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1 Introduction
Let E be a Banach space with its dual space E*. For the sake of simplicity, the norms of

E and E* are denoted by the symbol || · ||. We write 〈x, x*〉 instead of x*(x) for x* Î E*

and x Î E. We denote as ⇀ and ®, the weak convergence and strong convergence,

respectively. A Banach space E is reflexive if E = E**.

The problem of finding a fixed point of a nonexpansive mapping is equivalent to the

problem of finding a zero of the following operator equation:

0 ∈ A(x) (1:1)

involving the accretive mapping A.

One popular method of solving equation 0 Î A(x) is the proximal point algorithm of

Rockafellar [1] which is recognized as a powerful and successful algorithm for finding

a zero of monotone operators. Starting from any initial guess x0 Î H, this proximal

point algorithm generates a sequence {xn} given by

xn+1 = JAcn(xn + en), (1:2)

where JAr = (I + rA)−1, ∀r > 0 is the resolvent of A in a Hilbert space H. Rockafellar

[1] proved the weak convergence of the algorithm (1.2) provided that the regularization

sequence {cn} remains bounded away from zero, and that the error sequence {en} satis-

fies the condition
∑∞

n=0 ‖ en ‖< ∞. However, Güler’s example [2] shows that proximal

point algorithm (1.2) has only weak convergence in an infinite-dimensional Hilbert

space. Recently, several authors proposed modifications of Rockafellar’s proximal point

algorithm (1.2) for the strong convergence. For example, Solodov and Svaiter [3] and
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Kamimura and Takahashi [4] studied a modified proximal point algorithm by an addi-

tional projection at each step of iteration. Lehdili and Moudafi [5] obtained the conver-

gence of the sequence {xn} generated by the algorithm:

xn+1 = JAn
cn (xn), (1:3)

where An = μnI + A is viewed as a Tikhonov regularization of A. When A is maximal

monotone in a Hilbert space H, Xu [6], Song and Yang [7] used the technique of non-

expansive mappings to get convergence theorems for {xn} defined by the perturbed ver-

sion of the algorithm (1.3):

xn+1 = JArn(tnu + (1 − tn)xn). (1:4)

The equation (1.4) can be written in the following equivalent form:

rnA(xn+1) + xn+1 � tnu + (1 − tn)xn. (1:5)

In this article, we study a regularization proximal point algorithm to solve the pro-

blem of finding a common fixed point of a finite family of nonexpansive self-mappings

in a uniformly convex and uniformly smooth Banach space E. Moreover, we give some

analogue regularization methods for the more general problems, such as: problem of

finding a common fixed point of a finite family of nonexpansive mappings Ti, i = 1, 2,

..., N, where Ti is self-mapping or nonself-mapping on a closed convex subset of E.

2 Preliminaries
Definition 2.1. A Banach space E is said to be uniformly convex, if for any ε Î (0, 2]

the inequalities ||x|| ≤ 1, ||y|| ≤ 1, ||x - y|| ≥ ε imply that there exists a δ = δ(ε) ≥ 0

such that

‖ x + y ‖
2

≤ 1 − δ.

The function

δE(ε) = inf{1 − 2−1 ‖ x + y ‖:‖ x ‖=‖ y ‖= 1, ‖ x − y ‖= ε} (2:1)

is called the modulus of convexity of the space E. The function δE(ε) defined on the

interval [0, 2] is continuous, increasing and δE(0) = 0. The space E is uniformly convex

if and only if δE(ε) > 0, ∀ε Î (0, 2].

The function

ρE(τ ) = sup {2−1(‖ x + y ‖ + ‖ x − y ‖) − 1 :‖ x ‖= 1, ‖ y ‖= τ }, (2:2)

is called the modulus of smoothness of the space E. The function rE(τ) defined on

the interval [0, +∞) is convex, continuous, increasing and rE(0) = 0.

Definition 2.2. A Banach space E is said to be uniformly smooth, if

lim
τ→0

ρE(τ )
τ

= 0. (2:3)

It is well known that every uniformly convex and uniformly smooth Banach space is

reflexive. In what follows, we denote

hE(τ ) =
ρE(τ )

τ
. (2:4)
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The function hE(τ)is nondecreasing. In addition, it is not difficult to show that the

estimate

hE(Kτ ) ≤ LKhE(τ ), ∀K > 1, τ > 0, (2:5)

is valid, where L is the Figiel’s constant [8-10], 1 <L < 1.7. Indeed, we know that the

inequality holds ([8])

ρE(η)
η2

≤ L
ρE(ξ)

ξ2
, ∀η ≥ ξ > 0. (2:6)

It implies that

ξhE(η) ≤ LηhE(ξ), ∀η ≥ ξ > 0. (2:7)

Taking in (2.7) h = Cτ and ξ = τ, we obtain the inequality:

τhE(Cτ ) ≤ LCτhE(τ ), (2:8)

which implies that (2.5) holds. Similarly, we have

ρE(Cτ ) ≤ LC2ρE(τ ), ∀C > 1, τ > 0. (2:9)

Definition 2.3. A mapping j from E onto E* satisfying the condition

j(x) = {f ∈ E∗ : 〈x, f 〉 =‖ x‖2 and ‖ f ‖=‖ x ‖} (2:10)

is called the normalized duality mapping of E.

We know that

j(x) = 2−1grad ‖ x‖2.

in a smooth Banach space, and the normalized duality mapping J is the identity

operator I in a Hilbert space.

Definition 2.4. An operator A : D(A) ⊆ E ® E is called accretive, if for all x, y Î D

(A), there exists j(x - y) Î J (x - y) such that

〈A(x) − A(y), j(x − y)〉 ≥ 0. (2:11)

Definition 2.5. An operator A : E ® E is called m-accretive if it is an accretive

operator and the range R(lA + I) = E for all l > 0, where I is the identity of E.

If A is an m-accretive operator then it is a demiclosed operator, i.e., if the sequence

{xn} ⊂ D(A) satisfies xn ⇀ x and A(xn) ® f, then A(x) = f [10,11].

Definition 2.6. A mapping T : C ® E is said to be nonexpansive on a closed convex

subset C of Banach space E if

‖ Tx − Ty ‖≤‖ x − y ‖, ∀x, y ∈ C. (2:12)

If T : C ® E is a nonexpansive then I - T is an accretive operator. In this case, if the

subset C coincides E then I - T is an m-accretive operator.

Definition 2.7. Let G be a nonempty closed convex subset of E. A mapping QG : E ®
G is said to be

(i) a retraction onto G if Q2
G = QG;
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(ii) a nonexpansive retraction if it also satisfies the inequality:

‖ QGx − QGy ‖≤‖ x − y ‖, ∀x, y ∈ E; (2:13)

(iii) a sunny retraction if for all x Î E and for all t Î [0, +∞)

QG(QGx + t(x − QGx)) = QGx. (2:14)

A closed convex subset C of E is said to be a nonexpansive retract of E, if there

exists a nonexpansive retraction from E onto C, and it is said to be a sunny nonexpan-

sive retract of E, if there exists a sunny nonexpansive retraction from E onto C.

Proposition 2.8. [9]Let G be a nonempty closed convex subset of E. A mapping QG :

E ® G is a sunny nonexpansive retraction if and only if

〈x − QGx, J(ξ − QGx)〉 ≤ 0, ∀x ∈ E, ∀ξ ∈ G. (2:15)

Reich [12] showed that if E is uniformly smooth and D is the fixed point set of a

nonexpansive mapping from C into itself, then there is a sunny nonexpansive retrac-

tion from C onto D, and it can be constructed as follows.

Lemma 2.9. [12]Let E be a uniformly smooth Banach space, and let T : C ® C be a

nonexpansive mapping with a fixed point. For each u Î C and every t Î (0, 1), the

unique fixed point xt Î C of the contraction C ∋ x ↦ tu + (1 - t)Tx converges strongly

as t ® 0 to a fixed point of T. Define Q : C ® Fix(T) by Qu = limt®0 xt. Then, Q is a

unique sunny nonexpansive retraction from C onto Fix(T), i.e., Q satisfies the property:

〈u − Qu, j(z − Qu)〉 ≤ 0, u ∈ C, z ∈ Fix(T). (2:16)

Definition 2.10. Let C1 and C2 be convex subsets of E. The quantity

β(C1,C2) = sup
u∈C1

inf
v∈C2

‖ u − v ‖ (= sup
u∈C1

d(u,C2))

is said to be a semideviation of the set C1 from the set C2. The function

H(C1,C2) = max{β(C1,C2), β(C2,C1)}
is said to be a Hausdorff distance between C1 and C2.

In this article, we will use the following useful lemma:

Lemma 2.11. [7]If E is a uniformly smooth Banach space, C1 and C2 are closed con-

vex subsets of E such that the Hausdorff distance H(C1,C2) ≤ δ, and QC1and QC2are

the sunny nonexpansive retractions onto the subsets C1 and C2, respectively, then

‖ QC1x − QC2x‖2 ≤ 16R(2r + d)hE

(
16Lδ
R

)
, (2:17)

where L is Figiel’s constant, r = ||x||, d = max{d1, d2}, and R = 2(2r + d) + δ. Here di =

dist(θ, Ci) = d(θ, Ci), i = 1, 2, and θ is the origin of the space E.

3 Main results
We need the following lemmas in the proof of our results:

Lemma 3.1. [9]If A = I - T with a nonexpansive mapping T, then for all x, y Î D(T),

the domain of T

〈Ax − Ay, J(x − y)〉 ≥ L−1R2δE

(‖ Ax − Ay ‖
4R

)
, (3:1)
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where ||x|| ≤ R, ||y|| ≤ R and 1 <L < 1.7 is Figiel’s constant.

Lemma 3.2. [13]Let {an} be a sequence of nonnegative real numbers satisfying the

property:

an+1 ≤ (1 − λn)an + λnβn + σn, ∀n ≥ 0

where {ln}, {bn} and {sn} satisfy the following conditions.

(i)
∑∞

n=0 λn = ∞;

(ii) lim supn®∞ bn ≤ 0 or
∑∞

n=0
|λnβn| < ∞;

(iii) sn ≥ 0 ∀n ≥ 0 and
∑∞

n=0
σn < ∞.

Then, {an} converges to zero.

Lemma 3.3. [9]Let E be a uniformly smooth Banach space. Then, for all x, y Î E,

‖ x + y‖2 ≤‖ x‖2 + 2〈y, Jx〉 + cρE(‖ y ‖), (3:2)

where c = 48 max(L, ||x||, ||y||).

First, we consider the following problem:

Finding an element x∗ ∈ S = ∩N
i=1Fix(Ti), (3:3)

where Fix(Ti) is the set of fixed points of the nonexpansive mapping Ti : E ® E, i = 1,

2, ..., N.

Theorem 3.4. Suppose that E is a uniformly convex and uniformly smooth Banach

space which has a weakly sequentially continuous normalized duality mapping j from E

to E*. Let Ti : E ® E, i = 1, 2, ..., N be nonexpansive mappings with S = ∩N
i=1Fix(Ti) �= ∅.

If the sequences {rn} ⊂ (0, +∞) and {tn} ⊂ (0, 1) satisfy

(i) limn®∞ tn = 0;
∑∞

n=0 tn = +∞;

(ii) limn®∞ rn = +∞,

then the sequence {xn} defined by

rn
N∑
i=1

Ai(xn+1) + xn+1 = tnu + (1 − tn)xn, u, x0 ∈ E, n ≥ 0 (3:4)

converges strongly to QSu, where Ai = I - Ti, i = 1, 2, ..., N and QS is a sunny nonex-

pansive retraction from E onto S.

Proof. First, equation (3.4) defines a unique sequence {xn} ⊂ E, because for each n, the

element xn+1 is a unique fixed point of the contraction mapping f : E ® E defined by

f (x) =
rn

Nrn + 1

N∑
i=1

Ti(x) +
1

Nrn + 1
[tnu + (1 − tn)xn], x ∈ E.

For every x* Î S, we have

〈rn
N∑
i=1

Ai(xn+1), j(xn+1 − x∗)〉 ≥ 0, ∀n ≥ 0. (3:5)
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Therefore,

〈tnu + (1 − tn)xn − xn+1, j(xn+1 − x∗)〉 ≥ 0, ∀n ≥ 0. (3:6)

It gives the inequality as follows:

‖ xn+1 − x∗‖2 ≤ {tn ‖ u − x∗ ‖ +(1 − tn) ‖ xn − x∗ ‖}× ‖ xn+1 − x∗ ‖ .

Consequently, we have

‖ xn+1 − x∗ ‖ ≤ tn ‖ u − x∗ ‖ +(1 − tn) ‖ xn − x∗ ‖
≤ max(‖ u − x∗ ‖, ‖ xn − x∗ ‖)

...

≤ max(‖ u − x∗ ‖, ‖ x0 − x∗ ‖), ∀n ≥ 0.

Therefore, the sequence {xn} is bounded. Every bounded set in a reflexive Banach

space is relatively weakly compact. This means that there exists a subsequence
{xnk} ⊆ {xn} which converges to a limit x̄ ∈ E.

Suppose ||xn|| ≤ R and ||x*|| ≤ R with R > 0. By Lemma 3.1, we have

δE

(‖ Ai(xn+1) ‖
4R

)
≤ L

R2rn
〈rnAi(xn+1), j(xn+1 − x∗)〉

≤ L
R2rn

〈rn
N∑
k=1

Ak(xn+1), j(xn+1 − x∗)〉

≤ L

R2rn
‖ tnu + (1 − tn)xn − xn+1 ‖ . ‖ xn+1 − x∗ ‖

→ 0, n → ∞,

for every i = 1, 2, ..., N. Since the modulus of convexity δE is continuous and E is a

uniformly convex Banach space, Ai(xn+1) ® 0, i = 1, 2, ..., N. It is clear that x̄ ∈ S from

the demiclosedness of Ai. Hence, noting the inequality (2.15), we obtain

lim sup
n→∞

〈u − QSu, j(xn − QSu)〉 = lim
k→∞

〈u − QSu, j(xnk − QSu)〉

= 〈u − QSu, j(x̄ − QSu)〉
≤ 0.

(3:7)

Next, we have

‖xn+1 − QSu‖2 = 〈−rn
N∑
i=1

Ai(xn+1) + tnu + (1 − tn)xn − QSu, J(xn+1 − QSu)〉

= −〈rn
N∑
i=1

Ai(xn+1), J(xn+1 − QSu)〉

+ 〈tnu + (1 − tn)xn − QSu, J(xn+1 − QSu)〉
≤ 〈tn(u − QSu) + (1 − tn)(xn − QSu), J(xn+1 − QSu)〉
≤ 1

2
{‖ tn(u − QSu) + (1 − tn)(xn − QSu)‖2+ ‖ xn+1 − QSu‖2}.

By the Lemma 3.3 and the above inequality, we conclude that

||xn+1 − QSu2|| ≤‖ tn(u − QSu) + (1 − tn)(xn − QSu)‖2
≤ (1 − tn)2 ‖ xn − QSu‖2 + 2tn(1 − tn)〈u − QSu, j(xn − QSu)〉
+ cρE(tn ‖ u − QSu ‖).
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Consequently, we have

‖ xn+1 − QSu‖2 ≤ (1 − tn) ‖ xn − QSu‖2 + tnβn, (3:8)

where

βn = 2(1 − tn)〈u − QSu, j(xn − QSu)〉 + c
ρE(tn ‖ u − QSu ‖)

tn
.

Since E is a uniformly smooth Banach space,
ρE(tn ‖ u − QSu ‖)

tn
→ 0, n → ∞. By

(3.7), we obtain lim supn®∞ bn ≤ 0. Hence, an application of Lemma 3.2 on (3.8) yields

the desired result. □
Now, we will give a method to solve more generally following problem:

Finding an element x∗ ∈ S = ∩N
i=1Fix(Ti), (3:9)

where Ti : Ci ® Ci, i = 1, 2, ..., N is a nonexpansive mapping and Ci is a convex

closed nonexpansive retract of E.

Obviously, we have the following lemma:

Lemma 3.5. Let E be a Banach space, and let C be a closed convex retract of E. Let T

: C ® C be a nonexpansive mapping such that Fix(T) ≠ ∅. Then, Fix(T) = Fix(TQC),

where QC is a retraction of E onto C.

We consider the iterative sequence {xn} defined by

rn
N∑
i=1

Bi(xn+1) + xn+1 = tnu + (1 − tn)xn, u, x0 ∈ E, n ≥ 0, (3:10)

where Bi = I − TiQCi, i = 1, 2, ..., N and QCi is a nonexpansive retraction from E onto

Ci, i = 1, 2, ..., N.

Theorem 3.6. Suppose that E is a uniformly convex and uniformly smooth Banach

space which has a weakly sequentially continuous normalized duality mapping j from E

into E*. Let Ci be a convex closed nonexpansive retract of E and let Ti : Ci ® Ci, i = 1,

2, ..., N be a nonexpansive mapping such that S = ∩N
i=1Fix(Ti) �= ∅. If the sequences {rn}

⊂ (0, +∞) and {tn} ⊂ (0, 1) satisfy

(i) limn®∞ tn = 0;
∑∞

n=0 tn = +∞;

(ii) limn®∞ rn = +∞,

then the sequence {xn} generated by (3.10) converges strongly to QSu, where QS is a

sunny nonexpansive retraction from E onto S.

Proof. By the Lemma 3.5, we have S = ∩N
i=1Fix(TiQCi) and applying Theorem 3.4, we

obtain the proof of this Theorem. □
Next, we study the stability of the regularization algorithm (3.10) in the case that

each Ci is a closed convex sunny nonexpansive retract of E with respect to perturba-

tions of operators Ti and constraints Ci, i = 1, 2, ..., N satisfying following conditions:

(P1) Instead of Ci, there is a sequence of closed convex sunny nonexpansive retracts

Cn
i ⊂ E, n = 1, 2, 3, ... such that

H(Cn
i ,Ci) ≤ δn, i = 1, 2, . . . ,N,
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where {δn} is a sequence of positive numbers.

(P2) For each set Cn
i , there is a nonexpansive self-mapping Tn

i : Cn
i → Cn

i , i = 1, 2, ...,

N satisfying the conditions: if for all t > 0, there exists the increasing positive functions

g(t) and ξ(t) such that g(0) ≥ 0, ξ(0) = 0 and x Î Ci, y ∈ Cm
i , ||x - y|| ≤ δ, then

‖ Tix − Tm
i y ‖≤ g(max{‖ x ‖, ‖ y ‖})ξ(δ). (3:11)

We establish the convergence and stability of the regularization method (3.10) in the

form:

rn
N∑
i=1

Bn
i (zn+1) + zn+1 = tnu + (1 − tn)zn, u, z0 ∈ E, n ≥ 0, (3:12)

where Bn
i = I − Tn

i QCn
i , i = 1, 2, ..., N and QCn

i is a sunny nonexpansive retraction from

E onto Cn
i , i = 1, 2, ..., N.

Theorem 3.7. Suppose that E is a uniformly convex and uniformly smooth Banach

space which has a weakly sequentially continuous normalized duality mapping j from E

into E*. Let Ci be a convex closed sunny nonexpansive retract of E and let Ti : Ci ® Ci,

i = 1, 2, ..., N be nonexpansive mappings such that S = ∩N
i=1Fix(Ti) �= ∅. If the conditions

(P1) and (P2) are fulfilled, and the sequences {rn}, {δn} and {tn} satisfy

(i) limn®∞ tn = 0;
∑∞

n=0 tn = +∞;

(ii) limn®∞ rn = +∞;

(iii)
∑∞

n=0
rnξ(a

√
hE(δn)) < +∞ for each a > 0,

then the sequence {zn} generated by (3.12) converges strongly to QSu, where QS is a

sunny nonexpansive retraction from E onto S.

Proof. For each n,
∑N

i=1 B
n
i is an m-accretive operator on E, so the equation (3.12)

defines a unique element zn+1 Î E. From the equations (3.10) and (3.12), we have

rn

〈
N∑
i=1

Bn
i (zn+1) − Bn

i (xn+1), j(zn+1 − xn+1)

〉

+rn

〈
N∑
i=1

Bn
i (xn+1) − Bi(xn+1), j(zn+1 − xn+1)

〉
+ ‖ zn+1 − xn+1‖2

= (1 − tn)〈zn − xn, j(zn+1 − xn+1)〉.

(3:13)

By the accretivity of
∑N

i=1 B
n
i and the equation (3.13), we deduce

‖ zn+1 − xn+1 ‖≤ (1 − tn) ‖ zn − xn ‖ +rn
N∑
i=1

‖ Bn
i (xn+1) − Bi(xn+1) ‖ . (3:14)

For each i Î {1, 2, ..., N},

‖ Bn
i (xn+1) − Bi(xn+1) ‖=‖ Tn

i QCn
i
xn+1 − TiQCixn+1 ‖ . (3:15)

Since {xn} is bounded and H(Ci,Cn
i ) ≤ δn, there exist constants K1,i > 0 and K2,i > 1

such that

‖ QCn
i
xn+1 − QCixn+1 ‖≤ K1,i

√
hE(K2,iδn) ≤ K1,i

√
K2,iL

√
hE(δn). (3:16)
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By the condition (P2),

‖ Tn
i QCn

i
xn+1 − TiQCixn+1 ‖≤ g(Mi)ξ(K1,i

√
K2,iL

√
hE(δn)), (3:17)

where Mi = max{sup ‖ QCn
i
xn+1 ‖, sup ‖ QCixn+1 ‖} < +∞.

From (3.14), (3.15) and (3.17), we obtain

‖ zn+1 − xn+1 ‖≤ (1 − tn) ‖ zn − xn ‖ +Ng(M)rnξ(γ1,2
√
hE(δn)), (3:18)

where M = max{M1, M2, ..., MN} < +∞ and γ1,2 = max
i=1,2,...,N

{K1,i
√
K2,iL}.

By the above assumption and Lemma 3.2, we conclude that ||zn - xn|| ® 0. In addi-

tion, by Theorem 3.6,

‖ zn − QSu ‖≤‖ zn − xn ‖ + ‖ xn − QSu ‖→ 0, as n → ∞, (3:19)

which implies that {zn} converges strongly to QSu. □
Finally, in this article we give a method to solve the following problem:

Finding an element x∗ ∈ S = ∩N
i=1Fix(Ti), (3:20)

where Ti : Ci ® E, i = 1, 2, ..., N is nonexpansive nonself-mapping and Ci is a closed

convex sunny nonexpansive retract of E.

Lemma 3.8. [14]Let C be a closed convex subset of a strictly convex Banach space E

and let T be a nonexpansive mapping from C into E. Suppose that C is a sunny nonex-

pansive retract of E. If Fix(T) ≠ ∅, then Fix(T) = Fix(QCT), where QC is a sunny nonex-

pansive retraction from E onto C.

We have the following result:

Theorem 3.9. Suppose that E is a uniformly convex and uniformly smooth Banach

space which has a weakly sequentially continuous normalized duality mapping j from E

into E*. Let Ci be a convex closed sunny nonexpansive retract of E and let Ti : Ci ® E,

i = 1, 2, ..., N be nonexpansive mappings such that S = ∩N
i=1Fix(Ti) �= ∅. If the sequences

{rn} ⊂ (0, +∞) and {tn} ⊂ (0, 1) satisfy

(i) limn®∞ tn = 0;
∑∞

n=0 tn = +∞;

(ii) limn®∞ rn = +∞,

then the sequence {un} defined by

rn
N∑
i=1

fi(un+1) + un+1 = tnu + (1 − tn)un, u, u0 ∈ E, n ≥ 0, (3:21)

converges strongly to QSu, where QS is a sunny nonexpansive retraction from E onto S

and fi = I − QCiTiQCi, i = 1, 2, ..., N.

Proof. By the Lemma 3.5 and Lemma 3.8, S = ∩N
i=1Fix(Ti) = ∩N

i=1Fix(fi). Applying The-

orem 3.4, we obtain the proof of this Theorem. □
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