{epi} (-\bar{v}_{i} g_{i})^{*} \right] + \operatorname{cl} \left\{ \bigcup_{\lambda_{j} \geq 0} \sum_{j=1}^{m} \operatorname{epi} (\lambda_{j} h_{j})^{*} \right.$$
$$\left. + \bigcup_{\mu_{i} \geq 0} \sum_{i=1}^{p} \left[\operatorname{epi} (\mu_{i} f_{i})^{*} + \operatorname{epi} (-\bar{v}_{i} \mu_{i} g_{i})^{*} \right] \right\}.$$

Thus by the closedness assumption, (i) is equivalent to (ii).

(ii) \Leftrightarrow (iii): (ii) \Leftrightarrow (by Lemma 2.1), there exist $\alpha_i \geq 0$, $u_i \in \partial_{\alpha_i}(\mu_i f_i)(\bar{x})$, i = 1, ..., p, $\beta_i \geq 0$, $\gamma_i \in \partial_{\beta_i}(-\bar{\nu}_i \mu_i g_i)(\bar{x})$, i = 1, ..., p, $\lambda_j \geq 0$, $\gamma_j \geq 0$, $w_j \in \partial_{\gamma_j}(\lambda_j h_j)(\bar{x})$, j = 1, ..., m, $\mu_i \geq 0$, $q_i \geq 0$, $s_i \in \partial_{q_i}(\mu_i f_i)(\bar{x})$, i = 1, ..., p, $z_i \geq 0$, $t_i \in \partial_{z_i}(-\bar{\nu}_i \mu_i g_i)(\bar{x})$, i = 1, ..., p such that

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{T} = \sum_{i=1}^{p} \left[\begin{pmatrix} u_{i} \\ \langle u_{i}, \bar{x} \rangle + \alpha_{i} - f_{i}(\bar{x}) \end{pmatrix}^{T} + \begin{pmatrix} \gamma_{i} \\ \langle \gamma_{i}, \bar{x} \rangle + \beta_{i} - (-\bar{\nu}_{i}g_{i})(\bar{x}) \end{pmatrix}^{T} \right]$$

$$+ \sum_{j=1}^{m} \left(\langle w_{j}, \bar{x} \rangle + \gamma_{j} - (\lambda_{j}h_{j})(\bar{x}) \right)^{T}$$

$$+ \sum_{i=1}^{p} \left[\begin{pmatrix} s_{i} \\ \langle s_{i}, \bar{x} \rangle + q_{i} - (\mu_{i}f_{i})(\bar{x}) \end{pmatrix}^{T} + \begin{pmatrix} t_{i} \\ \langle t_{i}, \bar{x} \rangle + z_{i} - (-\bar{\nu}_{i}\mu_{i}g_{i})(\bar{x}) \end{pmatrix}^{T} \right].$$

 $\Leftrightarrow \text{ there exist } \alpha_i \geq 0, \ u_i \in \partial_{\alpha_i}(\mu_i f_i)(\bar{x}), \ \beta_i \geq 0, \ \gamma_i \in \partial_{\beta_i}(-\bar{v}_i \mu_i g_i)(\bar{x}), \ i = 1, \dots, p, \ \lambda_j \geq 0, \ \gamma_j \geq 0, \ w_j \in \partial_{\gamma_j}(\lambda_j h_j)(\bar{x}), \ j = 1, \dots, m, \ \mu_i \geq 0, \ q_i \geq 0, \ s_i \in \partial_{q_i}(\mu_i f_i)(\bar{x}), \ z_i \geq 0, \ t_i \in \partial_{z_i}(-\bar{v}_i \mu_i g_i)(\bar{x})i = 1, \dots, p \text{ such that}$

$$0 = \sum_{i=1}^{p} (u_i + y_i) + \sum_{j=1}^{m} w_j + \sum_{i=1}^{p} (s_i + t_i)$$

$$\operatorname{and} \sum_{i=1}^{p} \left(\alpha_i + \beta_i + q_i + z_i\right) + \sum_{j=1}^{m} \gamma_j = \sum_{i=1}^{p} \left[f_i(\bar{x}) - \bar{v}_i g_i(\bar{x}) + (\mu_i f_i)(\bar{x}) - (\bar{v}_i \mu_i g_i)(\bar{x}) + \sum_{j=1}^{m} \lambda_j h_j(\bar{x}) \right]$$

⇔ (iii) holds. □

Now we give a necessary and sufficient ε -optimality theorem for ε -efficient solution of (MFP) which holds without any constraint qualification.

Theorem 3.2 Let $\bar{x} \in Q$. Suppose that $Q \cap S(\bar{x}) \neq \emptyset$ and $f_i(\bar{x}) \geq \varepsilon_i g_i(\bar{x})$, i = 1, ..., p, i = 1, ..., p. Then \bar{x} is an ε -efficient solution of (MFP) if and only if there exist $\alpha_i \geq 0$, $u_i \in \partial_{\alpha_i}(\mu_i f_i)(\bar{x})$, i = 1, ..., p, $\beta_i \geq 0$, $\gamma_i \in \partial_{\beta_i}(-\bar{v}_i \mu_i g_i)(\bar{x})$, i = 1, ..., p, $\lambda_j^n \geq 0$, $\gamma_j^n \geq 0$, $w_j^n \in \partial_{\gamma_j^n}(\lambda_j^n h_j)(\bar{x})$, j = 1, ..., m, $\mu_k^n \geq 0$, $q_k^n \geq 0$, $s_k^n \in \partial_{q_k^n}(\mu_k^n f_k)(\bar{x})$, $z_k^n \geq 0$, $t_k^n \in \partial_{z_k^n}(-\bar{v}_k \mu_k^n g_k)(\bar{x})$, k = 1, ..., p such that

$$0 = \sum_{i=1}^{p} (u_i + y_i) + \lim_{n \to \infty} \left[\sum_{j=1}^{m} w_j^n + \sum_{k=1}^{p} (s_k^n + t_k^n) \right]$$

and

$$\sum_{i=1}^{p} \varepsilon_{i} g_{i}(\bar{x}) = \sum_{i=1}^{p} (\alpha_{i} + \beta_{i}) + \lim_{n \to \infty} \left\{ \sum_{j=1}^{m} \left[\gamma_{j}^{n} - (\lambda_{j}^{n} h_{j})(\bar{x}) \right] + \sum_{k=1}^{p} \left[q_{k}^{n} + z_{k}^{n} - \mu_{k}^{n} \varepsilon_{k} g_{k}(\bar{x}) \right] \right\}.$$

Proof. \bar{x} is an ε -efficient solution of (MFP)

 \Leftrightarrow (from the proof of Theorem 3.1)

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{\mathrm{T}} \in \sum_{i=1}^{p} \left[\operatorname{epi} f_{i}^{*} + \operatorname{epi} (-\bar{v}_{i} g_{i})^{*} \right] + \operatorname{cl} \left\{ \bigcup_{\lambda_{j} \geq 0} \sum_{j=1}^{m} \operatorname{epi} (\lambda_{j} h_{j})^{*} + \bigcup_{\mu_{i} \geq 0} \sum_{i=1}^{p} \left[\operatorname{epi} (\mu_{i} f_{i})^{*} + \operatorname{epi} (-\bar{v}_{i} \mu_{i} g_{i})^{*} \right] \right\}.$$

 \Leftrightarrow (by Lemma 2.1) there exist $\alpha_i \geq 0$, $u_i \in \partial_{\alpha_i}(\mu_i f_i)(\bar{x})$, i = 1, ..., p, $\beta_i \geq 0$, $\gamma_i \in \partial_{\beta_i}(-\bar{v}_i \mu_i g_i)(\bar{x})$, i = 1, ..., p, $\lambda_j^n \geq 0$, $\gamma_j^n \geq 0$, $w_j^n \in \partial_{\gamma_j^n}(\lambda_j^n h_j)(\bar{x})$, j = 1, ..., m, $\mu_k^n \geq 0$, $s_k^n \in \partial_{\alpha_k^n}(\mu_k^n f_k)(\bar{x})$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{T} = \sum_{i=1}^{p} \left[\begin{pmatrix} u_{i} \\ \langle u_{i}, \bar{x} \rangle + \alpha_{i} - f_{i}(\bar{x}) \end{pmatrix}^{T} + \begin{pmatrix} \gamma_{i} \\ \langle \gamma_{i}, \bar{x} \rangle + \beta_{i} - (-\bar{\nu}_{i}g_{i})(\bar{x}) \end{pmatrix}^{T} \right]$$

$$+ \lim_{n \to \infty} \left\{ \sum_{j=1}^{m} \begin{pmatrix} w_{j}^{n} \\ \langle w_{j}^{n}, \bar{x} \rangle + \gamma_{j}^{n} - (\lambda_{j}^{n}h_{j})(\bar{x}) \end{pmatrix}^{T} \right.$$

$$+ \sum_{k=1}^{p} \left[\begin{pmatrix} s_{k}^{n} \\ \langle s_{k}^{n}, \bar{x} \rangle + q_{k}^{n} - (\mu_{k}^{n}f_{k})(\bar{x}) \end{pmatrix}^{T} + \begin{pmatrix} t_{k}^{n} \\ \langle t_{k}^{n}, \bar{x} \rangle + z_{k}^{n} - (-\bar{\nu}_{k}\mu_{k}^{n}g_{i})(\bar{x}) \end{pmatrix}^{T} \right] \right\}.$$

 $\Leftrightarrow \text{ there exist } \alpha_{i} \geq 0, \ u_{i} \in \partial_{\alpha_{i}}(\mu_{i}f_{i})(\bar{x}), \ i = 1, ..., \ p, \ \beta_{i} \geq 0, \ \gamma_{i} \in \partial_{\beta_{i}}(-\bar{\nu}_{i}\mu_{i}g_{i})(\bar{x}), \ i = 1, ..., \\ p, \ \lambda_{j}^{n} \geq 0, \ \gamma_{j}^{n} \geq 0, \ w_{j}^{n} \in \partial_{\gamma_{j}^{n}}(\lambda_{j}^{n}h_{j})(\bar{x}), \ j = 1, ..., \ m, \ \mu_{k}^{n} \geq 0, \ q_{k}^{n} \geq 0, \ s_{k}^{n} \in \partial_{q_{k}^{n}}(\mu_{k}^{n}f_{k})(\bar{x}), \\ t_{k}^{n} \in \partial_{z_{k}^{n}}(-\bar{\nu}_{k}\mu_{k}^{n}g_{k})(\bar{x}), \ t_{k}^{n} \in \partial_{z_{k}^{n}}(-\bar{\nu}_{k}\mu_{k}^{n}g_{k})(\bar{x}), \ k = 1, ..., \ p, \ \text{such that}$

$$0 = \sum_{i=1}^{p} (u_i + y_i) + \lim_{n \to \infty} \left[\sum_{j=1}^{m} w_j^n + \sum_{k=1}^{p} (s_k^n + t_k^n) \right]$$

and

$$\sum_{i=1}^{p} \varepsilon_{i} g_{i}(\bar{x}) = \sum_{i=1}^{p} (\alpha_{i} + \beta_{i}) + \lim_{n \to \infty} \left\{ \sum_{j=1}^{m} \left[\gamma_{j}^{n} - (\lambda_{j}^{n} h_{j})(\bar{x}) \right] + \sum_{k=1}^{p} \left[q_{k}^{n} + z_{k}^{n} - \mu_{k}^{n} \varepsilon_{k} g_{k}(\bar{x}) \right] \right\}.$$

We present a necessary and sufficient ε -optimality theorem for weakly ε -efficient solution of (MFP) under a constraint qualification.

Theorem 3.3 Let $\bar{x} \in Q$ and assume that $f_i(\bar{x}) \geq \varepsilon_i g_i(\bar{x})$, i = 1, ..., p, i = 1, ..., p, and $\bigcup_{\lambda_i \geq 0} \sum_{j=1}^m \operatorname{epi}(\lambda_j h_j)^*$ is closed. Then the following are equivalent.

- (i) \bar{x} is a weakly ε -efficient solution of (MFP).
- (ii) there exist $\mu_i \ge 0$, i = 1, ..., p, $\sum_{i=1}^{p} \mu_i = 1$ such that

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{\mathrm{T}} \in \sum_{i=1}^{p} \left[\mathrm{epi}(\mu_{i} f_{i})^{*} + \mathrm{epi}(-\bar{v}_{i} \mu_{i} g_{i})^{*} \right] + \bigcup_{\lambda_{i} \geq 0} \sum_{j=1}^{m} \mathrm{epi}(\lambda_{j} h_{j})^{*},$$

where
$$\bar{v}_i = \frac{f_i(\bar{x})}{g_i(\bar{x})} - \varepsilon_i$$
, $i = 1, ..., p$.

(iii) there exist $\mu_i \geq 0$, $\sum_{i=1}^p \mu_i = 1$, $\alpha_i \geq 0$, $u_i \in \partial_{\alpha_i}(\mu_i f_i)(\bar{x})$, $\beta_i \geq 0$, $\gamma_i \in \partial_{\beta_i}(-\bar{v}_i \mu_i g_i)(\bar{x})$, i = 1, ..., p, $\lambda_j \geq 0$, $\gamma_j \geq 0$, $w_j \in \partial_{\gamma_j}(\lambda_j h_j)(\bar{x})$, j = 1, ..., m, such that

$$0 = \sum_{i=1}^{p} (u_i + \gamma_i) + \sum_{j=1}^{m} w_j$$

and

$$\sum_{i=1}^{p} \mu_i \varepsilon_i g_i(\bar{x}) = \sum_{i=1}^{p} (\alpha_i + \beta_i) + \sum_{j=1}^{m} [\gamma_j - (\lambda_j h_j)(\bar{x})].$$

Proof. (i) \Leftrightarrow (ii): \bar{x} is a weakly ε -efficient solution of (MFP)

 \Leftrightarrow (by Proposition 3.2) there exist $\mu_i \ge 0$, i = 1, ..., p, $\sum_{i=1}^{p} \mu_i = 1$ such that

$$\sum_{i=1}^p \mu_i [f_i(x) - \bar{\nu}_i g_i(x)] \ge 0 \quad \forall x \in Q$$

 \Leftrightarrow there exist $\mu_i \ge 0$, i = 1, ..., p, $\sum_{i=1}^{p} \mu_i = 1$ such that

$$\{x|h_j(x) \leq 0, j=1,\ldots,m\} \subset \{x|\sum_{i=1}^p \mu_i \left[f_i(x) - \bar{v}_i g_i(x)\right] \geq 0\}$$

 \Leftrightarrow (by Lemma 2.3) there exist $\mu_i \ge 0$, i = 1, ..., p, $\sum_{i=1}^{p} \mu_i = 1$ such that

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{\mathrm{T}} \in \sum_{i=1}^{p} \left[\mathrm{epi}(\mu_i f_i)^* + \mathrm{epi}(-\bar{v}_i \mu_i g_i)^* \right] + \mathrm{cl} \left\{ \bigcup_{\lambda_j \geq 0} \sum_{j=1}^{m} \mathrm{epi}(\lambda_j h_j)^* \right\}.$$

Thus, by the closedness assumption, (i) is equivalent to (ii).

(ii) \Leftrightarrow (iii): (ii) \Leftrightarrow (by Lemma 2.1) there exist $\mu_i \geq 0$, $\sum_{i=1}^p \mu_i = 1$, $\alpha_i \geq 0$, $u_i \in \partial_{\alpha_i}(\mu_i f_i)(\bar{x})$, $\beta_i \geq 0$, $\gamma_i \in \partial_{\beta_i}(-\bar{\nu}_i \mu_i g_i)(\bar{x})$, i = 1, ..., p, $\lambda_j \geq 0$, $\gamma_j \geq 0$, $w_j \in \partial_{\gamma_j}(\lambda_j h_j)(\bar{x})$, j = 1, ..., m, such that

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{T} = \sum_{i=1}^{p} \left[\begin{pmatrix} u_{i} \\ \langle u_{i}, \bar{x} \rangle + \alpha_{i} - (\mu_{i} f_{i})(\bar{x}) \end{pmatrix}^{T} + \begin{pmatrix} \gamma_{i} \\ \langle \gamma_{i}, \bar{x} \rangle + \beta_{i} - (-\bar{v}_{i} \mu_{i} g_{i})(\bar{x}) \end{pmatrix}^{T} \right] + \sum_{j=1}^{m} \begin{pmatrix} w_{j} \\ \langle w_{j}, \bar{x} \rangle + \gamma_{j} - (\lambda_{j} h_{j})(\bar{x}) \end{pmatrix}^{T}.$$

⇔ (iii) holds. □

Now, we propose a necessary and sufficient ε -optimality theorem for weakly ε -efficient solution of (MFP) which holds without any constraint qualification.

Theorem 3.4 Let $\bar{x} \in Q$ and assume that $f_i(\bar{x}) \geq \varepsilon_i g_i(\bar{x})$, i = 1, ..., p. Then \bar{x} is a weakly ε -efficient solution of (MFP) if and only if there exist $\mu_i \geq 0$, i = 1, ..., p, $\sum_{i=1}^p \mu_i = 1$, $\alpha_i \geq 0$, $u_i \in \partial_{\alpha_i}(\mu_i f_i)(\bar{x})$, i = 1, ..., p, $\beta_i \geq 0$, $\gamma_i \in \partial_{\beta_i}(-\bar{v}_i \mu_i g_i)(\bar{x})$, i = 1, ..., p, $\gamma_i^n \geq 0$, $\gamma_i^n \geq 0$, $w_i^n \in \partial_{\gamma_i^n}(\lambda_i^n h_j)(\bar{x})$, i = 1, ..., m, such that

$$0 = \sum_{i=1}^{p} (u_i + y_i) + \lim_{n \to \infty} \sum_{j=1}^{m} w_j^n$$

and

$$\sum_{i=1}^p \mu_i \varepsilon_i g_i(\bar{x}) = \sum_{i=1}^p (\alpha_i + \beta_i) + \lim_{n \to \infty} \sum_{i=1}^m \left[\gamma_j^n - (\lambda_j^n h_j)(\bar{x}) \right].$$

Proof. \bar{x} is a weakly ε -efficient solution of (MFP)

 \Leftrightarrow ((from the proof of Theorem 3.3) there exist $\mu_i \ge 0$, i = 1, ..., p, $\sum_{i=1}^{p} \mu_i = 1$ such that

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{\mathrm{T}} \in \sum_{i=1}^{p} \left[\mathrm{epi}(\mu_{i} f_{i})^{*} + \mathrm{epi}(-\bar{v}_{i} \mu_{i} g_{i})^{*} \right] + \mathrm{cl} \left\{ \bigcup_{\lambda_{i} \geq 0} \sum_{j=1}^{m} \mathrm{epi}(\lambda_{j} h_{j})^{*} \right\}.$$

 \Leftrightarrow (by Lemma 2.1) there exist $\mu_i \geq 0$, i = 1, ..., p, $\sum_{i=1}^{p} \mu_i = 1$, $\alpha_i \geq 0$, $u_i \in \partial_{\alpha_i}(\mu_i f_i)(\bar{x})$, i = 1, ..., p, $\beta_i \geq 0$, $\gamma_i \in \partial_{\beta_i}(-\bar{v}_i \mu_i g_i)(\bar{x})$, i = 1, ..., p, $\lambda_j^n \geq 0$, $\gamma_j^n \geq 0$, $w_j^n \in \partial_{\gamma_j^n}(\lambda_j^n h_j)(\bar{x})$, j = 1, ..., m, such that

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}^{T} = \sum_{i=1}^{p} \left[\begin{pmatrix} u_{i} \\ \langle u_{i}, \bar{x} \rangle + \alpha_{i} - (\mu_{i} f_{i})(\bar{x}) \end{pmatrix}^{T} + \begin{pmatrix} \gamma_{i} \\ \langle \gamma_{i}, \bar{x} \rangle + \beta_{i} - (-\bar{\nu}_{i} \mu_{i} g_{i})(\bar{x}) \end{pmatrix}^{T} \right] + \lim_{n \to \infty} \left\{ \sum_{j=1}^{m} \begin{pmatrix} w_{j}^{n} \\ \langle w_{j}^{n}, \bar{x} \rangle + \gamma_{j}^{n} - (\lambda_{j}^{n} h_{j})(\bar{x}) \end{pmatrix}^{T} \right\}.$$

 \Leftrightarrow there exist $\mu_i \geq 0$, i = 1, ..., p, $\sum_{i=1}^p \mu_i = 1$, $\alpha_i \geq 0$, $u_i \in \partial_{\alpha_i}(\mu_i f_i)(\bar{x})$, i = 1, ..., p, $\beta_i \geq 0$, $\gamma_i \in \partial_{\beta_i}(-\bar{v}_i \mu_i g_i)(\bar{x})$, i = 1, ..., p, $\lambda_j^n \geq 0$, $\gamma_j^n \geq 0$, $w_j^n \in \partial_{\gamma_j^n}(\lambda_j^n h_j^n)(\bar{x})$, j = 1, ..., m, such that

$$0 = \sum_{i=1}^{p} (u_i + y_i) + \lim_{n \to \infty} \sum_{j=1}^{m} w_j^n$$

and

$$\sum_{i=1}^{p} \mu_i \varepsilon_i g_i(\bar{x}) = \sum_{i=1}^{p} (\alpha_i + \beta_i) + \lim_{n \to \infty} \sum_{i=1}^{m} \left[\gamma_i^n - (\gamma_i^n h_j)(\bar{x}) \right].$$

Now, we give examples illustrating Theorems 3.1, 3.2, 3.3, and 3.4.

Example 3.1 Consider the following MFP:

(MFP)₁ Minimize
$$\left(x_1, \frac{x_2}{x_1}\right)$$

subject to $(x_1, x_2) \in Q := \{(x_1, x_2) \in \mathbb{R}^2 | -x_1 + 1 \leq 0, -x_2 + 1 \leq 0\}.$

Let $\varepsilon = (\varepsilon_1, \varepsilon_2) = (\frac{1}{2}, \frac{1}{2})$, and $f_1(x_1, x_2) = x_1$, $g_1(x_1, x_2) = 1$, $f_2(x_1, x_2) = x_2$, $g_2(x_1, x_2) = x_1$, $h_1(x_1, x_2) = -x_1 + 1$ and $h_2(x_1, x_2) = -x_2 + 1$.

(1)Let $(\bar{x}_1, \bar{x}_2) = (\frac{3}{2}, \frac{9}{4})$. Then (\bar{x}_1, \bar{x}_2) is an ε -efficient solution of (MFP)₁.

Let
$$\bar{v}_1 = \frac{f_1(\bar{x}_1, \bar{x}_2)}{g_1(\bar{x}_1, \bar{x}_2)} - \varepsilon_1$$
 and $\bar{v}_2 = \frac{f_2(\bar{x}_1, \bar{x}_2)}{g_2(\bar{x}_1, \bar{x}_2)} - \varepsilon_2$. Then $\bar{v}_1 = \bar{v}_2 = 1$, and

$$Q \cap S(\bar{x}_1, \bar{x}_2)$$

$$= Q \cap \{(\bar{x}_1, \bar{x}_2) \in \mathbb{R}^2 | f_1(\bar{x}_1, \bar{x}_2) - \bar{v}_1 g_1(\bar{x}_1, \bar{x}_2) \leq 0, f_2(\bar{x}_1, \bar{x}_2) - \bar{v}_2 g_2(\bar{x}_1, \bar{x}_2) \leq 0\}$$

$$= \{(1, 1)\}.$$

Thus, $Q \cap S(\bar{x}_1, \bar{x}_2) \neq \emptyset$. It is clear that $f_1(\bar{x}_1, \bar{x}_2) \geq \varepsilon_1 g_1(\bar{x}_1, \bar{x}_2)$ and $f_2(\bar{x}_1, \bar{x}_2) \geq \varepsilon_2 g_2(\bar{x}_1, \bar{x}_2)$. Let $A = \bigcup_{\substack{\lambda_1 \geq 0 \\ \lambda_2 \geq 0}} \sum_{j=1}^2 \exp(\lambda_j h_j)^* + \bigcup_{\substack{\mu_1 \geq 0 \\ \mu_2 \geq 0}} \sum_{j=1}^2 \left[\exp(\mu_j f_j)^* + \exp(-\bar{v}_i \mu_i g_i)^* \right]$. Then

$$A = \bigcup_{\substack{\lambda_1 \ge 0, \ \lambda_2 \ge 0 \\ \mu_1 \ge 0, \ \mu_2 \ge 0}} \operatorname{epi} \left(\sum_{j=1}^2 \lambda_j h_j + \sum_{i=1}^2 \mu_i (f_i - \bar{\nu}_i g_i) \right)^*$$

$$= \operatorname{cone} \operatorname{co}\{(-1, 0, -1), (0, -1, -1), (1, 0, 1), (-1, 1, 0), (0, 0, 1)\},$$

where coD is the convexhull of a set D and cone coD is the cone generated by coD. Thus A is closed. Let $B = \sum_{i=1}^{2} \left[\operatorname{epi} f_i^* + \operatorname{epi} (-\bar{v}_i g_i)^* \right] + A$. Then

 $B = \{(1, 0)\} \times [0, \infty) + \{(0, 0)\} \times [1, \infty) + \{(0, 1)\} \times [0, \infty) + \{(-1, 0)\} \times [0, \infty) + A. Since \ (0, -1, -1) \in A, \ (0, 0, 0) \in B. Thus \ (ii) of Theorem 3.1 holds. Let \ \alpha_1 = \beta_1 = \gamma_1 = q_1 = z_1 = \alpha_2 = \beta_2 = \gamma_2 = q_2 = z_2 = 0, \ and \ let \ \mu_1 = \mu_2 = 1, \ and \ \lambda_1 = 0 \ and \ \lambda_1 = 2. \ Moreover, \ \partial f_2(\bar{x}_1, \bar{x}_2) = \{(0, 1)\}, \ \partial (-\bar{v}_1 g_1)(\bar{x}_1, \bar{x}_2) = \{(0, 0)\}, \ \partial (-\bar{v}_2 g_2)(\bar{x}_1, \bar{x}_2) = \{(-1, 0)\}, \ \partial (\lambda_2 h_2)(\bar{x}_1, \bar{x}_2) = \{(0, 0)\}, \ \partial (-\bar{v}_1 \mu_1 g_1)(\bar{x}_1, \bar{x}_2) = \{(0, 0)\}, \ \partial (-\bar{v}_2 \mu_2 g_2)(\bar{x}_1, \bar{x}_2) = \{(-1, 0)\}.$

Thus, $\sum_{i=1}^{2} \partial(f_i - \bar{v}_i g_i)(\bar{x}_1, \bar{x}_2) + \sum_{i=1}^{2} \partial(\lambda_i h_i)(\bar{x}_1, \bar{x}_2) + \sum_{i=1}^{2} \partial(\mu_i f_i - \bar{v}_i \mu_i g_i)(\bar{x}_1, \bar{x}_2) = \{(0, 0)\}$ and $\sum_{i=1}^{2} (\alpha_i + \beta_i + q_i + z_i) + \sum_{i=1}^{2} \gamma_i = 0 = \sum_{i=1}^{2} \varepsilon_i (1 + \mu_i) g_i(\bar{x}_1, \bar{x}_2) + \sum_{i=1}^{2} \lambda_j h_j(\bar{x}_1, \bar{x}_2).$

Thus, (iii) of Theorem 3.1 holds.

(2) Let $(\tilde{x}_1, \tilde{x}_2) = (\frac{3}{2}, \frac{15}{4})$. Then $(\tilde{x}_1, \tilde{x}_2)$ is not an ε -efficient solution of (MFP)₁, but $(\tilde{x}_1, \tilde{x}_2)$ is a weakly ε -efficient solution of (MFP)₁.

Let
$$C = \bigcup_{\substack{\lambda_1 \geq 0, \\ \lambda_2 > 0}} \sum_{i=1}^2 \operatorname{epi}(\lambda_i h_i)^*$$
. Then

$$C = \text{cone co}\{(-1, 0, -1), (0, -1, -1), (0, 0, 1)\}$$

Hence, C is closed. Moreover, $f_1(\tilde{x}_1, \tilde{x}_2) - \varepsilon_1 g_1(\tilde{x}_1, \tilde{x}_2) = 1 \ge 0$, and $f_2(\tilde{x}_1, \tilde{x}_2) - \varepsilon_2 g_2(\tilde{x}_1, \tilde{x}_2) = 3 \ge 0$. Let $\bar{v}_1 = \frac{f_1(\bar{x}_1, \bar{x}_2)}{g_1(\bar{x}_1, \bar{x}_2)} - \varepsilon_1$ and $\bar{v}_2 = \frac{f_2(\bar{x}_1, \bar{x}_2)}{g_2(\bar{x}_1, \bar{x}_2)} - \varepsilon_2$. Then, $\tilde{v}_2 = 2$, $\tilde{v}_2 = 2$. Let $\mu_1 = 1$ and $\mu_2 = 1$. Then,

$$\sum_{i=1}^{2} \left[\operatorname{epi}(\mu_{i} f_{i})^{*} + \operatorname{epi}(-\tilde{\nu}_{i} \mu_{i} g_{i})^{*} \right]$$

$$= \{(1,0)\} \times \mathbb{R}_{+} + \{(0,0)\} \times [1,\infty) + \{(0,0)\} \times \mathbb{R}_{+}.$$

Since $(-1, 0, -1) \in C$, $(0, 0, 0) \in \sum_{i=1}^{2} [\operatorname{epi}(\mu_{i}f_{i})^{*} + \operatorname{epi}(-\tilde{v}_{i}\mu_{i}g_{i})^{*}] + C$. So, (ii) of Theorem 3.3 holds. Let $\alpha_{1} = \beta_{1} = \gamma_{1} = \alpha_{2} = \beta_{2} = \gamma_{2} = 0$, $\lambda_{1} = 1$ and $\lambda_{2} = 0$. Then,

$$\sum_{i=1}^{2} \partial(\mu_{i}f_{i})(\tilde{x}_{1},\tilde{x}_{2}) + \sum_{i=1}^{2} \partial(-\tilde{v}_{i}\mu_{i}g_{i})(\tilde{x}_{1},\tilde{x}_{2}) + \sum_{j=1}^{2} \partial(\lambda_{j}h_{j})(\tilde{x}_{1},\tilde{x}_{2}) = \{(0,0)\}$$

and

$$\sum_{i=1}^{2} \mu_{i} \varepsilon_{i} g_{i}(\tilde{x}_{1}, \tilde{x}_{2}) = \frac{1}{2} = \sum_{i=1}^{2} (\alpha_{i} + \beta_{i}) + \sum_{j=1}^{2} [\gamma_{j} - (\lambda_{j} h_{j})(\tilde{x}_{1}, \tilde{x}_{2})].$$

Thus, (iii) of Theorem 3.3 holds.

Example 3.2 Consider the following MFP:

(MFP)₂ Minimize
$$\left(-x_1 + 1, \frac{x_2}{-x_1 + 1}\right)$$

subject to $[\max\{0, x_1\}]^2 \le 0, -x_2 + 1 \le 0.$

Let $\varepsilon = (\varepsilon_1, \varepsilon_2) = (\frac{1}{2}, \frac{1}{2})$, and $f_1(x_1, x_2) = -x_1 + 1$, $g_1(x_1, x_2) = 1$, $f_2(x_1, x_2) = x_2$, $g_2(x_1, x_2) = -x_1 + 1$, $h_1(x_1, x_2) = [\max\{0, x_1\}]^2$ and $h_2(x_1, x_2) = -x_2 + 1$.

(1) Let $(\bar{x}_1, \bar{x}_2) = (-\frac{1}{2}, \frac{9}{4})$. Then, (\bar{x}_1, \bar{x}_2) is an ε -efficient solution of (MFP)₂. Let $A = \bigcup_{\substack{\lambda_1 \geq 0 \\ \lambda_2 \geq 0}} \sum_{j=1}^2 \operatorname{epi}(\lambda_j h_j)^* + \bigcup_{\substack{\mu_1 \geq 0 \\ \mu_2 \geq 0}} \sum_{i=1}^2 [\operatorname{epi}(\mu_i f_i)^* + \operatorname{epi}(-\bar{v}_i \mu_i g_i)^*]$. Then, $\operatorname{cl} A = \operatorname{cone} \operatorname{co}\{(0, -1, -1), (1, 0, 0), (-1, 0, 0), (1, 1, 1), (0, 0, 1)\}$. Here, $(1, 0, 0) \in \operatorname{cl} A$, but $(1, 0, 0) \in A$, where $\operatorname{cl} A$ is the closure of the set A. Thus, A is not closed. Let $Q = \{(x_1, x_2) \in \mathbb{R}^n \mid h_1(x_1, x_2) \leq 0, h_2(x_1, x_2) \leq 0\}$. Then, $Q \cap S(\bar{x}_1, \bar{x}_2) = \{(1, 1)\}$. Let $v_i = \frac{f_i(\bar{x}_1, \bar{x}_2)}{g_i(\bar{x}_1, \bar{x}_2)} - \varepsilon_i$, i = 1, 2. Then, $\bar{v}_1 = \bar{v}_2 = 1$. Let $\alpha_1 = \beta_1 = \alpha_2 = \beta_2 = 0$, $\lambda_1^n = 0$, $\lambda_2^n = 1$, $\gamma_1^n = \gamma_2^n = 0$, $w_1^n = (0, 0)$, $w_2^n = (0, -1)$. Let $u_1 = (-1, 0)$ $u_2 = (0, 1)$, $u_1 = (0, 0)$ and $u_2 = (1, 0)$. Let $u_1^n = q_2^n = z_1^n = z_1^n = 0$, and $u_1^n = u_2^n = 0$. Let $u_1^n = s_2^n = (0, 0)$ and $u_1^n = u_2^n = (0, 0)$. Then, $u_1 \in \partial_f(\bar{x}_1, \bar{x}_2)$, $u_2^n \in \partial(-\bar{v}_i g_i)(\bar{x}_1, \bar{x}_2)$, $u_1^n \in \partial(\lambda_j^n h_j)(\bar{x}_1, \bar{x}_2)$, $u_1^n \in \partial(\lambda_j^n h_j)(\bar{x}_1, \bar{x}_2)$, $u_2^n \in \partial(-\bar{v}_i g_i)(\bar{x}_1, \bar{x}_2)$, $u_1^n \in \partial(-\bar{v}_i h_i)(\bar{x}_1, \bar{x}_2)$, $u_1^n \in \partial(\lambda_j^n h_i)(\bar{x}_1, \bar{x}_2)$, $u_1^n \in \partial(-\bar{v}_i h_i)(\bar{x}_1, \bar{x}_2$

$$0 = \sum_{i=1}^{2} (u_i + y_i) + \lim_{n \to \infty} \left[\sum_{j=1}^{2} w_j^n + \sum_{i=1}^{2} (s_k^n + t_k^n) \right]$$

and

$$\begin{split} & \sum_{i=1}^{2} \varepsilon_{i} g_{i}(\bar{x}_{1}, \bar{x}_{2}) \\ & = \sum_{i=1}^{2} \left(\alpha_{i} + \beta_{i} \right) + \lim_{n \to \infty} \sum_{i=1}^{2} \left[\gamma_{j}^{n} - (\lambda_{j}^{n} h_{j})(\bar{x}_{1}, \bar{x}_{2}) \right] + \sum_{k=1}^{2} \left[q_{k}^{n} + z_{k}^{n} - \mu_{k}^{n} \varepsilon_{k} g_{k}(\bar{x}_{1}, \bar{x}_{2}) \right]. \end{split}$$

Thus, Theorem 3.2 holds.

(2) Let $(\tilde{x}_{1}, \tilde{x}_{2}) = (-\frac{1}{2}, \frac{15}{4})$. Then, $(\tilde{x}_{1}, \tilde{x}_{2})$ is a weakly ε -efficient solution of (MFP)₂, but not an ε -efficient solution of (MFP)₂. Let $B = \bigcup_{\substack{\lambda_{1} \geq 0 \\ \lambda_{2} \geq 0}}$, epi $(\sum_{i=1}^{2} \lambda_{i}h_{i})^{*}$. Then, clB = cone co {(0, -1, -1), (1, 0, 0), (0, 0, 1)}. However, (1, 0, 0) $\notin B$. Thus, B is not closed. Moreover, $f_{2}(\tilde{x}_{1}, \tilde{x}_{2}) - \varepsilon_{2}g_{2}(\tilde{x}_{1}, \tilde{x}_{2}) = 3 \geq 0$. Let $\tilde{v}_{2} = \frac{f_{2}(\tilde{x}_{1}, \tilde{x}_{2})}{g_{2}(\tilde{x}_{1}, \tilde{x}_{2})} - \varepsilon_{2}$ and $\tilde{v}_{2} = \frac{f_{2}(\tilde{x}_{1}, \tilde{x}_{2})}{g_{2}(\tilde{x}_{1}, \tilde{x}_{2})} - \varepsilon_{2}$ and $\tilde{v}_{2} = \frac{f_{2}(\tilde{x}_{1}, \tilde{x}_{2})}{g_{2}(\tilde{x}_{1}, \tilde{x}_{2})} - \varepsilon_{2}$. Then, $\tilde{v}_{1} = 1$ and $\tilde{v}_{2} = 2$. Let $u_{1} = 1$, $u_{2} = 0$, $u_{1} = \beta_{1} = \alpha_{2} = \beta_{2} = 0$ and $r_{2}^{n} = 0$, $\lambda_{2}^{n} = 0$. Let $\gamma_{1}^{n} = \frac{1}{2} + \frac{1}{4n}$, $\lambda_{1}^{n} = n$, $\gamma_{2}^{n} = 0$, $\lambda_{2}^{n} = 0$, $n \in \mathbb{N}$. Then, $\partial(u_{1}f_{1})(\tilde{x}_{1}, \tilde{x}_{2}) = \{(-1, 0)\}$, $\partial(u_{2}f_{2})(\tilde{x}_{1}, \tilde{x}_{2}) = \{(0, 0)\}$, $\partial(-\tilde{v}_{1}u_{1}g_{1})(\tilde{x}_{1}, \tilde{x}_{2}) = \{(0, 0)\}$, $\partial_{\gamma_{1}^{n}}(\lambda_{1}^{n}h_{1})(\tilde{x}_{1}, \tilde{x}_{2}) = \{(0, 0)\}$, $\partial_{\gamma_{2}^{n}}(\lambda_{2}^{n}h_{2})(\tilde{x}_{1}, \tilde{x}_{2}) = \{(0, 0)\}$, $\partial_{\gamma_{2}^{n}}(\lambda_{2}^{n}h_{2})(\tilde{x}_{1}, \tilde{x}_{2}) = \{(0, 0)\}$. Let $u_{1} = (-1, 0)$ and $u_{2} = y_{1} = y_{2} = (0, 0)$. Then, $u_{1} \in \partial(u_{1}f_{1})(\tilde{x}_{1}, \tilde{x}_{2})$, $u_{2} \in \partial(u_{2}f_{2})(\tilde{x}_{1}, \tilde{x}_{2})$, $y_{1} \in \partial(-\tilde{v}_{1}u_{1}g_{1})(\tilde{x}_{1}, \tilde{x}_{2})$, $y_{2} \in \partial(-\tilde{v}_{2}u_{2}g_{2})(\tilde{x}_{1}, \tilde{x}_{2})$. Let $u_{1}^{n} = (1, 0)$ and $u_{2}^{n} = (0, 0)$. Then, $u_{1}^{n} \in \partial_{\gamma_{1}^{n}}(\lambda_{1}^{n}h_{1})(\tilde{x}_{1}, \tilde{x}_{2})$. Thus, $\sum_{i=1}^{2} (u_{i} + y_{i}) + \lim_{n \to \infty} \sum_{j=1}^{2} w_{j}^{n} = (-1, 0) + (1, 0) = (0, 0)$, $\lim_{n \to \infty} \sum_{i=1}^{2} \left[y_{i}^{n} - (\lambda_{i}^{n}h_{j})(\tilde{x}_{1}, \tilde{x}_{2}) \right] = \lim_{n \to \infty} \left(\frac{1}{2} + \frac{1}{4n} \right) = \frac{1}{2}$. Hence, Theorem 3.4 holds.

Acknowledgements

This study was supported by the Korea Science and Engineering Foundation (KOSEF) NRL program grant funded by the Korea government(MEST)(No. ROA-2008-000-20010-0).

Author details

¹School of Free Major, Tongmyong University, Busan 608-711, Korea ²Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea

Authors' contributions

The authors, together discussed and solved the problems in the manuscript. All Authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 31 January 2011 Accepted: 21 June 2011 Published: 21 June 2011

References

- Jeyakumar, V, Lee, GM, Dinh, N: New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J Optim. 14(2), 534–547 (2003)
- Jeyakumar, V, Wu, ZY, Lee, GM, Dinh, N: Liberating the subgradient optimality conditions from constraint qualification. J Global Optim. 36(1), 127–137 (2006)

- Kim, GS, Lee, GM: On ε-approximate solutions for convex semidefinite optimization problems. Taiwanese J Math. 11(3), 765–784 (2007)
- Lee, GM, Lee, JH: ε-Duality theorems for convex semidefinite optimization problems with conic constraints. J Inequal Appl 13 (2010). Art. ID363012
- Kim, GS, Lee, GM: On ε-optimality theorems for convex vector optimization problems. To appear in Journal of Nonlinear and Convex Analysis
- Govil, MG, Mehra, A: ε-Optimality for multiobjective programming on a Banach space. Eur J Oper Res. 157(1), 106–112 (2004)
- Gutiárrez, C, Jimá, B, Novo, V: Multiplier rules and saddle-point theorems for Helbig's approximate solutions in convex Pareto problems. J Global Optim. 32(3), 367–383 (2005)
- Hamel, A: An ε-Lagrange multiplier rule for a mathematical programming problem on Banach spaces. Optimization. 49(1-2), 137–149 (2001)
- Liu, JC: ε-Duality theorem of nondifferentiable nonconvex multiobjective programming. J Optim Theory Appl. 69(1), 153–167 (1991)
- Liu, JC: ε-Pareto optimality for nondifferentiable multiobjective programming via penalty function. J Math Anal Appl. 198(1), 248–261 (1996)
- Loridan, P: Necessary conditions for ε-optimality. Optimality and stability in mathematical programming. Math Program Stud. 19, 140–152 (1982)
- 12. Loridan, P: ε-Solutions in vector minimization problems. J Optim Theory Appl. 43(2), 265–276 (1984)
- Strodiot, JJ, Nguyen, VH, Heukemes, N: ε-Optimal solutions in nondifferentiable convex programming and some related questions. Math Program. 25(3), 307–328 (1983)
- Yokoyama, K: Epsilon approximate solutions for multiobjective programming problems. J Math Anal Appl. 203(1), 142–149 (1996)
- Yokoyama, K, Shiraishi, S: ε-Necessary conditions for convex multiobjective programming problems without Slater's constraint qualification (preprint).
- 16. Hiriart-Urruty, JB, Lemarechal, C: Convex Analysis and Minimization Algorithms, vols. I and II. Springer-Verlag, Berlin (1993)
- 17. Rockafellar, RT: Convex Analysis. Princeton University Press, Princeton, NJ (1970)
- 18. Zalinescu, C: Convex Analysis in General Vector Space. World Scientific Publishing Co. Pte. Ltd, Singapore (2002)
- Jeyakumar, V: Asymptotic dual conditions characterizing optimality for convex programs. J Optim Theory Appl. 93(1), 153–165 (1997)
- Jeyakumar, V, Lee, GM, Dinh, N: Characterizations of solution sets of convex vector minimization problems. Eur. J Oper Res. 174(3), 1380–1395 (2006)
- 21. Sawaragi, Y, Nakayama, H, Tanino, T: Theory of Multiobjective Optimization. Academic Press, New York (1985)
- Gupta, P, Shiraishi, S, Yokoyama, K: ε-Optimality without constraint qualification for multiobjective fractional problem. J Nonlinear Convex Anal. 6(2), 347–357 (2005)

doi:10.1186/1687-1812-2011-6

Cite this article as: Kim et al: On ϵ -optimality conditions for multiobjective fractional optimization problems. Fixed Point Theory and Applications 2011 2011:6.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com