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Abstract

In this note, by taking an counter example, we prove that the iteration process due
to Agarwal et al. (J. Nonlinear Convex. Anal. 8 (1), 61-79, 2007) is faster than the
Mann and Ishikawa iteration processes for Zamfirescu operators.
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1 Introduction
For a nonempty convex subset C of a normed space E and T : C ® C, (a) the Mann

iteration process [1] is defined by the following sequence{xn}:{
x0 ∈ C,
xn+1 = (1 − bn) xn + bnTxn, n ≥ 0,

(Mn, )

where {bn} is a sequence in [0, 1].

(b) the sequence {xn} defined by⎧⎨
⎩
x0 ∈ C,
yn = (1 − b′

n)xn + b′
nTxn,

xn+1 = (1 − bn)xn + bnTyn, n ≥ 0,
(In, )

where {bn}, {b′
n} are sequences in [0, 1] is known as the Ishikawa [2] iteration process.

(c) the sequence {xn} defined by⎧⎨
⎩
x0 ∈ C,
yn = (1 − b′

n)xn + b′
nTxn,

xn+1 = (1 − bn)Txn + bnTyn, n ≥ 0,
(ARSn, )

where {bn}, {b′
n} are sequences in [0, 1] is known as the Agarwal et al. [3] iteration

process.

Definition 1. [4]Suppose that {an} and {bn} are two real convergent sequences with

limits a and b, respectively. Then, {an} is said to converge faster than {bn} if

lim
n→∞

∣∣∣∣an − a
bn − b

∣∣∣∣ = 0.
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Theorem 2. [5]Let (X, d) be a complete metric space, and T : X ® X a mapping for

which there exist real numbers, a, b, and c satisfying 0 < a <1, 0 < b, c < 1
2such that

for each pair x, y Î X, at least one of the following is true:

(z1) d(Tx, Ty) ≤ ad(x, y),

(z2) d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)],

(z3) d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)].

Then, T has a unique fixed point p and the Picard iteration {xn}∞n=1defined by

xn+1 = Txn, n = 0, 1, 2, . . . ,

converges to p, for any x0 Î X.

Remark 3. An operator T that satisfies the contraction conditions (z1) - (z3) of Theo-

rem 2 will be called a Zamfirescu operator [[4,6,7]] and is denoted by Z.

In [6,7], Berinde introduced a new class of operators on a normed space E satisfying

||Tx − Ty|| ≤ δ||x − y|| + L||Tx − x|| (B)

for any x, y Î E, 0 ≤ δ <1 and L ≥ 0. He proved that this class is wider than the class

of Zamfiresu operators.

The following results are proved in [6,7].

Theorem 4. [7]Let C be a nonempty closed convex subset of a normed space E. Let T

: C ® C be an operator satisfying (B). Let {xn} be defined through the iterative process

(Mn). If F (T) ≠ Ø and
∑

bn = ∞, then {xn} converges strongly to the unique fixed point

of T.

Theorem 5. [6]Let C be a nonempty closed convex subset of an arbitrary Banach

space E and T : C ® C be an operator satisfying (B). Let {xn} be defined through the

iterative process In and x0 Î C, where {bn} and {b′
n}are sequences of positive numbers in

[0, 1] with {bn} satisfying
∑

bn = ∞. Then {xn} converges strongly to the fixed point of T.

The following theorem was presented in [8].

Theorem 6. Let C be a closed convex subset of an arbitrary Banach space E. Let the

Mann and Ishikawa iteration processes denoted by Mn and In, respectively, with {bn}

and {b′
n}be real sequences satisfying (i) 0 ≤ bn, b′

n ≤ 1, and (ii)
∑

bn = ∞. Then, Mn and

In converge strongly to the unique fixed point of a Zamfirescu operator T : C ® C, and

moreover, the Mann iteration process converges faster than the Ishikawa iteration pro-

cess to the fixed point of T.

Remark 7. In [9], Qing and Rhoades, by taking a counter example, showed that the

Ishikawa iteration process is faster than the Mann iteration process for Zamfirescu

operators. Thus, Theorem in [8]and the presentation in [9]contradict to each other (see

also [10]).

In this note, we establish a general theorem to approximate fixed points of quasi-

contractive

operators in a Banach space through the iteration process ARSn, due to Agarwal et

al. [3]. Our result generalizes and improves upon, among others, the corresponding

results of Babu and Prasad [8] and Berinde [4,6,7].

We also prove that the iteration process ARSn is faster than the Mann iteration pro-

cess Mn and the Ishikawa iteration process In for Zamfirescu operators.
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2 Main results
We now prove our main results.

Theorem 8. Let C be a nonempty closed convex subset of an arbitrary Banach space

E and T : C ® C be an operator satisfying (B). Let {xn} be defined through the iterative

process ARSn and x0 Î C, where {bn}, {b′
n}are sequences in [0, 1] satisfying

∑
bn = ∞.

Then, {xn} converges strongly to the fixed point of T.

Proof. Assume that F(T) ≠ Ø and w Î F(T), then using (ARSn), we have

||xn+1 − w|| = ||(1 − bn)Txn + bnTyn − w||
= ||(1 − bn)(Txn − w) + bn(Tyn − w)||
≤ (1 − bn)||Txn − w|| + bn||Tyn − w||.

(2:1)

Now using (B) with x = w, y = xn, and then with x = w, y = yn, we obtain the follow-

ing two inequalities,

||Txn − w|| ≤ δ||xn − w||, (2:2)

and

||Tyn − w|| ≤ δ||yn − w||. (2:3)

By substituting (2.2) and (2.3) in (2.1), we obtain

||xn+1 − w|| ≤ (1 − bn)δ||xn − w|| + bnδ||yn − w||. (2:4)

In a similar fashion, again by using (ARSn), we can get

||yn − w|| ≤ (1 − (1 − δ)b′
n)||xn − w||. (2:5)

From (2.4) and (2.5), we have

||xn+1 − w|| ≤ [1 − (1 − δ)bn(1 + δb′
n)]||xn − w||. (2:6)

It may be noted that for δ Î [0, 1) and {hn} Î [0, 1], the following inequality holds:

1 ≤ 1 + δηn ≤ 1 + δ. (2:7)

From (2.6) and (2.7), we get

||xn+1 − w|| ≤ (1 − (1 − δ)bn)||xn − w||. (2:8)

By (2.8) we inductively obtain

||xn+1 − w|| ≤
n∏

k=0

[1 − δ(1 − δ)bk]||x0 − w||, n = 0, 1, 2, . . . (2:9)

Using the fact that 0 ≤ δ <1, 0 ≤ bn ≤ 1, and
∑

bn = ∞, it results that

lim
n→∞

n∏
k=0

[1 − δ(1 − δ)bk] = 0,

which by (2.9) implies

lim
n→∞ ||xn+1 − w|| = 0.

Consequently xn ® w Î F and this completes the proof. □
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Now by an counter example, we prove that the iteration process ARSn due to Agar-

wal et al. [3] is faster than the Mann and Ishikawa iteration processes for Zamfirescu

operators.

Example 9. [9]Suppose T : [0, 1] → [0, 1] := 1
2x, bn = 0 = b′

n, n = 1, 2,..., 15.

bn = 4√
n
= b′

n, n ≥ 16.

It is clear that T is a Zamfirescu operator with a unique fixed point 0. Also, it is easy

to see that Example 9 satisfies all the conditions of Theorem 8.

Proof. Since bn = 0 = b′
n, n = 1, 2,..., 15, so Mn = x0 = In = ARSn, n = 1, 2,..., 16. Sup-

pose x0 ≠ 0. For Mn, In and ARSn iteration processes, we have

Mn = (1 − bn)xn + bnTxn

=
(
1 − 4√

n

)
xn +

4√
n

1
2
xn

=
(
1 − 2√

n

)
xn

= · · ·

=
n∏

i=16

(
1 − 2√

i

)
x0,

In = (1 − bn)xn + bnT((1 − b′
n)xn + b′

nTxn)

=
(
1 − 4√

n

)
xn +

4√
n

1
2

(
1 − 2√

n

)
xn

=
(
1 − 2√

n
− 4

n

)
xn

= · · ·

=
n∏

i=16

(
1 − 2√

i
− 4

i

)
x0,

and

ARSn = (1 − bn)Txn + bnT((1 − b′
n)xn + b′

nTxn)

=
(
1 − 4√

n

)
xn
2

+
4√
n

1
2

(
1 − 2√

n

)
xn

=
(
1
2

− 4
n

)
xn

= · · ·

=
n∏

i=16

(
1
2

− 4
i

)
x0.

Now consider

∣∣∣∣ARSn − 0
Mn − 0

∣∣∣∣ =
∣∣∣∣∣∣∣∣

n∏
i=16

( 12 − 4
i )x0

n∏
i=16

(1 − 2√
i
)x0

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

n∏
i=16

( 12 − 4
i )

n∏
i=16

(1 − 2√
i
)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
n∏

i=16

(
1 −

1
2 − 2√

i
+ 4

i

(1 − 2√
i
)

)∣∣∣∣∣
=

∣∣∣∣∣
n∏

i=16

(
1 − 1

2
√
i

i − 4
√
i + 8√

i − 2

)∣∣∣∣∣ .
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It is easy to see that

0 ≤ lim
n→∞

n∏
i=16

(
1 − 1

2
√
i

i − 4
√
i + 8√

i − 2

)

≤ lim
n→∞

n∏
i=16

(
1 − 1

i

)

= lim
n→∞

15
n

= 0.

Hence

lim
n→∞

∣∣∣∣ARSn − 0
Mn − 0

∣∣∣∣ = 0.

Thus, the iteration process due to Agarwal et al. [3] converges faster than the Mann

iteration process to the fixed point 0 of T.

Similarly

∣∣∣∣ARSn − 0
In − 0

∣∣∣∣ =
∣∣∣∣∣∣∣∣

n∏
i=16

( 12 − 4
i )x0

n∏
i=16

(1 − 2√
i
− 4

i )x0

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

n∏
i=16

( 12 − 4
i )

n∏
i=16

(1 − 2√
i
− 4

i )

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
n∏

i=16

(
1 −

1
2 − 2√

i

(1 − 2√
i
− 4

i )

)∣∣∣∣∣
=

∣∣∣∣∣
n∏

i=16

(
1 −

√
i

2
i − 4

i − 2
√
i − 4

)∣∣∣∣∣ ,
with

0 ≤ lim
n→∞

n∏
i=16

(
1 −

√
i

2

√
i − 4

i − 2
√
i − 4

)

≤ lim
n→∞

n∏
i=16

(
1 − 1

i

)

= lim
n→∞

15
n

= 0,

implies

lim
n→∞

∣∣∣∣ARSn − 0
In − 0

∣∣∣∣ = 0.

Thus, the iteration process due to Agarwal et al. [3] converges faster than the Ishi-

kawa iteration process to the fixed point 0 of T. □
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