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Abstract

A new general iterative method for finding a common element of the set of
solutions of variational inequality and the set of common fixed points of a countable
family of nonexpansive mappings is introduced and studied. A strong convergence
theorem of the proposed iterative scheme to a common fixed point of a countable
family of nonexpansive mappings and a solution of variational inequality of an
inverse strongly monotone mapping are established. Moreover, we apply our main
result to obtain strong convergence theorems for a countable family of
nonexpansive mappings and a strictly pseudocontractive mapping, and a countable
family of uniformly k-strictly pseudocontractive mappings and an inverse strongly
monotone mapping. Our main results improve and extend the corresponding result
obtained by Klin-eam and Suantai (J Inequal Appl 520301, 16 pp, 2009).
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1 Introduction
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. In this
paper, we always assume that a bounded linear operator A on H is strongly positive,
that is, there is a constant ¥ > 0 such that (Ax, x) > y||x||? for all x € H. Recall that a
mapping 7 of H into itself is called nonexpansive if ||Tx - Ty|| < ||x - y|| for all x, y €
H. The set of all fixed points of T is denoted by F(T), that is, F(T) = x € C:«x = Tx}.
A self-mapping f: H — H is a contraction on H if there is a constant ot € [0, 1) such
that ||fix) - ) || < a ||x - y|| for all x, y € H.

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems. A typical problem is to minimize a quadratic function

over the set of the fixed points of a nonexpansive mapping on H:

min ; (Ax, x) — (x, b), (1.1)

xeF

where F is the fixed point set of a nonexpansive mapping 7 on H and b is a given
point in H. A mapping B of C into H is called monotone if (Bx - By, x - y) = 0 for all
x, y € C. The variational inequality problem is to find x € C such that (Bx, y - x) > 0
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for all y € C. The set of solutions of the variational inequality is denoted by VI(C, B).
A mapping B of C to H is called inverse strongly monotone if there exists a positive
real number f3 such that (x - y, Bx - By) = B ||Bx - By||* for all x, y € C.

Starting with an arbitrary initial xo € H, define a sequence {x,} recursively by

Xne1 = (I — anA)Txy + oty n>0. (1.2)

It is proved by Xu [1] that the sequence {x,} generated by (1.2) converges strongly to
the unique solution of the minimization problem (1.1) provided the sequence {o,,}
satisfies certain conditions.

On the other hand, Moudafi [2] introduced the viscosity approximation method for
nonexpansive mappings. Let f be a contraction on H. Starting with an arbitrary initial
xo € H, define a sequence {x,} recursively by

X1 = (1 — o) Txy + 00f (%) n=>0, (1.3)

where {0} is a sequence in (0, 1). It is proved by Moudafi [2] and Xu [3] that under
certain appropriate conditions imposed on {0}, the sequence {x,} generated by (1.3)
strongly converges to the unique solution x* in C of the variational inequality

(I—f)x",x—x*)>0 x € C.

Recently, Marino and Xu [4] combined the iterative method (1.2) with the viscosity
approximation method (1.3) and considered the following general iteration process:

Xne1 = (I — anA)Txy + otny f (xn) n=>0 (1.4)

and proved that if the sequence {c,,} satisfies appropriate conditions, the sequence {x,,}
generated by (1.4) converges strongly to the unique solution of the variational inequality

((A—yf)a*,x—x*) >0 xeC

which is the optimality condition for the minimization problem

min ; (Ax, x) — h(x),

xeC

where / is a potential function for y f (i.e., /'(x) = y fix) for x € H).
Chen, Zhang and Fan [5] introduced the following iterative process: xo € C,

Xns1 = dnf (xn) + (1 — an)TPc(xn — AnBxy), n>o0, (1.5)

where {o,,} < (0, 1) and {A,;} < [a, b] for some a, b with 0 < a < b <2f.

They proved that under certain appropriate conditions imposed on {¢,,} and {4,}, the
sequence {x,} generated by (1.5) converges strongly to a common element of the set of
fixed points of nonexpansive mapping and the set of solutions of the variational
inequality for an inverse strongly monotone mapping (say x e C), which solves the var-
iational inequality

(I-f)x,x—X >0  VxeF(T)NVI(C,B).

Klin-eam and Suantai [6] modify the iterative methods (1.4) and (1.5) by proposing
the following general iterative method: xy € C,

Xns1 = Pe(onyf(xn) + (I — 2nA)TPc(xn — AnBxn)), n>0, (1.6)
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where Pc is the projection of H onto C, fis a contraction, A is a strongly positive lin-
ear bounded operator, B is a B-inverse strongly monotone mapping, {¢,,} < (0, 1) and
A} € la, b] for some a, b with 0 < a < b <2f3. They noted that when A = [ and y =1,
the iterative scheme (1.6) reduced to the iterative scheme (1.5).

Wangkeeree, Petrot and Wangkeeree [7] introduced the following iterative process:

xo=x€H,
Yn = BnXn + (1 — Bn) Tnxy, (1.7)
Xne1 = anyf(xn) + (I - anA))’nr n>0

where {o,}and{,} < (0, 1) and T, is a countable family of nonexpansive mappings, f
is a contraction, and A is a strongly positive linear bounded operator. They proved
that under certain appropriate conditions imposed on {c,}, {8,} and {T,}, the sequence
{x,} converges strongly to X, which solves the variational inequality:

(A=yf)x,x—2) <0 z € F(T).

In this paper, motivated and inspired by Klin-eam and Suantai [6], we introduced the
following iteration to find some solutions of variational inequality and fixed points of
countable family of nonexpansive mappings in a Hilbert spaces H: xq € C,

Xni1 = Pe(onyf(xn) + (I — yA) T Pc(xy, — AnyBxy)), n>0, (1.8)

where P is the projection of H onto C, fis a contraction, A is a strongly positive lin-
ear bounded operator, T, is a countable family of nonexpansive mappings of C into
itself, B is a fB-inverse strongly monotone mapping, {o,,} < (0, 1), and {4,} € [a, b] for
some a, b with 0 < a < b <2f.

2 Preliminaries

Let H be a real Hilbert space with inner product (.- and norm || - ||, and let C be a
closed convex subset of H. We write x,, — x to indicate that the sequence {x,} con-
verges weakly to x, and x, — x implies that {x,} converges strongly to x. For every
point x € H, there exists a unique nearest point in C, denoted by Pcx, such that ||x -
Pex|| < ||x - y|| for all y € C and Pcx is called the metric projection of H onto C. We
know that P is a nonexpansive mapping of H onto C. It is also known that P satisfies
(x - 9, Pex - Pey) = ||Pex - Pey||? for every x, y € H. Moreover, Pax is characterized by
the properties: Pcx € C and (x - Pcx, Pcx - y) = 0 for all y € C. In the context of the
variational inequality problem, this implies that

u e VI(C,A) & u="Pc(u—rAu), Vr>D0.

A set-valued mapping T : H — 2 is called monotone if for all x, y € H, fe Tx and g
e Ty imply (x - y, f- g) > 0. A monotone mapping T : H — 2" is maximal if the graph
G(T) of T is not properly contained in the graph of any other monotone mapping. It is
known that a monotone mapping 7 is maximal if and only if for (x, f) € H x H, (x -
v, f- g = 0 for every (y, g) € G(T) implies fe Tx. Let A be an inverse strongly mono-
tone mapping of C into H, and let Ncv be the normal cone to C at ve C, ie, Ncv =
fwe H:(v-u,wy>0,Vue C}, and define

_JAv+Ncv,ve C,
=1y v C.
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Then, T is maximal monotone and 0 € 7Tv if and only if ve V I(C, A).
Lemma 2.1 Let C be a closed convex subset of a real Hilbert space H. Given x € H
and y € C, then

(i) y = Pcx if and only if the inequality (x - y,y - z) 2 0 for all z€ C,
(ii) Pc is nonexpansive,

(iii) {x - y, Pcx - Pcy) 2 ||Pex - Pey||* for all x, y € H,

(iv) (x - Pcx, Pcx - y) 2 0 for all x € Hand y e C.

Lemma 2.2 [4]Assume A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient 7 > Oand 0 < p < ||A|| 7, then ||l — pA|| < 1 — pj.
Lemma 2.3 [8]Assume {a,} is a sequence of nonnegative real numbers such that

aper < (1 = yp)an +8,n >0

where {y,} € (0, 1) and {0,;} is a sequence in R such that

(i) Yoy Yn =09,
(ii) lim sup,, ye. 0, /¥ < 0 08 Y oo 8| < 00.

Then, lim ,_,.. a,, = 0.

Lemma 2.4 [9]Let C be a closed convex subset of a real Hilbert space H, and let T :
C — C be a nonexpansive mapping such that F(T) = . If a sequence {x,} in C such
that x,, -~ z and x,, - Tx,, — 0, then z = Tz.

To deal with a family of mappings, the following conditions are introduced: Let C be
a subset of a real Banach space E, and let {T;};2; be a family of mappings of C such
that N%°, F(T,) # @. Then, {T,} is said to satisfy the AKTT-condition [10] if for each
bounded subset B of C,

oo
> sup{||Tprz — Tozl| 2z € B} < oo.
n=1
Lemma 2.5 [10]Let C be a nonempty and closed subset of a Banach space E and let
{T,} be a family of mappings of C into itself which satisfies the AKTT-condition. Then,

for each x € C, {T,x} converges strongly to a point in C. Moreover, let the mapping T
be defined by

Tx = lim T,x VxeC.

n—o0

Then, for each bounded subset B of C,

lim sup{||Tz — Tyz|| :z € B} =0.
n—oo
In the sequel, we will write ({T},}, T ) satisfies the AKTT-condition if {7} satisfies
the AKTT-condition, and T is defined by Lemma 2.5 with F(T) = N2, F(T}).

3 Main results
In this section, we prove a strong convergence theorem for a countable family of non-
expansive mappings.



Bunyawat and Suantai Fixed Point Theory and Applications 2011, 2011:47 Page 5 of 13
http://www.fixedpointtheoryandapplications.com/content/2011/1/47

Theorem 3.1 Let C be a closed convex subset of a real Hilbert space H, and let B :
C — H be a B-inverse strongly monotone mapping, also let A be a strongly positive
linear bounded operator of H into itself with coefficient y > Osuch that ||A|| = 1 and
let f: C — C be a contraction with coefficient a(0 < o <1). Assume that 0 <y < y/a.
Let {T,} be a countable family of nonexpansive mappings from a subset C into itself
with F =02 F(T,) NVI(C,B) # 0. Suppose {x,} is the sequence generated by the
following algorithm: xy € C,

Xne1 = Po(onyf(x%n) + (I — 0yA) T Pe(xy — AnBxy))

foralln =0,1,2, .., where {a,,} € (0, 1) and {A,} < (0, 2B ). If {a,,} and {1,} are
chosen so that A,, € |[a, b] for some a, b with 0 < a < b <2f3,

o0
(C1) lim a, =0; (C2) Y ay =o0;
n—0 n=1

0 )
(CS) Z letn1 — o] < 00; (C4) Z [Ans1 — Anl < 00.

n=1 n=1

Suppose that ({T,}, T ) satisfies the AKTT-condition. Then, {x,} converges strongly to
q € F where q = Pr (v f + I - A)(q) which solves the following variational inequality:

((rvf=A)gp—q) <0 VpeF.

Proof. First, we show that the sequence {x,} is bounded. Consider the mapping /
-A,B. Since B is a 3-inverse strongly monotone mapping, we have that for all x, y € C,

I(I = 2uB)x — (I = 2,B)YII* = [1(x — y) — An(Bx — By)|I?
= [|x — ylI* — 2Au{x — y, Bx — By) + A2||Bx — By||?
< llx = ylI* + 2n(An — 2B)|1Bx — By||*.

For 0 < A,, <2, implies that ||k(I - 1,,B)x - (I- A,,B)y||* < ||* - ¥||>

So, the mapping I - 4,,B is nonexpansive.

Put y,, = Pc(x,, - A,,Bx,) for all n > 0. Let u € F. Then u = Pc(u - A,,Bu).
From P is nonexpansive implies that

lyn — ull = [IPc(xn — AnBxn) — Pc(u — AnBu)l|
< (%0 — AnBxn) — (u — AxBu)]|
= |I(I = AuB)xn — (I — A,B)ull.

Since I - A,,B is nonexpansive, we have that ||y, - u|| < ||x, - #||. Then

llxne1r —ull = [IPc(anyf(xn) + (I — @nA)Tnyn) — ull
< lewyf(xn) + (I — anA)Toyn — ull
= |l (yf(xn) — Au) + (I — 0y A)(Tayn — u)ll.

Since A is strongly positive linear bounded operator, we have

[lxne1 — ull < anllyf(xn) — Aull + (1 — any )| Tayn — ull
< anllyf(xn) — vf (@)l + anllyf(u) — Aull + (1 — atny )| Tuyn — ull.
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By contraction of f, we have

[lxner — ull < ayanllxn — ull + anllyf(u) — Aull + (1 — @y )| Tayn — ull
= ayan||xn — ull + anllyf(u) — Aull + (1 — any )| Tuyn — Toull
< ayan|lxy — ull +anllyf(u) — Aull + (1 — o )llyn — ull
< ayaullxn — ull + anllyf(u) — Aull + (1 — oy )% — ul|
< (ayan+1—axy)llx, — ull +Oln||yf(u) — Aul|

1y f(u) — Aull

y—ay

IA

(1 —an(y — ay))lixn — ull + an(y —ay)
] IIVf_(“)—Aull}'

IA

max { [1xn — ul
y —ay
Zay
Therefore, {x,} is bounded, so are {y,,}, {T,.}, {Bx,}, and {f (x,)}.
Next, we show that ||x,,,1 - x,,|]| & 0 and ||y, - T,y.|| = 0 as n — co.

It follows from induction that ||x, — u|| < max{||x0 —ull, ”ny(”)*A”” }, n=0.

Since Pc is nonexpansive, we also have

||Vn+1 - yn” = ||PC(xn+l - )tn+1an+1) - PC(xn - )”ann)”
< xpe1 — Apse1Bxper — (xn - )”ann)”
< 1%ne1 — Ans1Bxpar — (xn - )\n+len)|| + [An — Apst| [|Bxyll

(I = Ane1B)xner — (I = Ape1 B)xull + [An — Aner| [|Bxnll.
Since I - A,,B is nonexpansive, we have
[lYnsr — ¥all < 11%ne1 — Xnll + [An — Ansa | [1Bxall.

So we obtain

NPc(anyf(xn) + (I — 0nA)Tnyn) — Pclan—17f(%n—1) + (I — an—1A)T—1yn—-1)l|
ety (f (%n) = f(xn=1)) + ¥ (en — etn—1)f (n—1) + (I = €nA) (Tuiyn — Tu—1¥n—-1)
+ (otn — an—1)ATn—1yn-1l|
< anay oy — X1l + ¥ len — anaa | 1 (=11 + (1 — 0¥ )| Tuyn — To1yn—all
+lan — on—1| [|ATy—1yn-1ll
< anoy|lxn — xp-1ll + vl — ot | If (n—1)I1 + (1 — 0¥ ) (| Tuyn — Tuyn—1ll
+ ||Tn)’n—1 - Tn—l)’n—lll) + loty — a1 ||ATn—1)’n—1H
< anay|lxn — xn-1ll + ¥len — otn1| [If (=111 + (1 — ¥ ) (lyn — yn—1ll
+ [ Tayn—1 — Tn—1¥n-111) + lotn — an—1] [|AT—1yn—1
= ety 1% — X1l + ¥ lom — et | 1If Gon1)1 + (1 — etn?)llyn — yu1ll
+ (1 = o) Tuyn-1 — Tu—1yn—1ll + latn — an—1| [|ATp—1yn-1ll
< anay|lxn — xn-1ll + ylan — a1 | If (n—1)I] + (1 — o) |xn — xn—1 1l
+ (1 = an¥)An—1 = Anl 1Bxn—1l + (1 = €n? )| Tuyn—1 — Tn—1¥n-1ll
+ oy — ap—1| [[ATn—1yn-1ll
= (1= (¥ — ay)an)llxn — xn-1ll + ¥ lon — an—1] [If (xn—1)Il
+ (1 —ony)An—1 — Al [1Bxn—1ll + (1 — 0ty )| Tu¥Yn—1 — T—1¥n-1ll
+ oy — e | HATn—l}’n—lll

[1%n41 — Xl

IA

= (1 - ()7 _ay)an)”xn — Xn—1ll + 2Ly — ap—1| + M|Ay—1 — Ayl
+ sup ||Twy — Tuoayll,
ye{yn}
where L = max{sup,en ||[AT 19 - 1l|> supnen ¥ |If &, - 1)||} and M = sup{||Bx,..1|] :
ne N}
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Since {7} satisfies the AKTT-condition, we get that

oo

D sup Ty — Tooayll < oo
n=1 yelyn}

From condition (C3), (C4) and by Lemma 2.3, we have ||x,,1 - x,|| > 0.
For u e Fand u = P-(u - A,,Bu), we have

1 — ull® = |IPc(anyf(xn) + (I — 0nA)Tuyn) — Pc(u)|?

< lan(yf(xn) — Au) + (I — anA)(Tyyn — “)||2

< (onllyf (xn) — Aul| + 1T — awAl| | Tayn — ull)?

< (llyf(xn) — Aull + (1 = a?)lyn — ull)?

< anllyf(xn) — Aull* + (1 = an ) llyn — ull?
+ 20 (1 = any)lyf (xn) — Aull [lyn — ull

< anllyf(xn) — Aull® + (1 — an)II(I — AnB)xn — (I — 2B)ul|?
+ 20 (1 = any)lyf (xn) — Aull [lyn — ull

< anllyf(%n) — Aull® + (1 — en7)(11%n — u]> — 22n(Xn — 1, Bx, — Bu)
+ Apl1Bxy — Bul?) + 20y (1 — 0t 7)1y f (%n) — Aul| [lyn — ul|

< anllyf(xn) — Aull® + (1 — an ) (1%n — ull> — 220 BBxy, — Bul >
+ Al IBxy — Bul[?) + 2000(1 — 7)1y f (x) — Aul| [lyn — ul]

= oty f(xn) — Aul]> + (1 — 7)) (160 — wll* + An(An — 28)|Bx, — Bul|?)
+ 20 (1 = an? )y f (xn) — Aull [lyn — ull

< anllyf (%n) — Aull® + [1xy — ul]” + (1 — a7 )b(b — 28)||Bx, — Bul|?
+ 20 (1 = ey )y f (xn) — Aull [lyn — ull.

So, we obtain

—(1 — anp)b(b — 28)||Bx, — Bul|?
< anllyf (xn) — Aull> + (160 — ull + [xner — ul)(1xn — ull = %001 — ull) + &n

2
= an”yf(xn) _Au” +&n + ||xn _xn+1||(||xn - u” + ||xn+1 - u”)/

where &, = 20, (1 — an ¥ )1y f (xn) — Aull llyn — ull
Since a0, — 0 and ||x,,,1 - x,|| = 0, we obtain ||Bx, - Bu|| — 0 as n — co.
Further, by Lemma 2.1, we have

llyn — ull® = [IPc(xn — AnBxn) — Pc(u — AnBu)|[?
((xn — AuBxy) — (u — AnBu), yn — u)

IA

1
=, (16 = AnBa) = (u = MnBu)|1? + [lyn — ull?

— [1(tn — AuBxy) — (u — AuBu) — (yu — u)|1%)

IA

1
, ln = ull? + [lyn — ull® = [1(xn — ¥n) — An(Bxa — Bu)|?)

[%n — qu =[x — Yn”z + 20 (Xn — Yn, Bxy — Bu) — )‘ﬁHan - Bu”z-

IA

Page 7 of 13
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So, we have

xner — ull? = [IPc(enyf(xa) + (I — @nA)Tayn) — Pe(w)l]?

o (v f (xn) — Aut) + (I — e A)(Tayn — )|

(atnllyf (xn) — Aul| + |IT = ctnAll [|Toyn — ull)?

< (anllyf(xa) — Aull + (1 — an)llyn — ull)?

< anllyf(xn) — Aull* + (1 — 7)) lyn — ull®
+ 20 (1 — anP) 1y f (xn) — Aul| [lyn — ul|

< anllyf (xa) — Aull? + (1 — oy )|1x0 — ull* = (1 — atny)|x0 — yall?
+2(1 — an ¥ )An(Xn — Y, Bxy — Bu) — (1 — an 7 )A2||Bxy — Bul|?
+ 20 (1 — Py f (xn) — Aul| [lyn — ull,

IA

IA

which implies

(1 = )10 = yall® < cnllyf(xn) = Aull? + (1160 — ull + [ Pne1 — 1)1 — Xne1[]
+2(1 — anP)An{%n — ¥, Bxy — Bu) — (1 — an7)A2[|Bx, — Bul|?
+ 200 (1 — )y f (xn) — Aull lyn — ul].

Since o, > 0, ||%,41 - %,|| = 0, and ||Bx,, - Bu|| — 0, we obtain ||x, - y,|| = 0 as
n —> oo,

Next, we have

[ne1 — Tuynll = [IPc(anyf(xn) + (I — anA)Tuyn) — Pc(Tuya)ll
= ||an)’f(xn) + (I = apA)Tnyn — Tayall
= an||yf(xn) — ATnynll.

Since a,, > 0 and {f (x,)}, {AT,y,} are bounded, we have ||x,.1 - T,y,|| > O as
n — oo, Since

xn — Tuynll < l%n — Xpa1 |l + Xne1 — Tuynll,

it implies that ||x, - T,y,|| = 0 as n — o. Since
[1%0 — Taxull < %0 — Taynll + I Tuyn — Tnxnl|
< 1xn — Taynll + llyn — xnll,
we obtain ||x,, - T,x,|| = 0 as n — <. Moreover, from
[1yn — Tuynll < yn — Xall + 11xn — Tuynll,

it follows that ||y, - T,.y,|| — 0 as n — eoo.
By |3, - %4l = 0, |1,y - %4 = 0 and Lemma 2.5, we have
[ Txn — xnll < [Txn — Tynll + | Tyn — Taynll + 1 Tnyn — Xnl|
[1Xn — yall +sup{|[Thz — Tz[| :z € {yn}} + [|Tnyn — xnll-

IA

Hence, lim,, ,.. ||T%, - x,|| = 0. Observe that Pr (y f +I - A) is a contraction.
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By Lemma 2.2, we have that || — A|| <1 —y, and since 0 < y < y/a, we get

IPr(yf+1—A)x—Pp(yf+1—AWIl < [(yf+1—=A)x— (vf+1—-Ayll
< yIIf(x) =fI + I = All [lx =yl
<vyallx =yl + (1 —=y)lx—yll
=(1—=(y —ya))llx—ll.

Then, Banach’s contraction mapping principle guarantees that Pr (y f +I - A) has a
unique fixed point, say g € H. That is, ¢ = Pr (yf+ I - A)q. By Lemma 2.1, we obtain

((vf—A)g,x—q) <Oforall x e F. (3.1)

Choose a subsequence {yy,} of {y,} such that

lim sup((yf — A)q, Tuyn — q) = ;}Lrgo (vf —A)q, Toyn, — 4)-

As {yn,} is bounded, there exists a subsequence {}/nki} of {yn,} which converges weakly
to p. Without loss of generality, we may assume that yn, — P.

Since ||y, - T,y.|| = 0, we obtain Ty, yn, — p. Since ||x, - Tx,|| = 0, ||x, - y.|| = O
and by Lemma 2.4-2.5, we have p € %2, F(T}). Let

Bv+ Ncv, veC,
S”‘{@, v C.

where N¢v is normal cone to Catve C, thatis Nev={we H:{v-u, w)>0,Vue
C}. Then S is a maximal monotone. Let (v, w) € G(S). Since w - Bv e N¢v and y, € C,
we have (v - y,, w - Bv) > 0. On the other hand, by Lemma 2.1 and from y,, = Pc(x,, -
A,.Bx,), we have
(v— Ynr¥n — (xn — )\ann” >0
(v ="V, (Yn — Xn)/An + Bxy) = 0
Hence,
(v—Yn, w) = (V—yn, Bv)

ynk —X
An

v

(v —yn, Bv) — <v — Vs Ty anh>

—x
<v ~ Y BV — By, — Y N "">
n

— X
<v — Vnps Bv — Bynk> + <v — Vs By”k - Bx”k> - <U — Vs Ynkk nk>
n

v

Vn, — Xm, >

<v — Vmer By”k - Bxﬂk> - <U — Vmr
An

This implies (v - p, w) = 0. Since S is maximal monotone, we have p € S !0 and
hence p € V I(C, B). We obtain that p € F. By (3.1), we have ((yf- A)g, p - q) < 0. It
follows that

lim sup{(yf — A)q, Tnyn — q) = }}Lg((yf —A)q, T ym, — q) = {((vf —A)g.p—q) < 0.
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Finally, we prove x,, = q. By ||y, - u|| < ||x,, - #|| and Schwarz inequality, we have

[xner — qll* = [IPc(anyf(xn) + (I — €nA)Toyn) — Pe(q)I

IA

o (v f (xn) — Aq) + (I — anA)(Tuyn — DI
(I = anA) (Tuyn — )II* + e 11y f (xa) — AqlI?
+ 20, (I — anA)(Tuyn — q), vf(xn) — Ag)
(1 = an?)?llyn — qlI> + e llyf (xa) — Aql

IA

IA

+ 205 (Tyyn — 4, vf (xn) — Aq) — 20‘3 (A(Tuyn — 4), vf(xn) — Aq)

< (1 — an?)l1%n — ql1? + 211y f (xa) — Aqll?

+ 200 (Toyn — 4, vf(xn) — vf(9)) + 200 (Tuyn — 4, vf(9) — Aq)

— 20 {(A(Tuyn — ), vf(xn) — Ag)
< (1= an?)? 1120 — gl + 2|1y f (xa) — Aql)?

+ 20| Tyn — 4l ||Vf(xn) - yf(q)” + 200 (Tyyn — 4, ]/f(q) — Aq)

— 202 (A(Tuyn — q), v (xa) — Aq)
< (1= an?)’Ilxn — gl + a7 11y f(xa) — AqlI?
+ 2y ad|lyn — dll 1xn — gl + 20 (Tuyn — 4, f(q) — Ag)
— 202 (A(Tuyn — q), £ (xa) — Aq)
< (1= an?)?llxn — qI17 + 2|y f (xa) — Aqll
+ 2y aay|xn — qlI* + 200 (Tuyn — 4, vf(9) — Aq)
— 20 (A(Toyn — ), ¥ (%a) — Ag)

< ((1 = any)? + 2y ey llxn — ql1> + n(2(Tuyn — 4, v (q) — Aq)

+anllyf (xn) — Al + 20 [JA(Toyn — )11 11y (xn) — Aqll)
= (1 - 2(77 - Va)an)”xn - q||2 + O‘n(2(Tn)/n — 4, Vf(q) - Aq)
+ oty f (%) —Afillz + 200 ||A(Tayn — @)1 117 (xn) — Aql]

+ oty l1xn — qI17).

Since {x,}, {f (x,)} and {T,y,} are bounded, we can take a constant 7 >0 such that

n = yf(xn) — AqI® + 21lA(Twyn — DI 1y f(%a) — Aqll + 72 11x0 — ql1?

for all n > 0. It follows that

xXne1 — ql1> < (1 = 2(7 — yo)an)llxn — ql1> + ctnBr

where B, = ATy, - 4, YfiQ) - Ag) +n0t,.. By lim sup, (Y f - A)q, T,iy,, - q) < 0, we
get lim sup ,, .. B, < 0. By Lemma 2.3 and (3.2), we can conclude that x, — ¢. This

completes the proof. ®

Corollary 3.2 Let C be a closed convex subset of a real Hilbert space H, and let B : C
— H be a B-inverse strongly monotone mapping, also let f: C — C be a contraction
with coefficient o0 < o <1). Let {T,;} be a countable family of nonexpansive mappings
from a subset C into itself with F=N2F(T,) N VI(C,B) #9. Suppose {x,} is the
sequence generated by the following algorithm: xq € C,

X1 = Anf (%) + (1 — o) TuPc(xn — Ay Bxy)

foralln=0,1,2, .. where {a,} € (0, 1) and {A,.} < (0, 2B ). If {o,,} and {1,} are cho-
sen so that A, € [a, b] for some a, b with 0 < a < b <2f3,
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(C1) lim a, =0; (C2) > ay =o00;
n—0 n=1

(C3) Z lotne1 — ol < 00; (C4) Z [Ans1 — Anl < 00.
n=1 n=1
Suppose that ({T,}, T) satisfies the AKTT-condition. Then {x,} converges strongly to q
€ F, where q = Pp (yf+ I - A)(q) which solves the following variational inequality:

(7f=Da,p—q) <0 VpeF.

Proof. Taking A = I and y = 1 in Theorem 3.1, we get the results. ®

4 Applications
In this section, we apply the iterative scheme (1.8) and Theorem 3.1 for finding a com-
mon fixed point of countable family of nonexpansive mappings and strictly pseudocon-
tractive mapping and inverse strongly monotone mapping.

A mapping T : C — C is called strictly pseudocontractive if there exists k with 0 < k
<1 such that

Tx —Ty|)* < |lx—yII> +k||(I=T)x— (I—T)|*> VxyeC.

If k = 0, then T is nonexpansive. Put B = I - T, where T : C — C is a strictly pseudo-
contractive mapping with k. Then, B is ((1 - k)/2)-inverse strongly monotone and B 1
(0) = F(T). Hence, for all x, y € C,

I(I = B)x — (I = B)ylI* < |lx — ylI* + k||Bx — By||>.
Conversely, since H is a real Hilbert space, we have

I(I = B)x — (I = B)ylI> < [lx = yII* + [|Bx — Byl|> = 2(x — y, Bx — By).
Thus, we have

(x —y,Bx — By) > ! ; k||Bx—By||2.

Theorem 4.1 Let C be a closed convex subset of a real Hilbert space H, and let A be
a strongly positive linear bounded operator of H into itself with coefficient y > Osuch
that ||A|| = 1 and let f: C — C be a contraction with coefficient (0 < o <1). Assume
that 0 <y < yla. Let {T,} be a family of nonexpansive mappings of C into itself and
let S be a strictly pseudocontractive mapping of C into itself with [ such that
F=N%,F(T,) NF(S) # 9. Suppose {x,} is a sequence generated by the following algo-
rithm: xq € C,

Xn1 = Pelony f(xn) + (I — nA)Tn((1 — An)xn — XnSxn))

foralln=0,1,2, .. where {a,,} € [0, 1) and {A,} € [0, 1 - B). If {a,.} and {A,;} are
chosen so that A,, € |a, b] for some a, b with 0 < a < b <1 - 3,

o8]
(C1)lim ay, = 0; (C2) > ay =o00;
n—0 n=1

00 00
(C3) Z et — o] < 00; (C4) Z [Ane1 — Anl < o0
n=1

n=1
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Suppose that ({T,}, T) satisfies the AKTT-condition. Then, {x,} converges strongly to q
€ F, such that

(vf—A)ap—q <0 VpeF.

Proof. Put B = I - S, then B is ((1 - k)/2)-inverse strongly monotone and F(S) = V' I
(C, B) and Pc(x,, - A,,Bx,) = (1 - A,)x,, +A,,Sx,,. Therefore, by Theorem 3.1, the conclu-
sion follows. ®

Lemma 4.2 [9]Let T : C — H be a k-strictly pseudocontractive, then

(i) the fixed point set F(T) of T is closed convex so that the projection Py is well
defined;
(ii) define a mapping S : C — H by

Sx=px+(1—p)Tx,x e C. (4.1)

If ue [k 1), then S is a nonexpansive mapping such that F(T) = F(S).

A family of mappings {T, : C — H};2, is called a family of uniformly k-strictly pseu-
docontractions, if there exists a «constant k € [0, 1) such that
ITux = Tapl? < llx =12 +KII(I = To)x— (1= TP VayeCVn= 1.

Let {T,, : C — C} be a countable family of uniformly k-strictly pseudocontractions.
Let {S, : C — C}22, be the sequence of mappings defined by (4.1), i.e.,

Spx=px+ (1 —p)Tpx, xeCVn>1with pu €[k 1).

Corollary 4.3 Let C be a closed convex subset of a real Hilbert space H, and let B : C
— H be a [-inverse strongly monotone mapping, also let A be a strongly positive linear
bounded operator of H into itself with coefficient y > Osuch that ||A|| = 1 and let f: C
— C be a contraction with coefficient o0 < o <1). Assume that 0 < y < y/a. Let {T,}
be a countable family of uniformly k-strictly pseudocontractions from a subset C into
itself with F = N2, F(T,) N VI(C, B) # 0. Suppose {x,} is the sequence generated by the
following algorithm: xy € C,

Xns1 = Pe(onyf(xn) + (I — 2nA)SuPc(xn — AnBxy))

foralln =0,1,2, .., where {at,,} < (0, 1) and {1,;} < (0, 2f3). If {o,,} and {A,;} are cho-
sen so that A,, € |a, b] for some a, b with 0 < a < b <2,

o0
(C1) lirr(l) an =0; (C2) Y oy = 005
n—

n=1
o0 o0
(CB) Z letne1 — o] < 00; (C4) Z [Aps1 — Anl < 00.
n=1 n=1
Then, {x,} converges strongly to q € F, where q = Pr (y f + I - A)(q) which solves the
following variational inequality:

((yf—A)a,p—q) <0 VpeF.

Proof. Let {T,} be a countable family of uniformly k-strictly pseudo-contractions
from a subset C into itself. Set S,, = ul + (1 - u)T,, where p € [k, 1). By Lemma 4.2, we
have S, is nonexpansive and F (S,) = F (T,). Therefore, by Theorem 3.1, the conclu-
sion follows. ®
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