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Abstract

Stability results for a pair of sequences of mappings and their common fixed points
in a Hausdorff uniform space using certain new notions of convergence are proved.
The results obtained herein extend and unify several known results.
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1 Introduction
The relationship between the convergence of a sequence of self mappings Tn of a

metric (resp. topological space) X and their fixed points, known as the stability (or

continuity) of fixed points, has been widely studied in fixed point theory in various set-

tings (cf. [1-18]). The origin of this problem seems into a classical result (see Theorem

1.1) of Bonsall [6] (see also Sonnenshein [18]) for contraction mappings. Recall that a

self-mapping f of a metric space (X, d) is called a contraction mapping if there exists a

constant k, 0 <k < 1 such that

d(f (x), f (y) ≤ kd(x, y) for all x, y ∈ X.

Theorem 1.1. Let (X, d) be a complete metric space and T and Tn(n = 1, 2,...) be

contraction mappings of X into itself with the same Lipschitz constant k < 1, and with

fixed points u and un(n = 1, 2,...), respectively. Suppose that limn Tnx = Tx for every x

Î X. Then, limn un = u.

Subsequent results by Nadler Jr. [11], and others address mainly the problem of

replacing the completeness of the space X by the existence of fixed points (which was

ensured otherwise by the completeness of X) and various relaxations on the contrac-

tion constant k. In most of these results, pointwise (resp. uniform) convergence plays

invariably a vital role. However, if the domain of definition of Tn is different for each n

Î N (naturals), then these notions do not work. An alternative to this problem has

recently been presented by Barbet and Nachi [5] (see also [4]) where some new notions

of convergence have been introduced and utilized to obtain stability results in a metric

space. For a uniform space version of these results, see Mishra and Kalinde [10]. On

the other hand, a result of Jungck [19] on common fixed points of commuting contin-

uous mappings has also been found quite useful. We note that the above-mentioned

result of Jungck [19] includes the well-known Banach contraction principle. Using the

above ideas of Barbet and Nachi [5] and Jungck [19], we obtain stability results for
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common fixed points in a uniform space whose uniformity is generated by a family of

pseudometrics. These results generalize the recent results obtained by Mishra and

Kalinde [10] and which in turn include several known results. Locally convex topologi-

cal vector spaces being completely regular are uniformizable, where the uniformity of

the space is induced by a family of seminorms. Therefore, all the results obtained

herein for uniform spaces also apply to locally convex spaces (cf. Remark 4.4).

2 Preliminaries
Let (X,U) be a uniform space. A family P = {ra : aÎ I} of pseudometrics on X, where I

is an indexing set is called an associated family for the uniformity U if the family

B = {V(α, ε) : α ∈ I, ε > 0},

where

V(α, ε) = {(x, y) ∈ X × X : ρα(x, y) < ε}

is a subbase for the uniformity U. We may assume B itself to be a base for U by

adjoining finite intersections of members of B if necessary. The corresponding family

of pseudometrics is called an augmented associated family for U . An augmented asso-

ciated family for U will be denoted by P*. (cf. Mishra [9] and Thron [20]). In view of

Kelley [21], we note that each member V (a, ε) of B is symmetric and ra is uniformly

continuous on X × X for each a Î I. Further, the uniformity U is not necessarily pseu-

dometrizable (resp. metrizable) unless B is countable, and in that case, U may be gen-

erated by a single pseudometric (resp. a metric) r on X. For an interesting motivation,

we refer to Reilly [[22], Example 2] (see also Kelley [[21], Example C, p. 204]). For

further details on uniform spaces and a systematic account of fixed point theory there

in (including applications), we refer to Kelleyl [21] and Angelov [3] respectively.

Now onwards, unless stated otherwise, (X,U) will denote a uniform space defined by

P* while N̄ = N ∪ {∞}.
Definition 2.1. [23] Let (X,U) be a uniform space and let {ra : a Î I} = P*. A map-

ping T : X ® X is called a P*- contraction if for each a Î I, there exists a real k(a), 0
<k(a) < 1 such that

ρα

(
T (x) , T

(
y
)) ≤ k(α)ρα(x, y) for all x, y ∈ X.

It is well known that T : X ® X is P*-contraction if and only if it is P- contraction

(see Tarafdar [[23], Remark 1]). Hence, now onwards, we shall simply use the term k-

contraction (resp. contraction) to mean either of them. In case the above condition is

satisfied for any k = k(a) > 0, T will be called k- Lipschitz (or simply Lipschitz).

The following result due to Tarafdar [[23], Theorem 1.1] (see also Acharya [[24],

Theorem 3.1]) presents an exact analog of the well-known Banach contraction

principle.

Theorem 2.2. Let (X,U) be a Hausdorff complete uniform space and let {ra : a Î I}

= P*. Let T be a contraction on X. Then, T has a unique fixed point a Î X such that

Tnx ® a in τu (the uniform topology) for each x Î X.

Definition 2.3. Let (X,U) be a uniform space, S, T : Y ⊆ X ® X. Then, the pair (S,

T) will be called J - Lipschitz (Jungck Lipschitz) if for each a Î I, there exists a con-

stant μ = μ(a) > 0 such that
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ρα(Sx, Sy) ≤ μρα(Tx,Ty) for all x, y ∈ Y. (2:1)

The pair (S, T) is generally called Jungck contraction (or simply J-contraction) when 0

<μ < 1, and the constant μ in this case is a called Jungck constant (see, for instance,

[13]). Indeed, J-contractions and their generalized versions became popular because of

the constructive approach of proof adopted by Jungck [19]. Now onwards, a J-Lpschitz

map (resp. J-contraction) with Jungck constant μ will be called a J-Lipschitz (resp. J-

contraction) with constant μ.

The following example illustrates the generality of J-Lipschitz maps.

Example 2.4. Let X = (0, ∞) with the usual uniformity induced by r(x, y) = |x - y|

for all x, y Î X. Define S : X ® X by

Sx =
1
x

for all x ∈ X.

Then,

ρ(Sx, Sy) =
1
xy

ρ(x, y) for all x, y ∈ X.

Since
1
xy

→ ∞ for small x or y Î X, S is not a Lipschitz map. However, if we con-

sider the map T : X ® X defined by

Tx =
1
Lx

, for all x ∈ X and some L > 0,

then

ρ(Sx, Sy) = Lρ(Tx,Ty)

and S is Lipscitz with respect to T or the pair (S, T) is J-Lipschitz.

3 G-convergence and stability
Definition 3.1 [5,10]. Let (X,U) be a uniform space, {Xn}n∈N̄ a sequence of nonempty

subsets of X and {Sn : Xn → X}n∈N̄ a sequence of mappings. Then {Sn}n∈N̄ is said to

converge G-pointwise to a map S∞: X∞ ® X, or equivalently {Sn}n∈N̄satisfies the prop-

erty (G), if the following condition holds:

(G) Gr(S∞) ⊂ lim inf Gr(Sn): for every x Î X∞, there exists a sequence {xn} in
∏

n∈N
Xn

such that for any a Î I,

lim
n

ρα(xn, x) = 0 and lim
n

ρα(Snxn, S∞x) = 0,

where Gr(T) stands for the graph of T.

In view of Barbet and Nachi [5], we note that:

(i) A G-limit need not be unique.

(ii) The property (G) is more general than pointwise convergence. However, the two

notions are equivalent provided the sequence {Sn}nÎN is equicontinuous when the

domains of definitions are identical.

The following theorem gives a sufficient condition for the existence of a unique G-

limit.
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Theorem 3.2. Let (X,U) be a uniform space, {Xn}n∈N̄ a family of nonempty subsets of

X and {Sn : Xn → X}n∈N̄ a sequence of J-Lipschitz maps relative to a continuous map T

: X ® X with Lipschitz constant μ. If S∞ : X∞ ® X is a G-limit of the sequence {Sn},

then S∞ is unique.

Proof. Let U ∈ U be an arbitrary entourage. Then, since B is base for U, there exists

V (a, ε) Î B, a Î I, ε >0 such that V (a, ε) ⊂ U. Suppose that S∞ : X∞ ® X and

S∗
∞ : X∞ → X are G-limit maps of the sequence {Sn}. Then, for every x Î X∞, there

exist two sequences {xn} and {yn} in
∏

n∈N
Xn such that for any a Î I

lim
n

ρα(xn, x) = 0 and lim
n

ρα(Snxn, S∞x) = 0,

lim
n

ρα(yn, x) = 0 and lim
n

ρα(Snyn, S∗
∞x) = 0.

Further, since Sn is J-Lipschitz, for any a Î I, there exists a constant μ = μ(a) > 0

such that

ρα(Snxn, Snyn) ≤ μρα(Tnxn,Tnyn)

Therefore, for any n Î N and a Î I,

ρα(S∞x, S∗
∞x) ≤ ρα(S∞x, Snxn) + ρα(Snxn, Snyn) + ρα(Snyn, S∗

∞x)

≤ ρα(S∞x, Snxn) + μρα(Txn,Tyn) + ρα(Snyn, S∗
∞x)

≤ ρα(S∞x, Snxn) + μ[ρα(Txn,Tx) + (Tx,Tyn)] + ρα(Snyn, S∗
∞x)

Since T is continuous and xn ® x and yn ® x as n ® ∞, it follows that Txn ® Tx,

Tyn ® Tx. Hence the R.H.S. of the above expression tends to 0 as n ® ∞ and so,

ρα(S∞x, S∗
∞x) < ε for all n ≥ N (a, ε). Therefore (S∞x, S∗

∞x) ∈ V(α, ε) ⊂ U and since X

is Hausdorff, it follows that S∞x = S∗
∞x.■

Corollary 3.3. Theorem 3.2 with J-Lipschitz replaced by J-contraction.

Proof. It comes from Theorem 3.2 for μ Î (0, 1).■
The following result due to Mishra and Kalinde [[10], Proposition 3.1, see also,

Remark 3.2)], which in turn includes a result of Barbet and Nachi [[5], Proposition 1],

follows as a corollary of Theorem 3.2.

Corollary 3.4. Let (X,U) be a Hausdorff uniform space, {Xn}n∈N̄ a family of none-

mpty subsets of X and Sn : Xn ® X a k- contraction (resp. k-Lipschitz) mapping for

each n ∈ N̄. If S∞ : X∞ ® X is a (G) - limit of {Sn}n∈N̄ then S∞ is unique.

Proof. It comes from Theorem 3.2 when T is the identity map and μ Î (0, 1) (resp.

μ >0).■
Now, we present our first stability result.

Theorem 3.5. Let (X,U) be a uniform space, {Xn}n∈N̄ a family of nonempty subsets of

X and {Sn, Tn : Xn → X}n∈N two families of maps each satisfying the property (G) and

such that for all n ∈ N̄, the pair (Sn, Tn) is J-contraction with constant μ. If for all

n ∈ N̄, zn is a common fixed point of Sn and Tn, then, the sequence {zn} converges to

z∞.

Proof. Let W ∈ U be arbitrary. Then, there exists V(λ, ε) ∈ B,λ ∈ I, ε > 0 such that

V (l, ε) ⊂ W. Since zn is a common fixed point of Sn and Tn for each n ∈ N̄, and the

property (G) holds and z∞ Î X∞, there exists a sequence {yn} such that yn Î Xn (for all

n ∈ N̄) such that for any l Î I,
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lim
n

ρλ(yn, z∞) = 0, lim
n

ρλ(Snyn, S∞z∞) = 0 and lim
n

ρλ(Tnyn,T∞z∞) = 0.

Using the fact that the pair (Sn, Tn) is J-contraction, for any l Î I, we have

ρλ(zn, z∞) = ρλ(Snzn, S∞z∞)

≤ ρλ(Snzn, Snyn) + ρλ(Snyn, S∞z∞)

≤ μ(λ)ρλ(Tnzn, Tnyn) + ρλ(Snyn, S∞z∞)

≤ μ(λ)ρλ(Tnzn, T∞z∞) + μ(λ)ρλ(Tnyn, T∞z∞) + ρλ(Snyn, S∞z∞).

This gives

ρλ(zn, z∞) ≤ 1
1 − μ(λ)

[μ(λ)ρλ(Tnyn, T∞z∞) + ρλ(Snyn, S∞z∞)].

Since μ(l) < 1, it follows that rl (zn, z∞) ® 0 as n ® ∞. Hence, rl (zn, z∞) < ε for all

n ≥ N (l, ε) and so (zn, z∞) Î V (l, ε) ⊂ W and the conclusion follows.■
When for each n ∈ N̄, Tn is the identity map on Xn in Theorem 3.5, we have the fol-

lowing result due to Mishra and Kalinde [[10], Theorem 3.3], which includes a result

of Barbet and Nachi [[5], Theorem 2].

Corollary 3.6. Let (X,U) be a Hausdorff uniform space, {Xn}n∈N̄ a family of none-

mpty subsets of X and {Sn : Xn → X}n∈N̄ a family of mappings satisfying the property

(G) and Sn is a k- contraction for each n ∈ N̄. If xn is a fixed point of Sn for each

n ∈ N̄, then the sequence {xn}nÎN converges to x∞.

Again, when Xn = X, for all n ∈ N̄, we obtain, as a consequence of Theorem 3.5, the

following result.

Corollary 3.7. Let (X,U) be a uniform space and Sn, Tn : X ® X be such that the

pair (Sn, Tn) is J-contraction with constant μ and with at least one common fixed point

zn for all n ∈ N̄. If the sequences {Sn} and {Tn} converge pointwise respectively to S, T :

X ® X, then the sequence {zn} converges to z∞.

Notice that Corollary 3.7 includes as a special case a result of Singh [[13], Theorem

1] for metric spaces (metrizable spaces).

We remark that under the conditions of Theorem 3.5 the pair (S∞, T∞) of G-limit

maps is also a J-contraction. Indeed, we have the following stability result.

Theorem 3.8. Let (X,U) be a uniform space, {Xn}n∈N̄ a family of nonempty subsets of

X and {Sn, Tn : Xn → X}n∈N two families of maps each satisfying the property (G) and

such that for all nÎN, the pair (Sn, Tn) is J-contraction with constant {μn}nÎN a

bounded (resp. convergent) sequence. Then, the pair (S∞, T∞) is J-contraction with

constant μ = supnÎNμn (resp. μ = limn μn).

Proof. Let x, y Î X∞. Then, by the property (G), there exist two sequences {xn} and

{yn} in
∏

n∈N
Xn such that the sequences {Snxn}, {Snyn}, {Tnxn} and {Tnyn} converge respec-

tively to S∞x, S∞y, T∞x, and T∞y.

Therefore, for any nÎN and each a Î I,

ρα(S∞x, S∞y) ≤ ρα(S∞x, Snxn) + ρα(Snxn, Snyn) + ρα(Snyn, S∞y)

≤ ρα(S∞x, Snxn) + μnρα(Tnxn, Tnyn) + ρα(Snyn, S∞y).
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Since

lim sup
n

μnρα(Tnxn, Tnyn) ≤ μρα(T∞x, T∞y),

the above inequality yields ra(S∞x, S∞y) ≤ μ ra(T∞x, T∞y) and the conclusion

follows.■
Remark 3.9. Theorem 3.8 includes, as a special case, a result of Mishra and Kalinde

[[10], Proposition 3.5] for uniform spaces when Xn = X and Tn is an identity mapping

for each n ∈ N̄. Consequently, a result of Barbet and Nachi [[5], Proposition 4] for

metric spaces also follows when X is metrizable.

4 H-convergence and stability
Definition 4.1. [5,10] Let (X,U) be a uniform space, {Xn}n∈N̄ a family of nonempty

subsets of X and {Sn : Xn → X}n∈N̄ a family of mappings. Then,

S∞ is called an (H) - limit of the sequence {Sn}nÎN in or, equivalently {Sn}n∈N̄ satisfies

the property (H) if the following condition holds:

(H) For all sequences {xn} in
∏

n∈N
Xn, there exists a sequence {yn} in X∞ such that for

any a Î I,

lim
n

ρα(xn, yn) = 0 and lim
n

ρα(Snxn, Snyn) = 0.

In case X is a metrizable uniform space (that is the uniformity U is generated by a

metric d), we get the corresponding definitions due to Barbet and Nachi [5].

In view of [5], we note that:

(a) A G-limit map is not necessarily an H-limit.

(b) If {Sn : Y ⊆ X → X}n∈N converges uniformly to S∞ on Y, then S∞ is an H-limit of

{Sn}.

(c) The converse of (b) holds only when S∞ is uniformly continuous on Y.

For details and examples, we refer to Barbet and Nachi [5].

Theorem 4.2. Let (X,U) be a uniform space, {Xn}n∈N̄ a family of nonempty subsets of

X. Let {Sn, Tn : Xn → X}n∈N be two families of maps each satisfying the property (H).

Further, let the pair (S∞, T∞) be a J-contraction with constant μ∞. If, for every n ∈ N̄,

zn is a common fixed point of Sn and Tn, then the sequence {zn} converges to z∞.

Proof. The property (H) implies that there exists a sequence {yn} in X∞ such that for

any a Î I, ra(zn, yn) ® 0, ra (Snzn, S∞yn) ® 0 and ra (Tnzn, T∞yn) ® 0 as n ® ∞.

Then

ρα(zn, z∞) = ρα(Snzn, S∞z∞)

≤ ρα(Snzn, S∞yn) + ρα(S∞yn, S∞z∞)

≤ ρα(Snzn, S∞yn) + μ∞ρα(T∞yn, T∞z∞)

≤ ρα(Snzn, S∞yn) + μ∞[ρα(T∞yn, Tnzn) + ρα(Tnzn, T∞z∞)].

So, we get

ρα(zn, z∞) ≤ 1
(1 − μ∞)

[ρα(Snzn, S∞yn) + μ∞ρα(T∞yn, Tnzn].

Since the right hand side of the above inequality tends to 0 as n ® ∞, we deduce

that zn ® z∞ as n ® ∞. ■
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As a consequence of Theorem 4.2, we have the following result due to Mishra and

Kalinde [[10], Theorem 3.13].

Corollary 4.3. Let (X,U) be a Hausdorff uniform space, {Xn}n∈N̄ a family of none-

mpty subsets of X and {Sn : Xn → X}n∈N̄ a family of mappings satisfying the property

(H) and such that S∞ is a k∞ - contraction. If for any n ∈ N̄, xn is a fixed point of Tn,

then {xn}nÎN converges to x∞.

Proof. It comes from Theorem 4.2 by taking Tn to be the identity mapping for each

n ∈ N̄.■
If X is metrizable, then we get a stability result of Barbet and Nachi [[5], Theorem

11], which in turn includes a result of Nadler [[11], Theorem 1]. Indeed, Nadler’s result

is a direct consequence of Corollary 4.3 when Xn = X for each n Î N with X being

metrizable.

Remark 4.4. Every locally convex topological vector space X is uniformizable being

completely regular (cf. Kelley [21], Shaefer [25]) where the family of pseudometrics {ra
: a Î I} is induced by a family of seminorms {ra : a Î I} so that ra (x, y) = ra (x - y)

for all x, y Î X. Therefore, all the results proved previously for uniform spaces also

apply to locally convex spaces.
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