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Abstract

In this paper, using strongly monotone and lipschitzian operator, we introduce a
general iterative process for finding a common fixed point of a semigroup of
nonexpansive mappings, with respect to strongly left regular sequence of means
defined on an appropriate space of bounded real-valued functions of the
semigroups and the set of solutions of variational inequality for B-inverse strongly
monotone mapping in a real Hilbert space. Under suitable conditions, we prove the
strong convergence theorem for approximating a common element of the above
two sets.
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1 Introduction
Throughout this paper, we assume that H is a real Hilbert space with inner product
and norm are denoted by (., .) and || . ||, respectively, and let C be a nonempty closed
convex subset of H. A mapping 7T of C into itself is called nonexpansive if || Tx - Ty
[|]| % -y ||, for all x, y € H. By Fix(T), we denote the set of fixed points of T (i.e., Fix
(T) = {x e H: Tx = x}), it is well known that Fix(7T) is closed and convex. Recall that a
self-mapping f: C — C is a contraction on C if there exists a constant o € [0, 1) such
that || fix) - fy) ||[s o ||x-y || forallw, ye C.

Let B : C —> H be a mapping. The variational inequality problem, denoted by VI(C,
B), is to fined x € C such that

(Bx,y —x) > 0, (1)

for all y € C. The variational inequality problem has been extensively studied in lit-
erature. See, for example, [1,2] and the references therein.

Definition 1.1 Let B : C — H be a mapping. Then B

(1) is called n-strongly monotone if there exists a positive constant 1 such that

(Bx—By, x—y)=nllx—yll? Vx yeC
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(2) is called k-Lipschitzian if there exist a positive constant k such that
| Bx——=Byll<klx—yll, Vx yeC,

(3) is called B-inverse strongly monotone if there exists a positive real number 3 >0
such that

(Bx —By,x—y)> B || Bx—By || >, Vx yeC.

It is obvious that any B-inverse strongly monotone mapping B is é-Lipschitzian.

Moudafi [3] introduced the viscosity approximation method for fixed point of nonex-
pansive mappings (see [4] for further developments in both Hilbert and Banach
spaces). Starting with an arbitrary initial x5 € H, define a sequence {x,} recursively by

Xn+l = (1 - O571)’1—‘3(«‘71 + Olnf(xn)/ n=>0, (2)

where o, is sequence in (0, 1). Xu [4,5] proved that under certain appropriate condi-
tions on {,}, the sequences {x,} generated by (2) strongly converges to the unique
solution x* in Fix(T) of the variational inequality:

((f = Dx*,x—x*) <0, Vxe Fix(T).
Let A is strongly positive operator on C. That is, there is a constant y > 0 with the
property that
(Ax,x) >y |l x| 2 VxeC.
In [5], it is proved that the sequence {x,} generated by the iterative method bellow
with initial guess xy € H chosen arbitrarily,

X1 = (I — 0nA)Txp + au, n >0, (3)

converges strongly to the unique solution of the minimization problem

1
min _ {(Ax,x) — (x,b),
xeFix(T) 2
where b is a given point in H.
Combining the iterative method (2) and (3), Marino and Xu [6] consider the follow-

ing iterative method:

Xne1 = (I = apA)Txy + onyf(xn), n>0, (4)
it is proved that if the sequence {c,} of parameters satisfies the following conditions:
(Cl) o, —> 0;

(e}
(Cy) 2o =ox,

n=0

. < 1 Unsl
Cs) either Y | otpe1 — 0ty | < 00 OF JLIEIO o =1L

n=0

then, the sequence {x,} generated by (4) converges strongly, as n — o, to the unique
solution of the variational inequality:

((rf — A" x—x*) <0, Vx e Fix(T),
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which is the optimality condition for minimization problem

1
i Ax, x) — h(x),
Pl g (A% X) = h(x)
where / is a potential function for yf (i.e., /'(x) = Yf(x), for all x € H). Some people
also study the application of the iterative method (4) [7,8].
Yamada [9] introduce the following hybrid iterative method for solving the varia-
tional inequality:

Xne1 = Txy — poyF(Tx,), neN, (5)

where F is k-Lipschitzian and 7n-strongly monotone operator with k >0, n >0,

2n
K2’

generated by (5) converges strongly to the unique solution of the variational inequality:

0 < u < 37, then he proved that if {«,} satisfying appropriate conditions, then {x,}

(Fx*,x —x*) >0, Vx € Fix(T).

In 2010, Tian [10] combined the iterative (4) with the iterative method (5) and con-
sidered the iterative methods:

Xna1 = (I — panF)Txy + anyf(xs), n>0, (6)

and he prove that if the sequence {a,} of parameters satisfies the conditions (C;),
(Cy), and (C3), then the sequences {x,} generated by (6) converges strongly to the
unique solution x* € Fix(T) of the variational inequality:

((uF — yf)x*,x —x*) > 0, Vx € Fix(T).

In this paper motivated and inspired by Atsushiba and Takahashi [11], Ceng and Yao
[12], Kim [13], Lau et al. [14], Lau et al [15], Marino and Xu [6], Piri and Vaezi [16],
Tian [10], Xu [5] and Yamada [9], we introduce the following general iterative algo-
rithm: Let x5 € C and

Vn = Brxn + (1 - ,Bn)PC(xn - (Sann):

(7)
Xne1 = ¥ f(xn) + (I — anuF)Ty,yn, n = 0.

where Pc is a metric projection of H onto C, B is -inverse strongly monotone, ¢ =
{T, : t € S} is a nonexpansive semigroup on H such that the set
F = Fix(¢) N VI(C,B) #¥, X is a subspace of B(S) such that 1 € X and the mapping ¢
— (T, y) is an element of X for each x, y € H, and {4,} is a sequence of means on X.
Our purpose in this paper is to introduce this general iterative algorithm for approxi-
mating a common element of the set of common fixed point of a semigroup of nonex-
pansive mappings and the set of solutions of variational inequality for 3-inverse
strongly monotone mapping which solves some variational inequality. We will prove
that if {,} is left regular and the sequences {&,,}, {8}, and {J,} of parameters satisfies
appropriate conditions, then the sequences {x,} and {y,} generated by (7) converges
strongly to the unique solution x* € F of the variational inequalities:

((WF —yf)x*,x —x*) >0, VxelF,
(Bx*,y —x*) > 0 vy e C.
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2 Preliminaries

Let S be a semigroup and let B(S) be the space of all bounded real-valued functions
defined on S with supremum norm. For s € S and fe B(S), we define elements /f and
rf in B(S) by

L@ =f(s1),  (f)(X) = f(ts), VeeS.

Let X be a subspace of B(S) containing 1 and let X* be its topological dual. An ele-
ment 4 of X* is said to be a mean on X if || u || = u(1) = 1. We often write u,(f(t))
instead of u(f) for y € X* and fe X. Let X be left invariant (resp. right invariant), i.e.,
[(X) © X (resp. ri(X) © X) for each s € S. A mean g on X is said to be left invariant
(resp. right invariant) if u(lyf) = u(f) (resp. u(ry) = u(f)) for each s € Sand fe X. X is
said to be left (resp. right) amenable if X has a left (resp. right) invariant mean. X is
amenable if X is both left and right amenable. As is well known, B(S) is amenable
when S is a commutative semigroup, see [15]. A net {#,} of means on X is said to be
strongly left regular if

liorln I " e — pa 1= 0,

for each s € S, where [} is the adjoint operator of /.

Let S be a semigroup and let C be a nonempty closed and convex subset of a reflex-
ive Banach space E. A family ¢ = {T, : t € S} of mapping from C into itself is said to
be a nonexpansive semigroup on C if T, is nonexpansive and T;; = T,T; for each ¢, s €
S. By Fix(¢), we denote the set of common fixed points of ¢, i.e.,

Fix(p) = m{x € C: Tix =x}.
teS

Lemma 2.1 [15]Let S be a semigroup and C be a nonempty closed convex subset of a
reflexive Banach space E. Let ¢ = {T, : t € S} be a nonexpansive semigroup on H such
that {Tw : t € S} is bounded for some x € C, let X be a subspace of B(S) such that 1 €
X and the mapping t — (T, y*) is an element of X for each x € C and y* € E* and p
is a mean on X. If we write T,x instead of [ Tyxdu(t), then the followings hold.

(i) T, is non-expansive mapping from C into C.

(it) T,x = x for each x € Fix(¢).

(iii) Tyx € co{Tyx : t € S}for each x € C.

Let C be a nonempty subset of a Hilbert space H and T': C — H a mapping. Then T
is said to be demiclosed at v € H if, for any sequence {x,} in C, the following implica-
tion holds:

Xy >ueC, Tx,—>v imply Tu=v,

where — (resp. —) denotes strong (resp. weak) convergence.

Lemma 2.2 [17]Let C be a nonempty closed convex subset of a Hilbert space H and
suppose that T : C — H is nonexpansive. Then, the mapping I - T is demiclosed at zero.

Lemma 2.3 [18]For a given x € H,y € C,

y=Px & (y—xz-y)>0, VzeC.
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It is well known that Pc is a firmly nonexpansive mapping of H onto C and satisfies
| Pcx — Py | > < (Pcx —Pcy, x—y), Vx, yeH 8)
Moreover, Pc is characterized by the following properties: Pcx € C and for all x € H,
ye C
(x — Pcx,y — Pcx) < 0. )
It is easy to see that (9) is equivalent to the following inequality
lx—yll?=lx—Pex| *+|y—Pex|? (10)

Using Lemma 2.3, one can see that the variational inequality (24) is equivalent to a
fixed point problem.
It is easy to see that the following is true:

ue VI(C,B) & u=DPc(u—ABu), +>0. (11)

A set-valued mapping U : H — 2" is called monotone if for all x, y € H, fe Ux and
ge Uy imply (x - y, f- g = 0. A monotone mapping U : H — 2" is maximal if the
graph of G(U) of U is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping U is maximal if and only if for (x, f) €
H x H, {x -y, f-g >0 for every (y, g) € G(U) implies that fe Ux. Let B be a mono-
tone mapping of C into H and let Ncx be the normal cone to C at x € C, that is, Ncx
={ye H:{(z-x,9) <0,Vze C}and define

Us = {Bx +Ncx, x € C, (12)

@ x¢C.

Then U is the maximal monotone and 0 € Ux if and only if x € VI(C, B); see [19].
The following lemma is well known.
Lemma 2.4 Let H be a real Hilbert space. Then, for all x, y € H

lx—yl2<lxl?+ 2(px+y), .

Lemma 2.5 [5]Let {a,} be a sequence of nonnegative real numbers such that

ans1 = (1 - bn)an +bpcy, n=>0,

where {b,} and {c,} are sequences of real numbers satisfying the following conditions:

gk

b, = o0,

(i) by < (0, 1),

Il
o

n

. o0
(i) either limsup ¢, < 0y, > bpen | < oc.
n—oo n:0

Then, lim a, =0,
n—oo

As far as we know, the following lemma has been used implicitly in some papers; for
the sake of completeness, we include its proof.
Lemma 2.6 Let H be a real Hilbert space and F be a k-Lipschitzian and n-strongly

monotone operator with k >0, 1 >0. Let 0 < u < i;'and T=n(n— ”;‘2 ). Then for

t € (0, min{1, i}), I - t,F is contraction with constant 1 - tz.

Page 5 of 16
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Proof. Notice that

I (I = tuF)x — (I = tuF)y | *
= (I = tuF)x — (I — tuF)y, (I — tuF)x — (I — tuF)y)
lx—yll >+ u? || Fx—Fy | > = 2tu({x—y, Fx—Fy)

Shx=yl?+ 2wl llx—yll > = 2tun [ x—yl?
<lx—yl?+ w’l lx—yll>— 2tunllx—y >

kz
(1—2tu(n—ﬂz )) [ x—yl?

=(1—2tr) [x—y]?
<(@-t)lx—yll>

It follows that
I (I—tuF)x—(I—tuFyl<(1—tt)lx—yl

and hence I - tuF is contractive due to 1 - tr € (0, 1). O

Notation Throughout the rest of this paper, F will denote a k-Lipschitzian and 1-
strongly monotone operator of C into H with k >0, n >0, fis a contraction on C with
coefficient 0 < & <1. We will also always use ¥ to mean a number in (0, [), where
T=nu(n— "52) and 0 < p < i'} The open ball of radius r centered at 0 is denoted by
B, and for a subset D of H, by coD, we denote the closed convex hull of D. For ¢ >0
and a mapping 7 : D — H, we let F, (T; D) be the set of ¢-approximate fixed points of
T, ie, FT; D) = {x € D: ||« - T, || < & }. Weak convergence is denoted by — and
strong convergence is denoted by —.

3 Main results

Theorem 3.1 Let S be a semigroup, C a nonempty closed convex subset of real Hilbert
space H and B : C — H be a -inverse strongly monotone. Let ¢ = {T,: t € S} be a
nonexpansive semigroup of C into itself such that F = Fix(¢) NVI(C,B) #@, X a left
invariant subspace of B(S) such that 1 € X, and the function t — (T, y) is an element
of X for each x € C and y € H, {u,} a left regular sequence of means on X such that
Yoo Il a1 — pn ll< 0o. Let {a,,} and {B,} be sequences in (0, 1) and {5,} be a
sequence in |a, b], where 0 < a < b <2f. Suppose the following conditions are satisfied.

(Bl) hmn—)oo oy, = 0, limn_m ﬂn =0,
(BZ) Zzil oy = 00,

(B3) Z;ﬁl | 01 — oy | < 00, Zﬁil | Bne1 — Bn | < 00, 2221 | 8ps1 — 8 | < 00,

If {x,.} and {y,} be generated by xy € C and

Yn = Bnxn + (1 — Bu)Pc(xn — 84Bxn),
Xne1 = AV f (%) + (I — anuuF)T,, 0, n>0.

Then, {x,} and {y,} converge strongly, as n — o, to x* € JF, which is a unique solution
of the variational inequalities:
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((WF —yf)x*,x —x*) >0, VxelF,
(Bx*,y —x*) > 0 vy e C.
Proof. Since {o,} satisfies in condition (B;), we may assume, with no loss of general-

ity, that o, < min{1, i}. Since B is B-inverse strongly monotone and d,, <2f, for any

x, y € C, we have

I (I—8,B)x— (I = 8:B)y Il *
=l (x—y) = 8u(Bx—By) || 2
=llx—yl?— 28,(c—y,Bx—By)+5; | Bx— By || *
<lx—yll*— 28,8 Bx—By|*+ 6 | Bx—By|?
=lx—yll?+ 8:(8,—2B) | Bx—By | *

<lx=yl?
It follows that
I (I—8:B)x—(I=8uB)yll=llx—yll. (13)
Let p € F, in the context of the variational inequality problem, the characterization
of projection (11) implies that p = Pc(p - 9,,B,). Using (13), we get

lyn =P Il =ll Bnxn + (1 — Bn)Pc(xn — 6nBxy) —p |
= || Bulxn — p] + (1 — Bn)[Pc(xn — 8nBxn) — Pc(p — 0nBp)] |l
<Bullxn —p Il + (1= Bn) | Pc(xn — 8nBxn) — Pc(p — 8xBp) |l
SBallxn—pll+ (A =B) Il xn—pll=lxa—pll.

(14)

We claim that {x,} is bounded. Let p € F, using Lemma 2.6 and (14), we have

I %1 = Il =1l anyf(xn) + (I = ctnitF) Ty yn —p |

=l anyf(xn) + (I — uptF) Ty, yn — (I — anpF)p — anuFp ||

<oy [l vflen) —pEp | + | (I — anbF) Ty, yn — (I — anuF)p ||
<o [l vflxa) —vf(p) |

+ an | vf(P) — uFp | + (1 = aat) || Ty yn —p I

Sanpya [ %o —pll +oan | vf(p) = uFp | + (1 —ont) [ yn—p |l
<oy [ X —pll +on | yf(p) —uFp || + (1 —en) [ X0 —p ||
(1 —an(r —ya)) [ %n —p Il +an | Yf(p) — uFp |
<max{|| x, —p [, (t —ya)™" | ¥f(p) — uFp |I}.

A

By induction we have,
I = p ll< max{(z — ya)~" | yf(p) — uFp |, | %0 —p I} = Mo.

Hence, {x,} is bounded and also {y,} and {flx,)} are bounded. Set D = {y e H: ||y -
Pl = Mo}. We remark that D is ¢-invariant bounded closed convex set and {x,}, {,}
€ D. Now we claim that

limsupsup || T,y — T¢Tyw,y | =0, VieS. (15)
n—oo yeD

Let ¢ >0. By [[20], Theorem 1.2], there exists 0 >0 such that
coF5(T,; D) + B C F.(T; D), VteS. (16)

Page 7 of 16



Piri and Badali Fixed Point Theory and Applications 2011, 2011:55
http://www.fixedpointtheoryandapplications.com/content/2011/1/55

Also by [[20], Corollary 1.1], there exists a natural number N such that

R R
Ty — T T,
HN+1§ tsy I<N+1§ tsy>

forall t, se Sand y € D. Let t € S. Since {u,} is strongly left regular, there exists Nj

<5, (17)

e N such that || un — Fipn 1< (MoprH) forn > Ny and i = 0, 1, 2,.., N. Then we have

N
1
T,y — / N+l ;Tﬂ's)’dﬂns

N
1
T y —_ T;i ’
(Ty,y: 2) </N+1 ; isydns z>

sup
yeD

= sup sup
yeD |iz|=1
N N
1 ! (18)
=sup sup Un)(Tsy, 2) — 1) (Tisy, 2)
yeD |zl=1 N+1 ;:( n)s sV N+1 ;( n)s tisy

N

1
Ty, z) — (I% Ty,
“N+1 ;?}elg Hszl”lg | (n)s{Tsy, 2) — (Lipen)s(Tsy, 2) |

I tn = Lipin | (Mo+ [l p II) <8, ¥n = No.

A
=)
=

T i=1,2,..N

By Lemma 2.1, we have

N N
1 1
/ N+l igzo Tyisydpns € co {N+ . éo T:(Tsy) :s € s} . (19)

It follows from (16), (17), (18), and (19) that

N
1
T,,(y) €co {N+ . ;ns(y) 1S € S} + B;
C coFs(Ty; D) + Bs C Fo(T;; D),
for all y € D and n > Nj. Therefore,

lim sup sup || Ty(Ty,y) — T,y | < e.

n—o00 yeD

Since ¢ > 0 is arbitrary, we get (15). In this stage, we will show

lim || x, — Tex, || =0, VteS. (20)
n—oo

Let t € S and ¢ > 0. Then, there exists 0 > 0, which satisiies (16). From lim,,_,.. o, =
0 and (15) there exists N; € N such that o < (r+u6k)Mo and Ty, yn € Fs(T;; D), for all n
> N;. By Lemma 2.6 and (14), we have

an lyf(xn) = wETy,pn |
<an(y I f(xn) =f() I + 1 ¥f(p) — nEp Il + | uEp — uFT,,yn )
<an(yallxg—pll+ 1l vf(p) — nEp Il +uk | yn —p 1)
< auy(yaMo + (t — ya )Mo + pkMy)
< au(t +puk)My <4,

Page 8 of 16
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for all # > N;. Therefore, we have

Xn+l = T;Ln)/n + O‘n[)/f(xn) + MF(T nyn)]
€ Fs(Ty; D) + Bs C F.(Ty; D),

for all n > N;. This shows that
| xp — Tixn || <&, Vn > Nj.

Since ¢ > 0 is arbitrary, we get (20).
Let
Q =Pzr. Then Q(I - uF + yJ) is a contraction of H into itself. In fact, we see that

I QU — pF +yf)x— QU — nF+yfy ll
S =pnF+yf)x—A—pnF+yyll
<HI=pF)x—=I—=uF)yll+y I f(x)=f) I

)

. 1
< llm(l—(l—n)f) [x=yll+yallx=yl

n—oo

+y () =)

==t lx=yl+yalx—yl

and hence Q(I - uF + yf) is a contraction due to (1 - (r -y)) € (0, 1).
Therefore, by Banachs contraction principal, Px(I — uF + yf) has a unique fixed
point x*. Then using (9), #* is the unique solution of the variational inequality:

((yf — uF)x*,x —x*) <0, VxeF. (21)
We show that

lim sup(yf(x*) — uFx*, x, —x*) < 0. (22)

n—oo
Indeed, we can choose a subsequence {x,,} of {x,} such that

limsup(yf(x*) — uFx*, xn — x*) = im (yf(x*) — uFx*, x,, — x*). (23)
n—-oo 1—>00

Because {x,} is bounded, we may assume that ¥, — 2. In terms of Lemma 2.2 and
(20), we conclude that z € Fix (¢).

Now, let us show that z € VI (C, B). Let w,, = Pc (x,, - 0,, Bx,), it follows from the
definition of {y,} that

”}'ml —Vn H

= || Buerxner + (1 = Bus1)Pc(Xns1 — 8na1Bxnir) — BuXn — (1 — Bn)Pc(n — 8nBxy) ||
= |l Brot (xne1 = %n) + (Baer — Bu)xn + (1 — Bre1)Pc(Xns1 — Sne1 Bnar)

= (1 = Bue1)Pc(xn — 8ni1Bxn) + (1 — Bus1)Pc(xn — Spa1Bxn) — (1 — Bu)Pc(xn — 8nBxn) |l
=< Bus1 Il Xner =% |+ | Bur — Bu 1l Xn |l

+(1 = Bur1) | Pe(nsr — Sna1 Bxnir) — Pe(Xn — pa1 Bxn) |l

+ || Pc(xn — 8ni1Bxn) — Pc(xn — 8nBxn) ||

+ || BuPc(%n — 8uBxn) — Bui1Pc(xn — Sn1 Bxn) ]
< Bt %t — Xn |+ | Buer = Bu [l 20 I+ (1 = Buer) | Xna1 — 2 ||

+ | 8ne1 = 8n [l Bxn || + || BuPc(xn — 8nBxn) — BuPc(%n — Sns1Bxn)

+ ﬂnPC(xn - 5n+len) - ﬂn+1PC(xn - 5n+13xn) I
< Bt %1 — X |+ | Brer — Bu 1l 20 1|+ (1 = Busr) | Xne1 — x|l

+ 1 8pe1 = Sn [l Bxn | +Bn | Sner — 8u Il Bxw | + | Brsr — B [l Pc(%n — Spe1 Bxn) |l
=l Xne1 — X 1+ 1 Buar — Bu 2 I + (1 + Bu) | Spa1 — Sn |1l Bty |l

+ | Buer = Bu Il Pe(xn — SpaaBrn) I -
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Using the last inequality, we get

X1 — %
= [l enyf(xn) + (I — anptF) Ty, yn — otn-1¥f(%n-1) — (I — otn—1F) Ty, Y1 |l
= | anyf(xn) — anyf(xXn-1) + (0 — an—1)vf(xXn-1)
+ (I —anpuF)Tyyn — (I — awplF) Ty, ynaa
+ (I —oqpuF)Ty, Yu1 — (I — ona pbF) Ty, yna |l

<oy || xn =Xt |+ Lo —an1 [y || fn-1) |
+ (1= ant) | Tuyn — Ty Vu1 | + L otn —an—y | g | FTp,  yn1 |l
< apya || Xn = Xn-1 |+ [ on — 1 |y | f(xn=1) | +(1 = @nT) |l yu = ynr |l
+ (1 - anf) I Ty Yn—1 — Tu,Hyn—l I+ 1an—an1|pml FTu,,,\)/nfl I
<apya | Xp—Xp-1 |+ 1o —an1 |y || f(xa1) |l +(1 *anf) [l %0 — xn—1 Il

+(1=ant) | By = Bu-1 |l Xn—1 | +(1 — enT)(1+ Bu=1) | 85 — 8n—1 || Bxn—1 |
+ (1 - anf) | Bn— Bu-1 1l PC(xn—l - (Sann—l) II
+ (L= ont) | Ty yn-1 — Ty yn1 |+ Lo — ooy [ o Il FTp, v Il

Thus, for some large enough constant M > 0, we have

[ %pe1 =0 | < (1 —an(r —ya)) Il x5 — xn1 |
+ [lag—an1 |+ Bn—Bucr |+ 18— 8n1 | + Il n — mn—1 [[|M.

Therefore, using condition B and Lemma 2.5, we get

lim || X1 — X0 || = 0. (24)

n—o0

Let p € F, from (11) and deiinition of {y,}, we have

llyn =PI
= || Buxn + (1 = Bu)Pc(xn — 8,Bxn) — plI?
=l Bu(xa — ) + (1 = Bu)(Pc(%n — 84Bxn) — Pc(p — 8,Bp))II>
< Bl %0 = plI> + (1 = Ba) Il (X0 — p) — 8n(Bxn — Bp))|I*
=B |l %0 — plI* + (1= B) Il xu — plI> + 87(1 — Bu) || Bxy — Bp|?
—28,(1 — Bn){xn — p, Bxy — Bp)
< |l % — plI*> + 87(1 — Bn) Il Bxy — Bp||* — 28,(1 — Ba)B || Bxn — Bpl|
= || %0 — plI” + 82(1 — B)(8n — 2B) || Bxy — Bp|>.

(25)

Using (25), we have

Ixner — pII?
= | anyf(xn) + (I — anbF) Ty, yn — P”z
= | an(vf(xn) — uFTy,yn) + (Tp,yn — P)”z
=y || yf(%n) = wF T, yull+ | Ty yn —p |
+ 20 (v f (Xn) — WFT 0, Y0, T Yn — P)
<oy || yf(xn) = WFTuyull>+ Il yu — plI?
+ 20, (Vf(xn) — WFT, Yn, Ty yn — P)z (26)
<ap || vf(%a) = WFT,pul?+ || %0 — pl?
+8(1 = Bn)(8n — 28) || Bxy — Bp|?
+ 20 (v f (Xn) — WFT 0, Yn, Ty Yn — P)
=a, || vf(xn) — wFTu,ynll*+ Il X0 — plI?
+84(8n — 2Bn) || Bxn — BplI> — 8uBu(8n — 2B4) || Bxn — Bpl|®
+ 20, (Y f (Xn) — WET 0, Yn, T Yn — P)-
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Therefore,
—8a(8n — 2B4) || Bxn — Bp|?

<ap | vf(xn) = LFTyull> + [ xn —p Il + 1l %ne1 — P 1] 1| X1 — % |
— 8uBn(8n — 2B4) || Bxy — BP”2 + 200 (yf(%n) — WFTy,Yn Ty, ¥n — D).

2
I

Hence, using condition B; and (24), we get
lim || Bx, — Bp || = 0. 27)
n—-oo

From (8), we have

llw, — plI*
= PC(xn - Sann) - PC(P - 5nBP)”2
< ((xn — 8nBxn) — (p — 8nBp), wn — p)

= ;[n (Xn = 8aBxa) — (P — 8,Bp) 1>+ Il wy — pI?
— Il (%0 — 84Bxn) = (p — 84Bp) — (wn — p)II°]
< %0 = plPs 1wy = pIP
— Il (%0 — 84Bxn) — (p — 84Bp) — (wn — p)II°]
= ;[n Xn =PI+ 1l wa =PI = || % — wall®

+ 28, (Xy — Wn, Bxy, — Bp) — 82 || Bx, — Bp|I*].
So we obtain

2 2 2
' wn = pll* < [l %0 = plI=—= [l X0 — wall

+ 28, (%4 — wn, Bxy, — Bp) — 82 || Bx, — Bpl|*.
It follows from (26) and (28) that

llxns — pII?
<o | vf(x) = HFTyall®+ 1|y —plI?
+ 2000 (Y f (%) — WF Ty, Yn, Ty ¥n — D)
< o2 || yf(xn) — WFT, yull?+ || Buxn + (1 — Bu)Pc(xn — 8uBxn) — plI>
+ 20 (yf(xn) — WFT 0, yn Ty yn — )
<ol | yf(xn) = WFTyyull® + B Il xu — pI? + (1 = Ba) Il wn — plI?
+ 20 (yf (xn) — WFTy,yn, Ty Vn — )
< || yf(n) — WFTynll® + B Il X — pII* + (1 = Bu) | %n — plI>
— (1= Bn) || %n — wall® +26,(1 — Bu){Xn — W, B — Bp) — 82(1 — Bu) || Bxw — Bp|?
+ 20 (Y f(%n) — WFT 0, Yn, T,y — ).
Which implies that
%0 — wall® < ap | vf(xn) = WETpull” + [0 20 = p 1L+ 1l X = 1] 1| Xoer — % |
+ B || xXn — wyll? + 28,(1 — Bu) || %0 — wy ||| Bx, — Bp ||

- 53;(1 — Bu) |l Bxy — BP”2 + 2000 (Y f(xn) — WFTp,¥n, Ty yn — D)

Page 11 of 16
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Therefore, using condition B, (24) and (27), we get

lim || x, —w, || =0. (29)
n—oo

Let U : H —2" be a set-valued mapping is defined by

Ax+ Ncx, x € C,
Ux_{@, x ¢ C.

where N¢x is the normal cone to C at x € C. Since B is relaxed, f-inverse strongly
monotone. Thus, U is maximal monotone see [19]. Let (x, ) € G (U), hence y - Bx
Ncx. Since w,, = Pc (x, - {,,Bx,) therefore, (x - w,, y - Bx) > 0. On the other hand

from w, = Pc (x,, - {,Bx,), we have

(X — wy, wy — (xn — (Sann)) >0,

that is

< Wy — X,
X — Wy,
On

Therefore, we have

" +Bx,,> > 0.

(X — wn,, y)
> (x — wy,, Bx)

Wy, — X
> (x — wy,, Bx) — <x — Wy, "16 oy ani)>

n;

Wn; — Xn
X — Wy, Bx— " ' — Bxy,
8n

i

Wy, — Xp,
(x — wy,, Bx — Bwy,) + (x — wy,, Bw,, — Bxp,) — {x — wy,, 5
ni

Wy, — Xn:
> (x — Wy, Bwy, — Bxy,) — <x — Wy, "’>
B,
Wy, — X,
> (X — Wn, Bwy, — Bxy,) — | x — wy, || s
n;
Noting that limj_.o || Wy, — Xy, || = 0, Xy, — 2, ¥n;, = Z2 and B is é—lipschitzian, we
obtain
(x—2z,9) > 0.

Since U is maximal monotone, we have z € U0, and hence z e VI(C, B). Therefore,

zeF.
Since Xn; = Z from (21) and (23), we have

lim sup(yf(x*) — uFx*, x, — x*) < 0.
n— 00

Page 12 of 16
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Finally, we prove that x,, & x* as n — co. By Lemmas 2.4, 2.6, and (14), we have

Xner — 2 | 2
= | onyf(xn) + (I — ctnpuF) Ty yn — ™ || 2
= |l onyf(xn) — ctupbFx™ + (I — atyuF)T, ayn
- (I - anMF)x* I 2
< | (I = onptF) Ty yn — (I — awptF)x* | 2
+ 20 (Y f (%) — LEX™, Xpe1 — X*)
< (1 =ant)? [l yn —x" | 2+ 20 (yf(%n) — WFX", X001 — %) (30)
< (M —0nt) [y —&* | 2+ 200 (pf(xa) — ¥f(5*), X1 — &%)
+ 20 (yf (x*) — WFX", Xps1 — X¥).
<(T=ant) llyn =2 112+ anyell % —x* | 2+ [ Kper — 2% | %]
+ 20‘n(yf(x*) — uFx*, Xy — x¥).
< (L —ont)? %0 —x* || 2+ amye[ll Xn — x* || 2+ || Xper — 2™ || ]

+ 20‘n<7/f(x*) — wFx*, xp1 — &%),

So from (30), we reach the following

1+027? — 20,7 + otpya
I %pan — &)1 < S P
1 —oapya
2o
i (yf(X*) - ,qu*, Xn+1 — x*)
1 —oapya
2(t — ya) —oa,1?
<(Q-a ( )~ e ) I 20 — %))
1 —apya
2(r — ya) — ayt? 2 y
ra x*) — uFx*, xp.q —x*
! 1 —apya 2(t — ya) — apt? ) = m el )
It follows that
e =217 < (1= by) | 0 — 217 + b, (31)
where
2(t — ya) — ayt? 2
b, =« , Cp = x*) — wFx*, e — x*
n n 1 — apper n 2(1_ _ )/Ol) S <Vf( ) w n+l )
o0 o0
Since @, — o and Y a, = 00, we have ) b, = 00 and by (22), we get lim sup,,_,.. ¢,
n=0 n=0

< 0. Consequently, applying Lemma 2.5, to (31), we conclude that x” — x*. Since || y,,
-x* || < || %, - x* ||, we have y" —x*. O

Corollary 3.2 Let {o,,}, {8,}, {0} and B be as in Theorem 3.1. Let T a nonexpansive
mapping of C into C such that F = Fix(T) N VI(C, B) # 0. Suppose xo € H and {x,}
and {y,} be generated by the iteration algorithm

Yn = BuXn + (1 - IBn)PC(xn - Sann)r
n—

1
Xne1 = ¥ f(%n) + (I —aquF) " [o " T(t)yndt, n=>0.

Then {x,} and {y,} convergence strongly to x* which is the unique solution of the sys-
tems of variational inequalities:
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((uF — yf)x*, x—x*) > 0,Vx € F,
(Bx*, y—x*) >0 vy € C,
Proof. Take A, = "1, for n e N, we define un(f) = ,\l,l fo}‘”f(t)dt for each fe C(R,),

where C(R,) denotes the space of all real-valued bounded continuous functions on R*
with supremum norm. Then, {y,} is regular sequence of means on C(R,) such that

An
| s —pn | <211 -

)Ln+1

for more details, see [21]. Further, for each y € C, we have
An

1
Ty, [T
An

0

On the other hand

oo

Znuml—unwzz
n=1

n=1

( n+l — )
n+1

n+1 -
n+1

<0

M8 o TE

Il
N

1
n?

=3
Il
—_

Now, apply Theorem 3.1 to conclude the result. O
Corollary 3.3 Let S, ¢, X, {u,}, F, {0}, B}, and {0,} be as in Theorem 3.1. Let A be

a strongly positive bounded linear operator with coefficient y > 0, { a number in (0, Z),

where T = ji(y — ’1”?”2 Yand 0 < i < Hiﬂz' If {x,,} and {y,} are generated by xo € C and

{ Yn = BuXn + (1 — Bn)Pc(Xn — 8nAxn),
Xn+l = an)/f(xn) + (I — anﬂA)T Y, N> 0.

Then, {x,} and {y,} converge strongly, as n — o, to x* e F, which is a unique solution
of the variational inequalities:

((uF — yf)x*, x —x*) > 0, Vx € F,
(Ax*, y—x*) >0 vy e C.

Proof. Because A is strongly positive bounded linear operator on H with coefficient y,
we have

(Ax—Ay, x—y) > 7 llx —yl*

Therefore, A is y-strongly monotone.
On the other hand

I Ax—Ay | <[Alllx=ylI.

Therefore,

||A||2 I Ax — Ayl < (Ax — Ay, x—y).
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Hence, A is /fuz—inverse strongly monotone. Now apply Theorem 3.1 to conclude the

result. O
Corollary 3.4 Let {o,}, {B,} and B be as in Theorem 3.1. Let u, xy € C and {x,} and
{y.} be generated by the iterative algorithm

Vn = Bnxn + (1 - ,Bn)PC(xn - (Sann)r
Xne1 = @t + (I — anftF)yn, n=>0.

Then {x,} and {y,} convergence strongly to x* which is the unique solution of the sys-
tems of variational inequalities:

((WF — yf)a*, x —x*) >0, VxeF,
(Bx*, y—x*) =0 vy e C.

Proof. It is sufficient to take f = }l,u and ¢ = {I} in Theorem 3.1. O
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