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Abstract

In modular function spaces, we introduce Knaster-Kuratowski-Mazurkiewicz mappings
(in short KKM-mappings) and prove an analogue to Ky Fan s fixed point theorem.
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1. Introduction
The purpose of this paper is to give outlines of the Knaster-Kuratowski-Mazurkiewicz

theory for mappings defined on some subsets of modular function spaces which are

natural generalization of both function and sequence variants of many important, from

applications perspective, spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-

Lorentz, Calderon-Lozanovskii spaces and many others. This paper operates within the

framework of convex function modulars.

The importance of applications of nonexpansive mappings in modular function

spaces lies in the richness of structure of modular function spaces, that is, besides

being Banach spaces (or F-spaces in a more general setting)–are equipped with modu-

lar equivalents of norm or metric notions, and also are equipped with almost every-

where convergence and convergence in submeasure. In many cases, particularly in

applications to integral operators, approximation and fixed point results, modular type

conditions are much more natural as modular type assumptions can be more easily

verified than their metric or norm counterparts. There are also important results that

can be proved only using the tools of modular function spaces. From this perspective,

the fixed point theory in modular function spaces should be considered as complemen-

tary to the fixed point theory in normed spaces and in metric spaces.

The theory of contractions and nonexpansive mappings defined on convex subsets of

Banach spaces is very well developed (see e.g. [1-5]) and generalized to other metric

spaces (see e.g. [6-8]) and modular function spaces (see e.g. [9-11]). The corresponding

fixed point results were then extended to larger classes of mappings like asymptotic

mappings [12,13], pointwise contractions [14] and asymptotic pointwise contractions

and nonexpansive mappings [15-18].

As noted in [18], questions are sometimes asked whether the theory of modular

function spaces provides general methods for the consideration of fixed point proper-

ties; the situation here is the same as it is in the Banach setting.
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In this paper, we introduce the concept of Knaster-Kuratowski-Mazurkiewicz map-

pings (in short KKM-mappings) in modular function spaces. Then, we prove an analo-

gue to Ky Fans fixed point theorem which can be seen as an extension to Brouwer’s

and Schauders fixed point theorems. Most of the results proved here are similar to

the extension obtained in hyperconvex metric spaces [19]. Reader may also consult

[20,21].

2. Preliminaries
Let Ω be a nonempty set and Σ be a nontrivial s-algebra of subsets of Ω. Let P be a

δ-ring of subsets of Ω, such that E ∩ A ∈ P for any E ∈ P and A Î Σ. Let us assume

that there exists an increasing sequence of sets Kn ∈ P such that Ω = ∪Kn. By E, we
denote the linear space of all simple functions with supports from P. By M∞, we will

denote the space of all extended measurable functions, i.e. all functions f : Ω ® [-∞,

∞] such that there exists a sequence {gn} ⊂ E, |gn| ≤ |f| and gn(ω) ® f(ω) for all ω Î
Ω. By 1A, we denote the characteristic function of the set A.

Definition 2.1. Let ρ : M∞ → [0,∞]be a notrivial, convex and even function. We

say that r is a regular convex function pseudomodular if:

(i) r(0) = 0;

(ii) r is monotone, i.e. |f(ω)| ≤ |g(ω)| for all ω Î Ω implies r(f) ≤ r(g), where
f , g ∈ M∞;

(iii) r is orthogonally subadditive, i.e. r(f1A∪B) ≤ r(f1A) + r(f1B) for any A, B Î Σ

such that A ∩ B ≠ ∅, f ∈ M;

(iv) r has the Fatou property, i.e. |fn(ω)| ↑ |f(ω)| for all ω Î Ω implies r(fn) ↑ r(f),
where f ∈ M∞;

(v) r is order continuous in E, i.e. gn ∈ Eand |gn(ω)| ↓ 0 implies r(gn) ↓ 0.

As in the case of measure spaces, we say that a set A Î Σ is r-null if r(g1A) = 0 for

every g ∈ E. A property holds r-almost everywhere if the exceptional set is r-null. As
usual we identify any pair of measurable sets whose symmetric difference is r-null as
well as any pair of measurable functions differing only on a r-null set. With this in

mind, we define

M(�,�,P ,ρ) = {f ∈ M∞; |f (ω)| < ∞ ρ − a.e}, (2:1)

where each f ∈ M(�,�,P ,ρ) is actually an equivalence class of functions equal r-a.
e. rather than an individual function. When no confusion arises, we will write M
instead of M(�,�,P ,ρ).

Definition 2.2. Let r be a regular function pseudomodular.

(1) We say that r is a regular convex function semimodular if r(a f) = 0 for every a >

0 implies f = 0 r - a.e.;

(2) We say that r is a regular convex function modular if r(f) = 0 implies f = 0 r - a.e.;

The class of all nonzero regular convex function modulars defined on Ω will be

denoted by ℜ.

Let us denote r(f, E) = r(f1E) for f ∈ M, E Î Σ. It is easy to prove that r(f, E) is a

function pseudomodular in the sense of Def. 2.1.1 in [22] (more precisely, it is a func-

tion pseudomodular with the Fatou property). Therefore, we can use all results of the
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standard theory of modular function spaces as per the framework defined by Kozlowski

in [22-24]; see also Musielak [25] for the basics of the general modular theory.

Remark 2.1. We limit ourselves to convex function modulars in this paper. However,

omitting convexity in Definition 2.1 or replacing it by s-convexity would lead to the defi-

nition of nonconvex or s-convex regular function pseudomodulars, semimodulars and

modulars as in [22].

Definition 2.3. [22-24]Let r be a convex function modular.

(a) A modular function space is the vector space Lr(Ω, Σ), or briefly Lr, defined by

Lρ = {f ∈ M;ρ(λf ) → 0 as λ → 0}.

(b) The following formula defines a norm in Lr (frequently called Luxemburg norm):

||f ||ρ = inf{α > 0;ρ(f /α) ≤ 1}.

In the following theorem, we recall some of the properties of modular spaces that

will be used later on in this paper.

Theorem 2.1. [23,24,22]Let r Î ℜ.

(1) (Lr, ||f||r) is complete and the norm || · ||r is monotone w.r.t. the natural order inM.

(2) ||fn||r ® 0 if and only if r(a fn) ® 0 for every a > 0.

(3) If r(a fn) ® 0 for an a > 0, then there exists a subsequence {gn} of {fn} such that gn ®
0 r - a.e.

(4) If {fn} converges uniformly to f on a set E ∈ P, then r(a(fn - f), E) ® 0 for every a > 0.

(5) Let fn ® f r - a.e. There exists a nondecreasing sequence of sets Hk ∈ P such that

Hk ↑ Ω and {fn} converges uniformly to f on every Hk (Egoroff Theorem).

(6) r(f) ≤ lim inf r(fn) whenever fn ® f r - a.e. (Note: this property is equivalent to the

Fatou Property).

(7) Defining L0ρ = {f ∈ Lρ ; ρ(f , ·) is order continuous} and Eρ = {f ∈ Lρ ; λf ∈ L0ρ for every λ > 0},
we have:

(a) Lρ ⊃ L0ρ ⊃ Eρ,

(b) Er has the Lebesgue property, i.e. r(a f, Dk) ® 0 for a > 0, f Î Er and Dk ↓ ∅.

(c) Er is the closure of E(in the sense of || · ||r).

The following definition plays an important role in the theory of modular function

spaces.

Definition 2.4. Let r Î ℜ. We say that r has the Δ2-property if sup
n

ρ(2fn,Dk) → 0

as k ® ∞ whenever {fn} ⊂ M and {Dk} ⊂ Σ which decreases to ∅ and

sup
n

ρ(fn,Dk) → 0 as k ® ∞.

Theorem 2.2. Let r Î ℜ. The following conditions are equivalent:

(a) r has Δ2-property,

(b) L0ρ is a linear subspace of Lr,

(c) Lρ = L0ρ = Eρ,

(d) if r(fn) ® 0, then r(2fn) ® 0,

(e) if r(a fn) ® 0 for an a > 0, then ||fn||r ® 0, i.e. the modular convergence is

equivalent to the norm convergence.

The following definition is crucial throughout this paper.
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Definition 2.5. Let r Î ℜ.

(a) We say that {fn} is r-convergent to f and write fn ® f (r) if and only if r(fn - f) ® 0.

(b) A sequence {fn} where fn Î Lr is called r-Cauchy if r(fn - fm) ® 0 as n, m ® ∞.

(c) A set B ⊂ Lr is called r-closed if for any sequence of fn Î B, the convergence fn ® f

(r) implies that f belongs to B.

(d) A set B ⊂ Lr is called r-bounded if sup{r(f - g); f Î B, g Î B} < ∞.

(e) Let f Î Lr and C ⊂ Lr. The r-distance between f and C is defined as

dρ(f ,C) = inf {ρ(f − g); g ∈ C}.

Let us note that r-convergence does not necessarily imply r-Cauchy condition. Also,

fn ® f does not imply in general lfn ® lf, l > 1. Using Theorem 2.1, it is not difficult

to prove the following

Proposition 2.1. Let r Î ℜ.

(i) Lr is r-complete,

(ii) r-balls Br(f, r) = {g Î Lr; r(f - g) ≤ r} are r-closed.

In this work, we will need the following definition.

Definition 2.6. A subset A ⊂ Lr is called finitely r-closed if for every f1, f2, ..., fn Î Lr,

the set convρ({f1, . . . , fn}) ∩ A is r-closed.
Note that if A is r-closed, then obviously it is also finitely closed.

The following property plays in the theory of modular function spaces a role similar

to the reflexivity in Banach spaces (see e.g. [10]).

Definition 2.7. We say that Lr has property (R) if and only if every nonincreasing

sequence {Cn} of nonempty, r-bounded, r-closed, convex subsets of Lr has nonempty

intersection.

A more general definition of r-compactness is given in the following definition.

Definition 2.8. A nonempty subset K of Lr is said to be r-compact if for any family

{Aα ;Aα ∈ 2Lρ , α ∈ �}of r-closed subsets with K ∩ Aα1 ∩ · · · ∩ Aαn 	= ∅, for any a1, ..., an

Î Γ, we have

K ∩
(⋂

α∈�

Aα

)
	= ∅.

Let us finish this section with the modular definition of nonexpansive mappings. The

definition are straightforward generalizations of their norm and metric equivalents,

[12,15-17].

Definition 2.9. Let r Î ℜ and let C ⊂ Lr be nonempty. A mapping T : C ® C is

called a nonexpansive mapping if

ρ(T(f ) − T(g)) ≤ ρ(f − g) for any f , g ∈ C.

The fixed point set of T is defined by

Fix(T) = {f ∈ C;T(f ) = f }.

3. KKM-maps and Ky Fan theorem
Among the results equivalent to the Brouwer’s fixed point theorem, the theorem of

Knaster-Kuratowski-Mazurkiewicz [26] occupies a special place. Let r Î ℜ and let C ⊂
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Lr be nonempty. The set of all subsets of C is denoted 2C. The notation conv(A)

describes the convex hull of A, while convρ(A) describes the smallest r-closed convex

subset of Lr which contains A. Recall that a family {Aα ;Aα ∈ 2Lρ , α ∈ �} is said to

have the finite intersection property if the intersection of each finite subfamily is not

empty.

Definition 3.1. Let r Î ℜ and let C ⊂ Lr be nonempty. A multivalued mapping

G : C → 2Lρ is called a Knaster-Kuratowski-Mazurkiewicz mapping (in short KKM-

mapping) if

conv({f1, . . . , fn}) ⊂
⋃

1≤i≤n

G(fi)

for any f1, ..., fn Î C.

Now we are ready to prove the following result:

Theorem 3.1. Let r Î ℜ. Let C ⊂ Lr be nonempty and G : C → 2Lρbe a KKM-map-

ping such that for any f Î C, G(f) is nonempty and finitely r-closed. Then, the family

{G(f); f Î C} has the finite intersection property.

Proof. Assume not, i.e. there exist f1, ..., fn Î C such that
⋂

1≤i≤n G(fi) = ∅. Set
L = convρ({fi}) in Lr. Our assumptions imply that L ∩ G(fi) is r-closed for every i = 1,

2, ..., n. Using Theorem 2.1 (2) with a = 1, L∩G(fi) is closed for the Luxemburg norm

||·||r for any i Î {1, ..., n}. Thus for every f Î L, there exists i0 such that f does not

belong to L ∩ G(fi0 ) since L
⋂ (⋂

1≤i≤n G(fi)
)
= ∅.

Hence

d
(
f , L ∩ G(fi0)

)
= inf{||f − g||ρ ; g ∈ L ∩ G(fi0 )} > 0,

because L ∩ G(fi0 ) is closed. We use the function

α(f ) =
∑
1≤i≤n

d
(
f , L

⋂
G(fi)

)
> 0

where f Î K = conv{f1, ..., fn} to define the map T : K ® K by

T(f ) =
1

α(f )

∑
1≤i≤n

d
(
f , L

⋂
G(fi)

)
fi .

Clearly, T is a continuous map. Since K is a compact convex subset of the Banach

space (Lr, ||f ||r), Brouwer’s theorem implies the existence of a fixed point f0 Î K of T,

i.e. T(f0) = f0. Set

I =
{
i; d

(
f0, L

⋂
G(fi)

)
	= 0

}
.

Clearly,

f0 =
1

α(f0)

∑
i∈I

d
(
f0, L

⋂
G(fi)

)
fi .

Hence, f0 	∈ ⋃
i∈I G(fi) and f0 Î conv({fi; i Î I}) as this contradicts the assumption

conv
({fi; i ∈ I}) ⊂

⋃
i∈I

G(fi) .

□
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As an immediate consequence, we obtain the following result:

Theorem 3.2. Let r Î ℜ. Let C ⊂ Lr be nonempty and G : C → 2Lρbe a KKM-map-

ping such that for any f Î C, G(f) is nonempty and r-closed. Assume there exists f0 Î C

such that G(f0) is r-compact. Then, we have⋂
f∈C

G(f ) 	= ∅ .

Notice that the r-compactness of G(f0) may be weakened, i.e. we can still reach the

conclusion if one involves an auxiliary multivalued map and a suitable topology on Lr.

Theorem 3.3. Let r Î ℜ. Let C ⊂ Lr be nonempty and G : C → 2Lρa KKM-mapping

such that for any f Î C, G(f) is nonempty and finitely r-closed. Assume there is a multi-

valued map K : C → 2Lρ such that G(f) ⊂ K(f) for every f Î C and⋂
f∈C

K(f ) =
⋂
f∈C

G(f ) .

If there is some topology τ on Lr such that each K(f) is τ-compact, then⋂
f∈C

G(f ) 	= ∅ .

Proof. The proof is obvious. □
Before we state an analogue to Ky Fan fixed point result [26], we need the following

definition

Definition 3.2. Let r Î ℜ. Let C ⊂ Lr be a nonempty r-closed subset. Let T : C ® Lr
be a map. T is called r-continuous if {T(fn)} r-converges to T (f ) whenever {fn} r-con-
verges to f. Also T will be called strongly r-continuous if T is r-continuous and

lim inf
n→∞ ρ(g − T(fn)) = ρ(g − T(f )),

for any sequence {fn} ⊂ C which r-converges to f and for any g Î C.

It is not clear for what type of modular r, r-continuity implies strong r-continuity.
The Δ2-property is enough to provide this implication. The following technical lemma

is needed to prove the analogue of Ky Fan fixed point result.

Lemma 3.1. Let r Î ℜ. Let K ⊂ Lr be nonempty convex and r-compact. Let T : K ®
Lr be strongly r-continuous. Then, there exists f0 Î K such that

ρ(f0 − T(f0)) = inf
f∈K

ρ
(
f − T(f0)

)
.

Proof. Consider the map G : K → 2Lρ defined by

G(g) =
{
f ∈ K;ρ(f − T(f )) ≤ ρ(g − T(f ))

}
.

Since T is strongly r-continuous, for any sequence {fn} ⊂ G(g) which r-converges to
f, we have

ρ(f − T(f )) ≤ lim inf
n→∞ ρ(fn − T(fn)) ≤ lim inf

n→∞ ρ(g − T(fn)) = ρ(g − T(f )),

on the basis of the Fatou property and the continuity of T. Clearly, this implies that

G(g) is r-closed for any g Î K. Next, we show that G is a KKM-mapping. Assume not.

Then, there exists {g1, ..., gn} ⊂ K and f Î conv({gi}) such that f 	∈ ⋃
1≤i≤n G(gi). This

clearly implies

ρ(gi − T(f )) < ρ(f − T(f )) , for i = 1, . . . ,n .
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Let ε > 0 be such that r(gi - T(f)) ≤ r(f - T(f)) - ε, for i = 1, 2, ..., n. Since r is convex,

for any g Î conv({gi}), we have

ρ(g − T(f )) ≤ ρ(f − T(f )) − ε.

As f Î conv({gi}), so we get r(f - T(f)) ≤ r(f - T(f)) - ε. Contradiction. Therefore, G is

a KKM-mapping. By the r-compactness of K, we deduce that G(g) is compact for any

g Î K. Theorem 3.2 implies the existence of f0 ∈ ⋂
g∈K G(g). Hence, r(f0 - T(f0)) ≤ r(g

- T(f0)) for any g Î K. In particular, we have

ρ(f0 − T(f0)) = inf
g∈K

ρ
(
g − T(f0)

)
.

□
We are now ready to state Ky Fan fixed point theorem [26] in modular function

spaces.

Theorem 3.4. Let r Î ℜ. Let K ⊂ Lr be nonempty convex and r-compact. Let T : K

® Lr be strongly r-continuous. Assume that for any f Î K, with f ≠ T(f), there exists a
Î (0, 1) such that

(∗) K ∩ Bρ

(
f ,αρ(f − T(f ))

) ∩ Bρ

(
T(f ), (1 − α)ρ(f − T(f ))

) 	= ∅ .

Then, T has a fixed point, i.e. T(g) = g for some g Î K.

Proof. From the previous lemma, there exists f0 Î K such that

ρ(f0 − T(f0)) = inf
g∈K

ρ
(
g − T(f0)

)
.

We claim that f0 is a fixed point of T. Assume not, i.e. f0 ≠ T(f0). Then, our assump-

tion on K implies the existence of a Î (0, 1) such that

K0 = K ∩ Bρ

(
f0,αρ(f0 − T(f0))

) ∩ Bρ

(
T(f0), (1 − α)ρ(f0 − T(f0))

) 	= ∅ .

Let g Î K0. Then, r(g - T(f0)) ≤ (1 - a) r(f0 - T(f0)). This implies a contradiction to

the property satisfied by f0.

□
Note that the condition (*) is satisfied if T(K) ⊂ K which implies the following result:

Theorem 3.5. Let r Î ℜ. Let K ⊂ Lr be nonempty convex and r-compact. Let T : K

® K be strongly r-continuous. Then, T has a fixed point, i.e. T(g) = g for some g Î K.
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