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Abstract

In this paper, we consider a class of nonsmooth multiobjective programming
problems. Necessary and sufficient optimality conditions are obtained under higher
order strongly convexity for Lipschitz functions. We formulate Mond-Weir type dual
problem and establish weak and strong duality theorems for a strict minimizer of
order m.
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1 Introduction
Nonlinear analysis is an important area in mathematical sciences, and has become a

fundamental research tool in the field of contemporary mathematical analysis. Several

nonlinear analysis problems arise from areas of optimization theory, game theory, dif-

ferential equations, mathematical physics, convex analysis and nonlinear functional

analysis. Park [1-3] has devoted to the study of nonlinear analysis and his results had a

strong influence on the research topics of equilibrium complementarity and optimiza-

tion problems. Nonsmooth phenomena in mathematics and optimization occurs natu-

rally and frequently. Rockafellar [4] has pointed out that in many practical applications

of applied mathematics the functions involved are not necessarily differentiable. Thus

it is important to deal with non-differentiable mathematical programming problems.

The field of multiobjective programming, has grown remarkably in different direc-

tional in the setting of optimality conditions and duality theory since 1980s. In 1983,

Vial [5] studied a class of functions depending on the sign of the constant r. Charac-
teristic properties of this class of sets and related it to strong and weakly convex sets

are provided.

Auslender [6] obtained necessary and sufficient conditions for a strict local minimi-

zer of first and second order, supposing that the objective function f is locally Lipschit-

zian and that the feasible set S is closed. Studniarski [7] extended Auslender’s results

to any extended real-valued function f, any subset S and encompassing strict minimi-

zers of order greater than 2. Necessary and sufficient conditions for strict minimizer of

order m in nondifferentiable scalar programs are studied by Ward [8]. Based on this

result, Jimenez [9] extended the notion of strict minimum of order m for real optimi-

zation problems to vector optimization. Jimenez and Novo [10,11] presented the first

and second order sufficient conditions for strict local Pareto minima and strict local
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minima of first and second order to multiobjective and vector optimization problems.

Subsequently, Bhatia [12] considered the notion of strict minimizer of order m for a

multiobjective optimization problem and established only optimality for the concept of

strict minimizer of order m under higher order strong convexity for Lipschitz

functions.

In 2008, Kim and Bae [13] formulated nondifferentiable multiobjective programs

involving the support functions of a compact convex sets. Also, Bae et al. [14] estab-

lished duality theorems for nondifferentiable multiobjective programming problems

under generalized convexity assumptions.

Very recently, Kim and Lee [15] introduce the nonsmooth multiobjective program-

ming problems involving locally Lipschitz functions and support functions. They intro-

duced Karush-Kuhn-Tucker optimality conditions with support functions and

established duality theorems for (weak) Pareto-optimal solutions.

In this paper, we consider the nonsmooth multiobjective programming involving the

support function of a compact convex set. In section 2, we introduce the concept of a

strict minimizer of order m and higher order strongly convexity for Lipschitz func-

tions. Section 3, necessary and sufficient optimality theorems are established for a strict

minimizer of order m by using necessary and sufficient optimality theorems under gen-

eralized strongly convexity assumptions. Section 4, we formulate Mond-Weir type dual

problem and obtained weak and strong duality theorems for a strict minimizer of

order m.

2 Preliminaries
Let ℝn be the n-dimensional Euclidean space and let Rn

+ be its nonnegative orthant.

Let x, y Î ℝn. The following notation will be used for vectors in ℝn:

x < y ⇔ xi < yi, i = 1, 2, · · · ,n;
x � y ⇔ xi � yi, i = 1, 2, · · · ,n;

x ≤ y ⇔ xi � yi, i = 1, 2, · · · ,n but x �= y;

x � y is the negation of x ≤ y;

x � y is the negation of x ≤ y.

For x, u Î ℝ, x ≦ u and x <u have the usual meaning.

Definition 2.1 [16]Let D be a compact convex set in ℝn. The support function s(·|D)

is defined by

s(x|D) := max{xTy : y ∈ D}.

The support function s(·|D) has a subdifferential. The subdifferential of s(·|D) at x is

given by

∂s(x|D) := {z ∈ D : zTx = s(x|D)}.

The support function s(·|D), being convex and everywhere finite, that is, there exists z

Î D such that

s(y|D) ≥ s(x|D) + zT(y − x) for all y ∈ D.
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Equivalently,

zTx = s(x|D)

We consider the following multiobjective programming problem,

(MOP) Minimize (f1(x) + s(x|D1), ..., fp(x) + s(x|Dp))

subject to g(x) � 0,

where f and g are locally Lipschitz functions from ℝn®ℝP and ℝn®ℝq, respectively.

Di, for each i Î P = {1, 2, ... , p}, is a compact convex set of ℝn. Further let, S := {x Î
X|gj (x)≦ 0, j = 1, ..., q} be the feasible set of (MOP) and

B(x0, ε) = {x ∈ Rn| ||x − x0|| < ε} denote an open ball with center x0 and radius ε. Set

I(x0): = {j|gj(x
0) = 0, j = 1, ... , q}.

We introduce the following definitions due to Jimenez [9].

Definition 2.2 A point x0 Î S is called a strict local minimizer for (MOP) if there

exists an ε > 0, i Î {1, 2, ..., p} such that

fi(x) + s(x|Di) �< fi(x0) + s(x0|Di) for all x ∈ B(x0, ε) ∩ S.

Definition 2.3 Let m ≧ 1 be an integer. A point x0 Î S is called a strict local minimi-

zer of order m for (MOP) if there exists an ε > 0 and a constant

c ∈ intRp
+, i ∈ {1, 2, · · · , p}such that

fi(x) + s(x|Di) �< fi(x0) + s(x0|Di) + ci||x − x0||m for all x ∈ B(x0, ε) ∩ S.

Definition 2.4 Let m ≧ 1 be an integer. A point x0 Î S is called a strict minimizer of

order m for (MOP) if there exists a constant c ∈ intRp
+, i ∈ {1, 2, · · · , p}such that

fi(x) + s(x|Di) �< fi(x0) + s(x0|Di) + ci||x − x0||m for all x ∈ S.

Definition 2.5 [16]Suppose that h: X®ℝ is Lipschitz on X. The Clarke’s generalized

directional derivative of h at x Î X in the direction v Î ℝn, denoted by h0(x, v), is

defined as

h0(x, v) = limsupy→x t↓0
h(y + tv) − h(y)

t
.

Definition 2.6 [16]The Clarke’s generalized gradient of h at x Î X, denoted by ∂h(x)

is defined as

∂h(x) = {ξ ∈ Rn : h0(x, v) ≥ 〈ξ , v〉 for all v ∈ Rn}.

We recall the notion of strong convexity of order m introduced by Lin and Fukush-

ima in [17].

Definition 2.7 A function h: X®ℝ said to be strongly convex of order m if there

exists a constant c > 0 such that for x1, x2 Î X and t Î [0, 1]

h(tx1 + (1 − t)x2) � th(x1) + (1 − t)h(x2) − ct(1 − t)||x1 − x2||m.

For m = 2, the function h is refered to as strongly convex in [5].
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Proposition 2.1 [17]If each hi, i = 1, ... , p is strongly convex of order m on a convex

set X, then
∑p

i=1
tihiand max1 ≤ i≤phi are also strongly convex of order m on X, where ti

≥ 0, i = 1, ... , p.

Theorem 2.1 Let X and S be nonempty convex subsets of ℝn and X, respectively. Sup-

pose that x0 Î S is a strict local minimizer of order m for (MOP) and the functions fi:

X®ℝ, i = 1, ... , p, are strongly convex of order m on X. Then x0 is a strict minimizer of

order m for (MOP).

Proof. Since x0 Î S is a strict local minimizer of order m for (MOP). Therefore there

exists an ε > 0 and a constant ci > 0, i = 1, ... , p such that

fi(x) + s(x|Di) �< fi(x0) + s(x0|Di) + ci||x − x0||m for all x ∈ B(x0, ε) ∩ S, that is, there

exits no x Î B(x0, ε) ∩ S such that

fi(x) + s(x|Di) < fi(x0) + s(x0|Di) + ci||x − x0||m, i = 1, · · · , p.

If x0 is not a strict minimizer of order m for (MOP) then there exists some z Î S

such that

fi(z) + s(z|Di) < fi(x0) + s(x0|Di) + ci||x − x0||m, i = 1, · · · , p. (2:1)

Since S is convex, lz + (1 - l)x0 Î B(x0, ε) ∩ S, for sufficiently small l Î (0, 1). As fi,

i = 1, ... , p, are strongly convex of order m on X, we have for z, x0 Î S,

fi(λz + (1 − λ)x0) � λfi(z) + (1 − λ)fi(x0) − ciλ(1 − λ)‖z − x0‖m
fi(λz + (1 − λ)x0) − fi(x0) � λ[fi(z) − fi(x0)] − ciλ(1 − λ)‖z − x0‖m

< λ[−s(z|Di) + s(x0|Di) + ci‖z − x0‖m]
−ciλ(1 − λ)‖z − x0‖m, using (2.1),

= −λs(z|Di) + λs(x0|Di) + λ2ci‖z − x0‖m
< −λs(z|Di) + λs(x0|Di) + ci‖z − x0‖m

fi(λz + (1 − λ)x0) + λs(z|Di) < fi(x0) + λs(x0|Di) − s(x0|Di) + s(x0|Di) + ci||z − x0||m

or

fi(λz + (1 − λ)x0) + λs(z|Di) + (1 − λ)s(x0|Di) < fi(x0) + s(x0|Di) + ci||z − x0||m

,

Sinces(λz + (1 − λ)x0|Di) � λs(z|Di) + (1 − λ)s(x0|Di), i = 1, · · · , p, we have

fi(λz + (1 − λ)x0) + s(λz + (1 − λ)x0|Di) < fi(x0) + s(x0|Di) + ci||z − x0||m.

,

which implies that x0 is not a strict local minimizer of order m, a contradiction.

Hence, x0 is a strict minimizer of order m for (MOP). □
Motivated by the above result, we give two obvious generalizations of strong convex-

ity of order m which will be used to derive the optimality conditions for a strict mini-

mizer of order m.

Definition 2.8 The function h is said to be strongly pseudoconvex of order m and

Lipschitz on X, if there exists a constant c > 0 such that for x1, x2, Î X

〈ξ , x1 − x2〉 + c||x1 − x2||m � 0 for all ξ ∈ ∂h(x2) implies h(x1) � h(x2).
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Definition 2.9 The function h is said to be strongly quasiconvex of order m and

Lipschitz on X, if there exists a constant c > 0 such that for x1, x2, Î X

h(x1) � h(x2) implies 〈ξ , x1 − x2〉 + c||x1 − x2||m � 0 for all ξ ∈ ∂h(x2).

We obtain the following lemma due to the theorem 4.1 of Chankong and Haimes

[18].

Lemma 2.1 x0 is an efficient point for (MOP) if and only if x0 solves

(MOPk(x0)) Minimize fk(x) + s(x|Dk)

subject to fi(x) + s(x|Di)

� fi(x0) + s(x0|Di), for all i �= k,

gj(x) � 0, j = 1, · · · , q

for every k = 1, ... , p.

We introduce the following definition for (MOP) based on the idea of Chandra et al.

[19].

Definition 2.10 Let x0 be a feasible solution for (MOP). We say that the basic regu-

larity condition (BRC) is satisfied at x0 if there exists r Î {1, 2, ... , p} such that the only

scalars λ0
i � 0, wi Î Di, i = 1, ... , p, i ≠ r, μ0

j � 0, j Î I (x0), μ0
j = 0, j ∉ I (x0); I (x0) =

{j|gj(x
0) = 0, j = 1, ... , q} which satisfy

0 ∈
p∑

i=1,i�=r
λ0
i (∂fi(x

0) + wi) +
q∑

j=1

μ0
j ∂gj(x0)

are λ0
i = 0 for all i = 1, ... , p, i ≠ r, μ0

j = 0, j = 1, ... , q.

3 Optimality Conditions
In this section, we establish Fritz John and Karush-Kuhn-Tucker necessary conditions

and Karush-Kuhn-Tucker sufficient condition for a strict minimizer of (MOP).

Theorem 3.1 (Fritz John Necessary Optimality Conditions) Suppose that x0 is a

strict minimizer of order m for (MOP) and the functions fi, i = 1, ... , p, gj, j = 1, ... ,q,

are Lipschitz at x0. Then there exist λ0 ∈ Rp
+, w

0
i ∈ Di, i = 1, ... , p, μ0 ∈ Rq

+such that

0 ∈
p∑

i=1

λ0
i (∂fi(x

0) + w0
i ) +

q∑

j=1

μ0
j ∂gj(x

0),

〈w0
i , x

0〉 = s(x0|Di), i = 1, · · · , p,
μ0
j gj(x

0) = 0, j = 1, · · · , q,
(λ0

1, · · · ,λ0
p ,μ

0
1, · · · ,μ0

q) �= (0, · · · , 0).

Proof. Since x0 is strict minimizer of order m for (MOP), it is strict minimizer. It can

be seen that x0 solves the following unconstrained scalar problem

minimize F(x)

where

F(x) = max {(f1(x) + s(x|D1)) − (f1(x0) + s(x0|D1)), · · · ,
(fp(x) + s(x|Dp)) − (fp(x0) + s(x0|Dp)), g1(x), · · · , gq(x)}.
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If it is not so then there exits x1 Î ℝn such that F(x1) <F(x0). Since x0 is strict mini-

mizer of (MOP) then g(x0) ≦ 0, for all j = 1, ... , q. Thus F(x0) = 0 and hence F(x1) < 0.

This implies that x1 is a feasible solution of (MOP) and contradicts the fact that x0 is a

strict minimizer of (MOP).

Since x0 minimizes F(x) it follows from Proposition 2.3.2 in Clarke[16] that 0 Î ∂F

(x0). Using Proposition 2.3.12 of [16], it follows that

∂F(x0) ⊆ co{(∪p
i=1[∂fi(x

0) + ∂s(x0—Di)]) ∪ (∪q
j=1∂gj(x

0))}.

Thus,

0 ∈ co{(∪p
i=1[∂fi(x

0) + ∂s(x0—Di)]) ∪ (∪q
j=1∂gj(x

0))}.

Hence there exist λ0
i � 0, w0

i ∈ Di, i = 1, · · · , p, and μ0
j � 0, j = 1, · · · , q, such that

0 ∈
p∑
i=1

λ0
i (∂fi(x

0) + w0
i ) +

q∑
j=1

μ0
j ∂gj(x

0),

〈w0
i , x

0〉 = s(x0—Di), i = 1, · · · , p,
μ0
j gj(x

0) = 0, j = 1, · · · , q,
(λ0

1, · · · ,λ0
p ,μ

0
1, · · · ,μ0

q) �= (0, · · · , 0).

Theorem 3.2 (Karush-Kuhn-Tucker Necessary Optimality Conditions) Suppose

that x0 is a strict minimizer of order m for (MOP) and the functions fi, i = 1, ... , p, gj, j

= 1, ... , q, are Lipschitz at x0. Assume that the basic regularity condition (BRC) holds

at x0, then there exist λ0 ∈ Rp
+, w

0
i ∈ Di, i = 1, ... p, μ0 ∈ Rq

+such that

0 ∈
p∑

i=1

λ0
i ∂fi(x

0) +
p∑

i=1

λ0
i w

0
i +

q∑

j=1

μ0
j ∂gj(x

0), (3:1)

〈w0
i , x

0〉 = s(x0—Di), i = 1, · · · , p, (3:2)

μ0
j gj(x

0) = 0, j = 1, · · · , q, (3:3)

(λ0
1, · · · ,λ0

p ) �= (0, · · · , 0). (3:4)

Proof. Since x0 is a strict minimizer of order m for (MOP), by Theorem 3.1, there

exist λ0 ∈ Rp
+, w

0
i ∈ Di, i = 1, ... , p μ0 ∈ Rq

+ such that

0 ∈
p∑
i=1

λ0
i (∂fi(x

0) + w0
i ) +

q∑
j=1

μ0
j ∂gj(x

0),

〈w0
i , x

0〉 = s(x0—Di), i = 1, · · · , p,
μ0
j gj(x

0) = 0, j = 1, · · · , q,
(λ0

1, · · · ,λ0
p ,μ

0
1, · · · ,μ0

q) �= (0, · · · , 0).

Since BRC Condition holds at x0. Then (λ0
1, · · · ,λ0

p ) �= (0, · · · , 0). If λ0
i = 0, i = 1, ... ,

p, then we have

0 ∈
∑

k∈P,k �=i
λk(∂fk(x0) + wk) +

∑

j∈I(x0)
μj∂gj(x0),
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for each k Î P = {1, ... , p}. Since the assumptions of Basic Regularity Condition, we

have lk = 0, k Î P, k ≠ i, μj = 0, j Î I (x0). This contradicts to the fact that li, lk, k Î
P, k ≠ i, μj, j Î I (x0) are not all simultaneously zero. Hence (l1, ... , lp) ≠ (0, ... , 0).

Theorem 3.3 (Karush-Kuhn-Tucker Sufficient Optimality Conditions) Let the

Karush-Kuhn-Tucker Necessary Optimality Conditions be satisfied at x0 Î S. Suppose

that fi(·) + (·)T wi, i = 1, · · · , p, are strongly convex of order m on X , gj (·), j Î I (x0)

are strongly quasiconvex of order m on X. Then x0 is a strict minimizer of order m for

(MOP).

Proof. As fi(·) + (·)T wi, i = 1, ... , p, are strongly convex of order m on X therefore

there exist constants ci > 0, i = 1, ... , p, such that for all x Î S, ξi Î ∂fi(x
0) and wi Î

Di, i = 1, ... , p,

(fi(x) + xTwi) − (fi(x0) + (x0)Twi) � 〈ξi + wi, x − x0〉 + ci
∥∥x − x0

∥∥m. (3:5)

For λ0
i � 0, i = 1, ... , p, we obtain

p∑

i=1

λ0
i (fi(x) + xTwi) −

p∑

i=1

λ0
i (fi(x

0) + (x0)Twi)

�
p∑

i=1

λ0
i 〈ξi + wi, x − x0〉 +

p∑

i=1

λ0
i ci

∥∥x − x0
∥∥m.

(3:6)

Now for x Î S,

gj(x) � gj(x0), j ∈ I(x0).

As gj (·), j Î I (x0), are strongly quasiconvex of order m on X , it follows that there

exist constants cj > 0 and hj Î ∂gj (x
0), j Î I (x0), such that

〈ηj, x − x0〉 + cj
∥∥x − x0

∥∥m � 0.

For μ0
j � 0,j Î I (x0), we obtain

〈
∑

j∈I(x0)
μ0
j ηj, x − x0〉 +

∑

j∈I(x0)
μ0
j cj

∥∥x − x0
∥∥m � 0.

As μ0
j = 0 for j ∉ I (x0), we have

〈
m∑

j=1

μ0
j ηj, x − x0〉 +

∑

j∈I(x0)
μ0
j cj

∥∥x − x0
∥∥m � 0. (3:7)

By (3.6), (3.7) and (3.1), we get

p∑

i=1

λ0
i (fi(x) + xTwi) −

p∑

i=1

λ0
i (fi(x

0) + (x0)Twi) � a
∥∥x − x0

∥∥m,

where a =
∑p

i=1
λ0
i ci +

∑
j∈I(x0) μ0

j cj. This implies that

p∑

i=1

λ0
i [(fi(x) + xTwi) − (fi(x0) + (x0)Twi) − ci||x − x0||m] � 0, (3:8)
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where c = ae. It follows from (3.8) that there exist c ∈ intRp
+ such that for all x Î S

fi(x) + xTwi � fi(x0) + (x0)Twi + ci||x − x0||m, i = 1, · · · , p.

Since (x0)T wi = s(x0|Di), x
T wi ≦ s(x|Di), i = 1, ... , p, we have

fi(x) + s(x|Di) � fi(x0) + s(x0|Di) + ci||x − x0||m,

i.e.

fi(x) + s(x|Di) �< fi(x0) + s(x0|Di) + ci||x − x0||m.

Thereby implying that x0 is a strict minimizer of order m for (MOP). □
Remark 3.1 If Di = {0}, i = 1, ... , k, then our results on optimality reduces to the one

of Bhatia [12].

4 Duality Theorems
In this section, we formulate Mond-Weir type dual problem and establish duality theo-

rems for a minima. Now we propose the following Mond-Weir type dual (MOD) to

(MOP):

(MOD) Maximize (f1(u) + uTw1, · · · , fp(u) + uTwp)

subject to 0 ∈
p∑

i=1

λi(∂fi(u) + wi) +
q∑

j=1

μj∂gj(u),
(4:1)

q∑
j=1

μjgj(u) � 0, j = 1, · · · , q,
μ ≥ 0, wi ∈ Di, i = 1, · · · , p,
λ = (λ1, · · · ,λp) ∈ �+, u ∈ X,

(4:2)

where �+ = {λ ∈ Rp : λ � 0,λTe = 1, e = {1, . . . , 1} ∈ Rp} .
Theorem 4.1 (Weak Duality) Let x and (u, w, l, μ) be feasible solution of (MOP)

and (MOD), respectively. Assume that fi (·) + (·)T wi, i = 1, ... , p, are strongly convex of

order m on X, gj (·), j Î I (u); I (u) = {j|gj (u) = 0} are strongly quasiconvex of order m

on X. Then the following cannot hold:

f (x) + s(x|D) < f (u) + uTw. (4:3)

Proof. Since x is feasible solution for (MOP) and (u, w, l, μ) is feasible for (MOD),

we have

gj(x) � gj(u), j ∈ I(u).

For every j Î I (u), as gj , j Î I (u), are strongly quasiconvex of order m on X, it fol-

lows that there exist constants cj > 0 and hj Î ∂gj (u), j Î I (u) such that

〈ηj, x − u〉 + cj||x − u||m � 0.

This together with μj ≧ 0, j Î I (u), imply

〈
∑

j∈I(u)
μjηj, x − u〉 +

∑

j∈I(u)
μjcj � 0.
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As μj = 0, for j ∉ I (u), we have

〈
m∑

j=1

μjηj, x − u〉 +
∑

j∈I(u)
μjcj||x − u||m � 0. (4:4)

Now, suppose contrary to the result that (4.3) holds. Since xTwi ≦ s(x|D), i = 1, ... , p,

we obtain

fi(x) + xTwi < fi(u) + uTwi, i = 1, · · · , p.

As fi(·) + (·)T wi , i = 1, ... , p, are strongly convex of order m on X, therefore there

exist constants ci > 0, i = 1, ... , p, such that for all x Î S, ξi Î ∂fi(u), i = 1, ... , p,

(fi(x) + xTwi) − (fi(u) + uTwi) � 〈ξi + wi, x − u〉 + ci||x − u||m. (4:5)

For li ≧ 0, i = 1, ... , p, (4.5) yields

p∑

i=1

λi(fi(x) + xTwi) −
p∑

i=1

λi(fi(u) + uTwi)

� 〈
p∑

i=1

λi(ξi + wi), x − u〉 +
p∑

i=1

λici||x − u||m.
(4:6)

By (4.4),(4.6) and (4.1), we get

p∑

i=1

λi(fi(x) + xTwi) −
p∑

i=1

λi(fi(u) + uTwi) � a||x − u||m, (4:7)

where a =
∑p

i=1
λici +

∑
j∈I(u) μjcj. This implies that

p∑

i=1

λi[(fi(x) + xTwi) − (fi(u) + uTwi) − ci||x − u||m] � 0, (4:8)

where c = ae, since lT e = 1. It follows from (4.8) that there exist c Î int ℝp such

that for all x Î S

fi(x) + xTwi � fi(u) + uTwi + ci||x − u|m, i = 1, · · · , p.

Since xT wi ≦ s(x|Di), i = 1, ... , p, and c Î int ℝp, we have

fi(x) + s(x|Di) � fi(x) + xTwi

� fi(u) + uTwi + ci||x − u||m
> fi(u) + uTwi, i = 1, · · · , p.

which contradicts to the fact that (4.3)holds. □
Theorem 4.2 (Strong Duality) If x0 is a strictly minimizer of order m for (MOP),

and assume that the basic regularity condition (BRC) holds at x0, then there exists l0 Î
ℝp, w0

i ∈ Di, i = 1, ... , p, μ0 Î ℝq such that (x0, w0, l0, μ0) is feasible solution for

(MOD) and (x0)Tw0
i = s(x0|Di), i = 1, · · · , p. Moreover, if the assumptions of weak dua-

lity are satisfied, then (x0, w0, l0, μ0) is a strictly minimizer of order m for (MOD).

Proof. By Theorem 3.2, there exists l0 Î ℝp, w0
i ∈ Di, i = 1, ... , p, and μ0 Î ℝq such

that
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0 ∈
p∑

i=1

λ0
i (∂fi(x

0) + w0
i ) +

q∑

j=1

μ0
j ∂gj(x

0),

〈w0
i , x

0〉 = s(x0|Di), i = 1, · · · , p,
μ0
j gj(x

0) = 0, j = 1, · · · , q,
(λ0

1, · · · ,λ0
p ) �= (0, · · · , 0).

Thus (x0, w0, l0, μ0) is a feasible for (MOD) and (x0)Tw0
i = s(x0|Di), i = 1, ... , p. By

Theorem 4.1, we obtain that the following cannot hold: □

fi(x0) + (x0)Tw0
i = fi(x0) + s(x0|Di)

< fi(u) + uTwi, i = 1, · · · , p,

where (u, w, l, μ) is any feasible solution of (MOD). Since ci Î int ℝp such that for

all x0, u Î S

fi(x0) + (x0)Tw0
i + ci||u − x0||m

�< fi(u) + uTwi, i = 1, · · · , p.

Thus (x0, w0, l0, μ0) is a strictly minimizer of order m for (MOD). Hence, the result

holds.
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