
RESEARCH Open Access

Rodé’s theorem on common fixed points of
semigroup of nonexpansive mappings in CAT(0)
spaces
Watcharapong Anakkamatee1 and Sompong Dhompongsa1,2*

* Correspondence:
sompongd@chiangmai.ac.th
1Department of Mathematics,
Faculty of Science, Chiang Mai
University, Chiang Mai, 50200,
Thailand
Full list of author information is
available at the end of the article

Abstract

We extend Rodé’s theorem on common fixed points of semigroups of nonexpansive
mappings in Hilbert spaces to the CAT(0) space setting.
2000 Mathematics Subject Classification: 47H09; 47H10.

Keywords: CAT(0) space, semigroup of nonexpansive mappings, Δ?Δ?-convergence

1 Introduction
In 1976, Lim [1] introduced a concept of convergence in a general metric space, called

strong Δ-convergence. In [2], Kirk and Panyanak introduced a concept of convergence

in a CAT(0) space, called Δ-convergence (see Section 2 for the definition). Moreover,

they showed that many Banach space concepts and results which involve weak conver-

gence can be extended to the CAT(0) space setting by using the Δ-convergence.

For each semigroup S, let B(S) be the Banach space of all bounded real-valued map-

pings on S with supremum norm. A continuous linear functional μ Î B(S)* (the dual

space of B(S)) is called a mean on B(S) if || μ || = μ(1). For any f Î B(S), we use the

following notation:

μ(f ) = μs(f (s)).

A mean μ on B(S) is said to be left invariant [respectively, right invariant] if μs (f(ts))

= μs (f(s)) [respectively, μs (f(st)) = μs (f(s))] for all f Î B(S) and for all t Î S. We will

say that μ is an invariant mean if it is both left and right invariants. If B(S) has an

invariant mean, we call S an amenable semigroup. It is well known that every commu-

tative semigroup is amenable [3]. For each s Î S and f Î B(S), we define elements ls f

and rs f in B(S) by (lsf)(t) = f (st) and (rsf)(t) = f (ts) for any t Î S, respectively. A net

{μa} of means on B(S) is said to be asymptotically invariant if

lim
α
(μα(lsf ) − μα(f )) = 0 = lim

α
(μα(rsf ) − μα(f )).

In [4], Rodé proved the following:

Theorem 1.1. [4]If S is an amenable semigroup, C is a closed convex subset of a Hil-

bert space H,S = {Ts : s ∈ S} is a nonexpansive semigroup on C such that the set F(S)of
common fixed points of Sis nonempty and {μa} is an asymptotically invariant net of

means, then for each x Î C,{Tμα
x}converges weakly to an element of F(S).
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Further, for each x Î C, the limit point of {Tμα
x}is the same for all asymptotically

invariant nets of means {μa}.

It is remarked that if S is amenable, then there is always an asymptotically strong

invariant net of finite means, i.e., means that are convex combination of point evalua-

tions. This follows from Proposition 3.3 in [5].

Development of this subject had been made by several authors [1,6-8]. The main

purpose of this article is to extend this result of Rodé for a nonexpansive semigroup

on a CAT(0) space in which the Δ-convergence plays the role of weak convergence.

2 Preliminaries
Let (X, d) be a metric space. A geodesic joining x Î X to y Î X is a mapping c from a

closed interval [0, l] ⊂ ℝ to X such that c(0) = x, c(l) = y and d(c(t), c(t’)) = |t-t’| for all

t, t’Î [0, l]. In particular, c is an isometry and d(x, y) = l. The image g of c is called a

geodesic (or metric) segment joining x and y. When it is unique, this geodesic is

denoted [x, y]. Write c(a 0 + (1 - a)l) = ax ⊕(1 - a)y, and for α = 1
2, we write 1

2x ⊕ 1
2y

as x⊕y
2 , the midpoint of x and y. The space X is said to be a geodesic space if every two

points of X are joined by a geodesic.

Following [2], a metric space X is said to be a CAT(0) space if it is geodesically con-

nected and if every geodesic triangle in X is at least as thin as its comparison triangle

in the Euclidean plane. This latter property, which is what we referred to as the (CN)

inequality, enables one to define the concept of nonpositive curvature in this situation,

generalizing the same concept in Riemannian geometry. In fact (cf. [[9], p. 163]), the

following are equivalent for a geodesic space X:

(i) X is a CAT(0) space.

(ii) X satisfies the (CN) inequality: If x0, x1 Î X and x0⊕x1
2 is the midpoint of x0 and

x1, then

d2(y,
x0 ⊕ x1

2
) ≤ 1

2
d2(y, x0) +

1
2
d2(y, x1) − 1

4
d2(x0, x1), for all y ∈ X.

(iii) X satisfies the Law of cosine: If a = d(p, q), b = d(p, r), c = d(q, r) and ξ is the

Alexandrov angle at p between [p, q] and [p, r], then c2 ≥ a2+b2 -2ab cos ξ.

For any subset C of X, let π = πD be a nearest point projection mapping from C to a

subset D. It is known by [[9], pp. 176-177] (see also [[10], Proposition 2.6]) that if D is

closed and convex, the mapping π is well-defined, nonexpansive, and satisfies

d2(x, y) ≥ d2(x,πx) + d2(πx, y)for all x ∈ C and y ∈ D. (1)

Definition 2.1. [[11], Definition 5.13] A complete CAT(0) space X has the property of

the nice projection onto geodesics (property (N) for short) if, given any geodesic segment

I ⊂ X, it is the case that πI(m) Î [πI(x), πI(y)] for any x, y in X and m Î [x, y].

As noted in [11], we do not know of any example of a CAT(�) space which does not

enjoy the property (N).
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Let S be a semigroup, C be a closed convex subset of a Hilbert space H, and for each

s in S, Ts is a mapping from C into itself. Suppose {Tsx : s Î S} is bounded for all x Î
C. Let x Î C and μ be a mean on B(S). By Riesz’s representation theorem, there exists

a unique x0 Î C such that

μs〈Tsx, y〉 = 〈x0, y〉 (2)

for all y Î H. Here 〈 , 〉 denotes the inner product on H.

The following result is a mild generalization of a result of Kakavandi and Amini

[[12], Lemma 2.1].

Lemma 2.2. Let C be a closed convex subset of a CAT(0) space X and μ be a mean

on B(S). For a bounded function h : S ® C, define

ϕμ(y) := μs(d2(h(s), y))

for all y Î X. Then, �μ attains its unique minimum at a point of co{h(s) : s ∈ S}.
For each x Î C, denote S(x) := {Tsx : s ∈ S}. If S(x) is bounded, then by Lemma 2.2

we put

Tμ(h) := argmin{y �→ μs(d2(h(s), y))},

and for h(s) of the form Tsx, we write Tμ(h) shortly as Tμx.

Remark 2.3. If X is a Hilbert space, then

(i) Tμx = x0 where x0 verifies (2), and

(ii) ||x0||
2 = supyÎX (2〈x0, y〉 - ||y||

2).

Proof. (i): Let x0 be such that μs〈Tsx, y〉 = 〈x0, y〉 for all y Î X. We have �μ(x0) = �μ(0)

+ ||x0||
2 - 2〈x0, x0〉 = �μ(0) - ||x0||

2 ≤ �μ(0) + ||Tμx||
2 - 2〈x0, Tμx〉 = �μ (Tμx). There-

fore, x0 = Tμx.

(ii): For any x, y Î X, we know that ||Tsx - y||2 = ||Tsx||
2 - 2〈Tsx, y〉 + ||y||2. By the

linearity of μ and (2), we have μs(||Tsx - y||2) = μs(||Tsx||
2) - 2〈x0, y〉 + ||y||2. Thus,

infyÎX μs(||Tsx - y||2) = μs(||Tsx||
2) - supyÎX (2〈x0, y〉 - ||y||

2). On the other hand, by

(i), infyÎX μs(||Tsx - y||2) = μs(||Tsx - x0||
2) = μs(||Tsx||

2) - 2μs〈Tsx, x0〉 + ||x0||
2 = μs(||

Tsx||
2) - ||x0||

2. Hence, ||x0||
2 = supyÎX (2〈x0, y〉 - ||y||

2). ■
Let C be a closed convex subset of a CAT(0) space X and S a semigroup. We say

that the set S(S) := {Ts : s ∈ S} is a nonexpansive semigroup on C if

(i) Ts : C ® C is a nonexpansive mapping, i.e., d(Tsx, Tsy) ≤ d(x, y) for all x, y Î X,

for all s Î S,

(ii) the mapping s ® Tsx is bounded for all x Î C, and

(iii) Tts = TtTs, for all s, t Î S.

We denote by F(S) the set of all common fixed points of mappings in S(S), i.e.,
F(S) := ⋃

s∈s F(Ts), where F (Ts) := {x Î C : Tsx = x} is the set of fixed points of Ts.

For any bounded net {xa} in a closed convex subset C of a CAT(0) space X, put

r(x, {xα}) = lim sup
α

d(x, xα)
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for each x Î C. The asymptotic radius of {xa} on C is given by

r(C, {xα}) = inf
x∈C

r(x, {xα}),

and the asymptotic center of {xa} in C is the set

A(C, {xα}) = {x ∈ C : r(x, {xα}) = r(C, {xα})}.

It is known that in a complete CAT(0) space, A(C, {xa}) consists of exactly one point

and A(X, {xa}) = A(C, {xa}) (cf. [2]).

Remark 2.4. (i) Let D, E be directions and ν : E ® D. If {xν(b) : b Î E} is a subnet of

a bounded net {xa : a Î D}, then r(C, {xν(b)}) ≤ r(C, {xa}).

(ii) Let C be a closed convex subset of a CAT(0) space X, T : C ® C a nonexpansive

mapping and x Î C. If {Tnx} is bounded and if z Î A(C, {Tnx}), then z Î F(T).

Proof. (i) Let a0 Î D. By the definition of subnets, there exists b0 Î E such that ν(b)
≽ a0 for all b ≽ b0. For each x Î C, we have supα�α0

d(x, xα) ≥ supβ�β0
d(x, xν(β)).

Thus, supα�α0
d(x, xα) ≥ infβ1 supβ�β1

d(x, xν(β)), and this holds for all a0. Hence,

r(x, {xα}) = infα0 supα�α0
d(x, xα) ≥ r(x, xν(β)), and this holds for all x Î C. Conse-

quently, r(C, {xa}) = infxÎC r(x, {xa}) ≥ infxÎC r(x, xν(b)) = r(C, {xν(b)}).

(ii) Since T is nonexpansive, lim supn d2(Tnx, Tz) = lim supn d2(TTnx, Tz) ≤ lim supn
d2(Tnx, z).

As every asymptotic center is unique, we have z = Tz. □
Definition 2.5. [[2], Definition 3.3] A net {xa} in X is said to Δ-converge to x Î X if x

is the unique asymptotic center of {ub} for every subnet {ub} of {xa}. In this case, we

write Δ - lima xa = x and call x the Δ-limit of {xa}.

Proposition 2.6. [[2], Proposition 3.4] Every bounded net in X has a Δ-convergent

subnet.

Remark 2.7. (i) Let D be a direction, {xa : a Î D} a net in X and x Î X. If lim supa
d(x, xa) > r for some r >0, then there exists a subnet {xβα

}of {xa} such that

d(x, xβα
) ≥ ρfor all a.

(ii) Let {xa} be a net in X. Then, {xa} Δ-converges to x Î X if and only if every subnet

{xa’} of {xa} has a subnet {xa“} which Δ-converges to x.

Proof. (i): For each a Î D, we have supa’≽a d(x, xa’) > r. Thus there exists ba ≻ a
such that d(x, xβα

) ≥ ρ, and this holds for all a. Set a set E = {ba : a Î D}. Clearly, E is

a direction, and define ν : E ® D by ν (ba) = ba. Let a0 Î D, thus ν(ba) ≽ a0 for all

βα � βα0 and this shows that {xβα
} is a subnet of {xa} satisfying d(x, xβα

) ≥ ρ for all a.
ii): It is easy to see that if {xa} Δ-converges to x, then every subnet of {xa} also

Δ-converges to x. On the other hand, suppose {xa} does not Δ-converge to x. Thus,

there exists a subnet {xb} of {xa} such that x ∉ A (C, {xb}), and so lim supb d(x, xb) >r
>r(C, {xb}) for some r > 0. By (i), there exists a subnet {xγβ

} of {xb} satisfying

d(x, xγβ
) ≥ ρ for all b. By assumption, there exists a subnet {x(γβ)η } of {xγβ

} Δ-conver-
ging to x. Using Remark 2.4,

ρ ≤ lim supγ d(x, x(γβ )η) = r(C, {x(γβ )η}) ≤ r(C, {xγβ
}) ≤ r(C, {xβ }), a contradiction. □

In [13], Berg and Nikolaev introduced a concept of quasilinearization. Let us formally

denote a pair (a, b) Î X × X by −→
ab and call it a vector. Then, quasilinearization is

defined as a map 〈, 〉 : (X × X) × (X × X) by
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〈−→ab ,−→cd 〉 = 1
2
d2(a, d) +

1
2
d2(b, c) − 1

2
d2(a, c) − 1

2
d2(b, d)

for all a, b, c, d Î X. Recently, Kakavandi and Amini [14] introduced a concept of w-

convergence: a sequence {xn} is said to w-converge to x Î X if limn→∞〈−→xnx,−→ab〉 = 0 for

all a, b Î X.

Proposition 2.8. [[14], Proposition 2.5] For sequences in a complete CAT(0) space X,

w-convergence implies Δ-convergence (to the same limit).

A simple example shows that the converse of this proposition does not hold:

Example 2.9. Consider an ℝ-tree in ℝ∞ defined as follow: Let {en} be the standard

basis, x0 = e1 = (1, 0, 0, 0,...), and for each n, let xn = x0 + en+1. An ℝ-tree is formed by

the segments [x1, xn] for n ≥ 0. It is easy to see that {xn} Δ-converges to x1. But {xn} does

not w-converge to x1 since 〈−−→xnx1,−−→x0x1〉 = −1for all n ≥ 2.

Thus, a bounded sequence does not necessary contain an w-convergent subsequence.

3 Main results
3.1 Δ-convergence

Lemma 3.1. [[12], Lemma 3.1] If C is a closed convex subset of a CAT(0) space X and

T : C ® C is a nonexpansive mapping, then F(T) is closed and convex.

Lemma 3.2. [[12], Proposition 3.2] Let C be a closed convex subset of a CAT(0) space

X and S an amenable semigroup. If S(S)is a nonexpansive semigroup on C, then the fol-

lowing conditions are equivalent.

(i) S(x)is bounded for some x Î C;

(ii) S(x)is bounded for all x Î C;

(iii) F(S) �= ∅.

Proposition 3.3. [[12], Theorem 3.3] Let C be a closed convex subset of a complete

CAT(0) space X, S an amenable semigroup, and S(S)a nonexpansive semigroup on C

with F(S) �= ∅. Then, Tμx ∈ F(S)for any invariant mean μ on B(S).

We now let S be a commutative semigroup and define a partial order ≽ on S by s ≽ t

if s = t or there exists u Î S such that s = ut. When s ≽ t but s ≠ t, we simply write s ≻
t. We can see that (S, ≽) is a directed set. Examples of such S are the usual ordered

sets (N ∪ {0}, +, ≥) and (ℝ+∪ {0}, +, ≥). The following fact is well known:

Proposition 3.4. Let μ be a right invariant mean on B(S). Then,

sup
s

inf
t
f (ts) ≤ μ(f (s)) ≤ inf

s
sup
t

f (ts)

for each f Î B(S). Similarly, let μ be a left invariant mean on B(S). Then,

sup
s

inf
t

f (st) ≤ μ(f (s)) ≤ inf
s
sup

t
f (st)

for each f Î B(S).

Remark 3.5. If lims f (s) = a for some a Î ℝ and {s’} is a subnet of {s} satisfying s’ ≻ s

for each s, then

μs′(f (s′)) = a.
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Proof. This is an easy consequence of Proposition 3.4 since μs’ (f (s’)) = μs(f (s’)) =

lims f (s’) = a. ■
Proposition 3.6. [[12], Proposition 4.1] Let C be a closed convex subset of a complete

CAT(0) space X, S a commutative semigroup, and S(S)a nonexpansive semigroup on C

with F(S) �= ∅. Then, for each x Î C,, the net {πTsx}sÎS converges to a point Px in F(S),
where π = πF(S) : C → F(S)is the nearest point projection.

Proposition 3.7. Let C be a closed convex subset of a complete CAT(0) space X, S a

commutative semigroup, and S(S)a nonexpansive semigroup on C with F(S) �= ∅. Then,
for any invariant mean μ on B(S), Tμx = lims πTsx = Px for all x Î C.

Proof. Fix x Î C and let ε >0. From Proposition 3.6, we see that there exists s0 Î S

such that d(πTsx, Px) < ε for all s ≽ s0. We know by Proposition 3.3 that Tμx ∈ F(S).
So, d(Px, Tsx) ≤ d(Px, πTsx) + d(πTsx, Tsx) < d(πTsx, Tsx) + ε ≤ d(Tμx, Tsx) + ε for all

s ≽ s0. Since {Tsx : s Î S} is bounded by Lemma 3.2, there exists M >0 such that d

(Tμx, Tsx) < M for all s Î S. Therefore, d2(Px, Tsx) ≤ d2(Tμx, Tsx)+2Mε + ε2 for each s

≽ s0. Since μ is an invariant mean, we have

μs(d2(Px,Tsx)) = μs(d2(Px,Tss0x)) ≤ μs(d2(Tμx,Tss0x))+2Mε+ε2 = μs(d2(Tμx,Tsx))+2Mε+ε2 for any ε

>0. By the argminimality of Tμx (see Lemma 2.2), Tμx = Px. □
In order to obtain the Rodé’s theorem (Theorem 1.1) in the framework of CAT(0)

spaces, we need to restrict the asymptotically invariant nets of means {μa} to those

that satisfy an additional condition: for each t Î S,

μαs(d
2(Tsx, y)) − μαs(d

2(Tstx, y)) → 0 uniformly for y ∈ C. (3)

In the Hilbert space setting, condition (3) is not required because the weak conver-

gence can obtain from (2) directly.

Lemma 3.8. Let X be a complete CAT(0) space that has property (N), C be a closed

convex subset of X, S a commutative semigroup, and S(S)a nonexpansive semigroup on

C with F(S) �= ∅. Suppose {μa} is an asymptotically invariant nets of means on B(S)

satisfying condition (3). If {Tμα
x} Δ-converges to x0, then x0 ∈ F(S).

Proof. First, we show that, for each r Î S,

lim
α

d(Tμα
x,TrTμα

x) = 0. (4)

If this is not the case, there must be some δ >0 so that for each a, there exists a’ ≻

a satisfying d(Tμα′ x,TrTμα′ x) ≥ δ. Put ε = δ2

2
. Since the asymptotically invariant net {μa}

satisfies (3), there exists a0 for which for each a ≽ a0,
ϕμα

(TrTμ
α
x) = μαs(d

2(Tsx,TrTμα
x)) < μαs(d

2(TrTsx,TrTμα
x)) + ε ≤ μαs(d

2(Tsx, Tμα
x))+ε = ϕμα

(Tμα
x)+ε. Set

w =
Tμα′

0
x ⊕ TrTμα′

0
x

2
. By the (CN) inequality, the following in equalities hold for each

s Î S:

d2(Tsx,w) ≤ 1
2
d2(Tsx,Tμα′

0
x) +

1
2
d2(Tsx,TrTμα′

0
x) − 1

4
d2(Tμα′

0
x,TrTμα′

0
x)

≤ 1
2
d2(Tsx,Tμα′

0
x) +

1
2
d2(Tsx,TrTμα′

0
x) − δ2

4
.
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Therefore,

ϕμα′0 (w) ≤ 1
2

ϕμα′0 (Tμα′0 x) +
1
2

ϕμα′0 (TrTμα′0 x) − δ2

4

< ϕμα′
0
(Tμα′

0
x) +

ε

2
− δ2

4
= ϕμα′

0
(Tμα′

0
x),

which is a contradiction and thus (4) holds.

Next, we show that x0 ∈ F(S). We suppose on the contrary that x0 /∈ F(S). Thus, for
some r Î S, Trx0 ≠ x0, i.e., d(x0, Trx0) := g >0. Since {Tμα

x} ⊂ co{Tsx}, it is bounded.

We can get an M >0 so that d(Tμα
x, x0) ≤ M for all a. We let

0 < ε < min{ γ 2

16M , 2M}. From (4), there exists a0 with the property that

d(TrTμα
x,Tμα

x) < ε for all a ≽ a0. Now, for each a ≽ a0,

d(Tμα
x,Trx0) ≤ d(Tμα

x,TrTμα
x) + d(TrTμα

x,Trx0) < d(Tμα
x, x0) + ε.Thus,

d2(Tμα
x,Trx0) < d2(Tμα

x, x0) + 2εd(Tμα
x, x0) + ε2. Let w = x0⊕Trx0

2 . Using the (CN)

inequality, we see that

d2(Tμα
x,w) ≤ 1

2
d2(Tμα

x, x0) +
1
2
d2(Tμα

x,Trx0) − 1
4
d2(x0,Trx0)

≤ 1
2
d2(Tμα

x, x0) +
1
2
(d2(Tμα

x, x0) + 2εM + ε2) − γ 2

4

= d2(Tμα
x, x0) + εM +

ε2

2
− γ 2

4

for all a ≽ a0. Consequently,

lim sup
α

d2(Tμα
x,w) ≤ lim sup

α

d2(Tμα
x, x0) + εM +

ε2

2
− γ 2

4

< lim sup
α

d2(Tμα
x, x0),

contradicting to the fact that {x0} is the center of {Tμα
x}. Therefore, Trx0 = x0 for all r

Î S, and this shows that x0 ∈ F(S) as desired. □
Theorem 3.9. Let X be a complete CAT(0) space that has Property (N), C be a closed

convex subset of X, S a commutative semigroup, and S(S)a nonexpansive semigroup on

C with F(S) �= ∅. Suppose {μa}is an asymptotically invariant net of means on B(S) satis-

fying condition (3). Then, {Tμα
x} Δ-converges to Px ∈ F(S)for all x Î C. Here, Px is

defined in Proposition 3.6.

Proof. Let x Î C and {μa’} be any subnet of {μa}. There exists a subnet {μa”} of {μa’}

such that {μa”} w*-converges to μ for some invariant mean μ on B(S). By Proposition

3.7, Tμx = Px. Since the net {Tμα′′ x} ⊂ co{Tsx : s ∈ S}, it is bounded. Then by Proposi-

tion 2.6, there exists a subnet {μαβ
} of {μa”} such that {Tμαβ

x} Δ-converges to some x0
Î C. By Lemma 3.8, x0 ∈ F(S).
We show x0 = Tμx by splitting the proof into three steps.

Step 1. If Tμαβ
x := argmin{y �→ μβs(d

2(Tss0x, y))}, then Tμαβ
x ∈ co{Tsx}s�s0.

Suppose Tμα
β
x /∈ co{Tsx}s�s0, by (1),

d2(Tss0x, Tμαβ
x) ≥ d2(Tss0x,πTμαβ

x) + d2(Tμαβ
x,πTμαβ

x) for each s Î S where

π : C → co{Tsx}s�s0 is the nearest point projection. Thus,
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μαβ
(d2(Tss0x, Tμαβ

x)) ≥ μαβ
(d2(Tss0x,πTμαβ

x))+d2(Tμαβ
x,πTμαβ

x) > μαβ
(d2(Tss0x,πTμαβ

x)). This

impossibility shows that Tμαβ
x ∈ co{Tsx}s�s0.

Step 2. limβ d(Tμαβ
x,Tμαβ

x) = 0.

If this does not hold, there must be some h >0 so that for each b, there exists b’ ≻ b

satisfying d(Tμα
β′ x,Tμα

β′ x) ≥ η. Put ε =
η2

2
. Since the asymptotically invariant net {μb}

satisfies (3), there exists b0 such that |μαβs
(d2(Tsx,Tμαβ

x)) − μαβs
(d2(Tss0x,Tμαβ

x))| < ε

for each b ≽ b0. We suppose first that

μαβ′
0s
(d2(Tss0x,Tμα

β′
0
x)) ≤ μαβ′

0s
(d2(Tsx,Tμα

β′
0
x)). Set w =

Tμαβ′
0
x ⊕ Tμαβ′

0
x

2
. By (CN)

inequality, the following inequalities hold for each s Î S:

d2(Tsx,w) ≤ 1
2
d2(Tsx,Tμα

β′
0
x) +

1
2
d2(Tsx,Tμα

β′
0
x) − 1

4
d2(Tμα

β′
0
x,Tμα

β′
0
x)

≤ 1
2
d2(Tsx, Tμα

β′
0
x) +

1
2
d2(Tsx, Tμα

β′
0
x) − η2

4
.

Therefore,

ϕμα
β′

0
(w) ≤ 1

2
ϕμα

β′
0
(Tμα

β′
0
x) +

1
2

ϕμα
β′

0
(Tμα

β′
0
x) − η2

4

<
1
2

ϕμα
β′
0
(Tμα

β′
0
x) +

1
2

μαβ′
0s
(d2(Tss0x,Tμα

β′
0
x)) +

ε

2
− η2

4

≤ ϕμα
β′
0
(Tμα

β′
0
x) +

ε

2
− η2

4
= ϕμα

β′
0
(Tμα

β′
0
x),

contradicting to the argminimality of Tμα
β′
0

x. In case

μαβ′
0s
(d2(Tsx,Tμα

β′
0
x)) < μαβ′

0s
(d2(Tss0x,Tμα

β′
0
x)), we can show in the same way that

μαβ′
0s
(d2(Tss0x,w)) < μαβ′

0s
(d2(Tss0x,Tμα

β′
0
x)) for some w which also leads to a

contradiction.

Step 3. x0 = Tμx.

We suppose on the contrary and let h := d(x0, Tμx) >0. Let I = [Tμx, x0] and πI : C

® I be the nearest point projection onto I. Since {Tsx} is bounded, there exists M >0

such that d(Tsx, πI (Tsx)) ≤ M for all s Î S. Set N0 >
4(M+η)

5η
and ρ = η

5N0
. Suppose

there exists s0 Î S such that d(πI(Tsx), x0) ≥ 2r for all s ≽ s0. We know, by Step 1, that

Tμαβ
x ∈ co{Tsx}s�s0. Let A := {y Î C: d(πI(y), x0) > 2r}. Using property (N), A is convex

and co{Tsx}s�s0 ⊂ Ā ⊂ {y ∈ C : d(π1(y), x0) ≥ 2ρ} and thus d(πI(Tμαβ
x), x0) ≥ 2ρ. By

Step 2, limβ d(Tμαβ
x,Tμαβ

x) = 0. Choose b0, using the nonexpansiveness of πI, so that

d(πI(Tμαβ
x),πI(Tμαβ

x)) < ρ for all b ≽ b0. Thus, d(πI(Tμαβ
x), x0) > ρ for all b ≽ b0.

But then x0 /∈ co{Tμαβ
x}β�β0 which contradicts to the fact that x0 is the Δ - limit of

{Tμαβ
x}. Therefore, there must be a subnet {s’} of S such that s’ ≻ s for all s and

d(πI(Ts′x), x0) < 2ρ =
2η

5N0
(5)
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for all s’. Hence,

d(πI(Ts′x),Tμx) = η − d(πI(Ts′x), x0) > η − 2η

5N0
. (6)

By the property of N0, 5h2N0 >4hM + 4h2 and so

η2 − 4η2

5N0
>

4ηM
5N0

. (7)

From (5), (6), and (7),

d2(πI(Ts′x),Tμx) > η2 − 4η2

5N0
+ (

2η

5N0
)2 >

4ηM
5N0

+ (
2η

5N0
)2

> 2d(x0, πI(Ts′x))d(Ts′x, πI(Ts′x)) + d2(x0, πI(Ts′x)).

Using (1),

d2(Ts′x,Tμx) ≥ d2(πI(Ts′x),Tμx) + d2(πI(Ts′x),Ts′x)

> d2(x0,πI(Ts′x)) + 2d(x0,πI(Ts′x))d(Ts′x,πI(Ts′x)) + d2(πI(Ts′x),Ts′ x)

= (d(x0,πI(Ts′x)) + d(Ts′x,πI(Ts′ x)))
2

≥ d2(Ts′x, x0)

for all s’. Since the points x0 and Tμx belong to the set F(S), the nets {d2(Tsx, x0)}

and {d2(Tsx, Tμx)} are decreasing. So, lims d
2(Tsx, x0) and lims d

2(Tsx, Tμx) exist.

Hence, �μ(Tμx) = lims d
2(Tsx, Tμx) = lims’ d

2(Ts’x, Tμx) = μs’ (d
2(Ts’x, Tμx)) ≥ μs’(d

2

(Ts’x, x0)) = lims’ d
2(Ts’x, x0) = lims d

2(Tsx, x0) = �μ(x0), a contradiction. Thus, x0 =

Tμx.

The above argument shows that, for every subnet {μa’} of {μa}, there exists a subnet

{μαβ
} of {μa’} such that {Tμαβ

x} Δ-converges to Tμx(= Px). By Remark 2.7 (ii), {Tμα
x}

Δ-converges to Px. □
It is an interesting open problem to determine whether Theorem 3.9 remains valid

when the semigroup is amenable but not commutative.

3.2 Applications

Proposition 3.10. Let C be a closed convex subset of a complete CAT(0) space X and T

: C ® C be a nonexpansive mapping with F(T) ≠ ∅. Let S = (N ∪ {0}, +),

S(S) = {Tn : n ∈ S}, Λ = N or ℝ+ and blk ≥ 0 be such that
∑

k∈S βλk = 1for all l Î Λ.

Suppose for all k Î S,

lim
λ→∞

βλk = 0 (8)

and for each m Î S,

lim
λ→∞

∞∑
k=m

|βλk − βλ(k−m)| = 0. (9)

For any f = (a0, a1,...) Î B(S) let μλ(f ) =
∑∞

k=0 βλkak. Then for each x Î C,

{Tμλ
x}Δ-converges to z for some z in F(T).

In particular, if X is a Hilbert space, we have
∑∞

k=0 βλkTkxconverges weakly to z for

some z in F(T) as l ® ∞.
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Proof. For each m Î S, |μλ(f )−μλ(rmf )| =
∣∣∣∑∞

k=0
βλkak −

∑∞
k=0

βλkak+m
∣∣∣ ≤

∑m−1

k=0
|βλk| |ak|+

∑∞
k=m

∣∣βλk − βλ(k−m)
∣∣ |ak|.

By (8) and (9), we have limλ→∞|μλ(f ) − μλ(rmf )| = 0, and this shows that the net {μl} is

asymptotically invariant. Let x Î C and consider ak of the form ak = d2(Tkx, y) where y Î
C. We see that {μl} satisfies (3). By Theorem 3.9, we have {Tμλ

x} Δ - converges to z for

some z in F(T).

In Hilbert spaces, by a well-known result in probability theory, we know that

∞∑
k=0

βλk

∥∥∥∥∥Tkx −
∞∑
k=0

βλkT
kx

∥∥∥∥∥
2

≤
∞∑
k=0

βλk

∥∥∥Tkx − y
∥∥∥2

for all y Î C. So we have Tμλ
x =

∑∞
k=0 βλkTkx. □

Corollary 3.11 (Bailon Ergodic Theorem). Let C be a closed convex subset of a Hil-

bert space H and T : C ® C be a nonexpansive mapping with F(T) ≠ ∅. Then, for any

x Î C,

Snx =
1
n

n−1∑
k=0

Tkx

converges weakly to z for some z in F(T) as n ® ∞.

Proof. Let Λ = N and put, for l Î Λ and k Î S = (N ∪ {0}, +),

βλk =

{ 1
λ
, k ≤ λ − 1,

0, k > λ − 1.

The result now follows from Proposition 3.10. □
Corollary 3.12. [[15], Theorem 3.5.1] Let C be a closed convex subset of a Hilbert

space H and T : C ® C be a nonexpansive mapping with F(T) ≠ ∅. Then, for any x Î
C, Srx = (1 − r)

∑∞
k=0 r

kTkxconverges weakly to z for some z in F(T) as r ↑ 1.

Proof. Let Λ = ℝ+ and put, for l Î Λ and k Î S = (N ∪{0}, +),

βλk =
(λ − 1)k

λk+1
.

Taking r = λ−1
λ
, Proposition 3.10 implies the desired result.

Let S = (ℝ+ ∪ {0}, +) and C be a closed convex subset of a Hilbert space H. Then, a

family S(S) = {T(s) : s ∈ S} is said to be a continuous nonexpansive semigroup on C if

S(S) satisfies the following:

(i) T(s) : C ® C is a nonexpansive mapping for all s Î S,

(ii) T(t + s)x = T(t)T(s)x for all x Î C and t, s Î S,

(iii) for each x Î C, the mapping s ® T(s)x is continuous, and

(iv) T(0)x = x for all x Î C.

Proposition 3.13. Let C be a closed convex subset of a Hilbert space H. Let S = (ℝ+ ∪
{0}, +), S(S)be a continuous nonexpansive semigroup on C with F(S) �= ∅, Λ = ℝ+ and

gl be a density function on S,i.e., gl ≥ 0 and
∫ ∞
0 gλ(s)ds = 1for all l Î Λ. Suppose gl

satisfies the following properties. for each h Î S,
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lim
λ→∞

gλ(s) = 0 (10)

uniformly on [0, h] and

lim
λ→∞

∫ ∞

h
|gλ(s) − gλ(s − h)|ds = 0. (11)

Then, for any x Î C,∫ ∞

0
gλ(s)T(s)xds

converges weakly to some z ∈ F(S)as l ® ∞.

Proof. For f Î B(S) we define μλ(f ) =
∫ ∞
0 gλ(s)f (s)ds for all l > 0. Thus, μl is a mean

on B(S). For any h Î S we consider

|μλ(f ) − μλ(rhf )| =
∣∣∣∣
∫ ∞

0
gλ(s)f (s)ds −

∫ ∞

0
gλ(s)f (s + h)ds

∣∣∣∣
≤

∫ h

0
|gλ(s)||f (s)|ds +

∫ ∞

h
|gλ(s) − gλ(s − h)||f (s)|ds.

By (10) and (11), limλ|μλ(f ) − μλ(rhf )| = 0. So, {μl} is asymptotically invariant. For

each z Î C, let f(s) = ||z - T(s)x||2. We see that {μl} satisfies (3). For each x Î C, we

know that∫ ∞

0
gλ(s)

∥∥∥∥
∫ ∞

0
gλ(s)T(s)xds − T(s)x

∥∥∥∥
2

ds ≤
∫ ∞

0
gλ(s)

∥∥y − T(s)x
∥∥2ds

for all y Î C. Thus, Tμλ
x =

∫ ∞
0 gλ(s)T(s)xds. By Theorem 3.9, we have∫ ∞

0 gλ(s)T(s)xds converges weakly to some z ∈ F(S) as l ® ∞. □
Corollary 3.14. [[15], Theorem 3.5.2] Let C be a closed convex subset of a Hilbert

space H. Suppose S = (ℝ+ ∪ {0}, +) and S(S)be a continuous nonexpansive semigroup

on C with F(S) �= ∅. Then, for any x Î C,

Sλx =
1
λ

∫ λ

0
T(s)xds

converges weakly to some z ∈ F(S)as l ® ∞.

Proof. Let Λ = ℝ+ and put, for l Î Λ and s Î S, gλ(s) = 1
λ
χ[0,λ]. The result now fol-

lows from Proposition 3.13. □
Corollary 3.15. [[15], Theorem 3.5.3] Let C be a closed convex subset of a Hilbert

space H. Suppose S = (ℝ+ ∪ {0}, +) and S(S)be a continuous nonexpansive semi-group

on C with F(S) �= ∅. Then, for any x Î C,

r
∫ ∞

0
e−rsT(s)xds

converges weakly to some z ∈ F(S)as r ↓ 0.

Proof. Let Λ = ℝ+ and put, for l Î Λ and s Î S, gλ(s) =
1
λ
e
−
1
λ
s. Again, we can then

apply Proposition 3.13 by taking r = 1
λ
. □
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By using Lemma 2.2, we can obtain a strong convergence theorem in Hilbert spaces

stated as Theorem 3.17 below.

Proposition 3.16. Let C be a closed convex subset of a Hilbert space H and T : C ®
C be a nonexpansive mapping with F(T) ≠ ∅. Given x Î C and let r = r(C, {Tnx}). Let

z be the unique asymptotic center of {Tnx}. For each n Î N, define

�n :=

⎧⎨
⎩p = {βnk}k≥n ⊂ [0, 1] :

∑
k≥n

βnk = 1

⎫⎬
⎭

and

Vn := sup
p∈�n

∑
k≥n

βnk

∥∥∥Tkx − x̄n
∥∥∥2

where x̄n =
∑

k≥n βnkTkx. If V := limn®∞ Vn, then V = r2.

Proof. Given ε >0. Since z Î A(C, {Tnx}), by Remark 2.4 (ii), z Î F(T). Choose nε Î N

such that ||Tnx - z|| < r + ε for all n ≥ nε. Fix n ≥ nε and let p = {bnk}k≥n Î Πn. Thus,∑
k≥n

βnk

∥∥∥Tkx − x̄n
∥∥∥2 ≤

∑
k≥n

βnk

∥∥∥Tkx − z
∥∥∥2 < (r + ε)2.

So Vn = sup p∈�n

∑
k≥n βnk

∥∥Tkx − x̄n
∥∥2 < (r + ε)2. Letting n ® ∞, V = limn ® ∞ Vn ≤

(r + ε)2 for any ε > 0. Hence, V ≤ r2.

Next, we show that r2 ≤ V. Indeed, since z ∈ co{Tkx}k≥n for all n Î N, there exists a

sequence {x̄n} with x̄n ∈ co{Tkx}k≥n for each n and x̄n → z as n ® ∞. Put

x̄n =
∑

k≥n βnkTkx. Since {Tnx} is bounded, there exists M >0 such that∥∥Tkx − x̄n
∥∥ +

∥∥Tkx − z
∥∥ ≤ M. For each ε >0, choose nε Î N such that ‖x̄n − z‖ < ε, Vn

< V + ε for all n ≥ nε, and ||Tkx - z|| > r - ε for all k ≥ nε. Thus for any n ≥ nε,∑
k≥n

βnk|||Tkx − x̄n||2 − ||Tkx − z||2|

=
∑
k≥n

βnk|||Tkx − x̄n|| − ||Tkx − z|||(||Tkx − x̄n|| + ||Tkx − z||)

=
∑
k≥n

βnk||x̄n − z||(||Tkx − x̄n|| + ||Tkx − z||) ≤ εM.

Hence,

(r − ε)2 <
∑
k≥n

βnk||Tkx − z||2

=
∑
k≥n

βnk||Tkx − z||2 +
∑
k≥n

βnk||Tkx − x̄n||2 −
∑
k≥n

βnk||Tkx − x̄n||2

≤ Vn +
∑
k≥n

βnk|||Tkx − x̄n||2 − ||Tkx − z||2| < V + ε + εM.

So (r - ε)2 <V + ε + εM for any ε >0. This implies r2 ≤ V.

Theorem 3.17. Let C be a closed convex subset of a Hilbert space H and T : C ® C

be a nonexpansive mapping with F(T) ≠ ∅,. Suppose z, Πn, V, and x̄nbe defined as in

Proposition 3.16. If the sequence {x̄n}satisfies
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lim
n→∞

⎛
⎝∑

k≥n

βnk||Tkx − x̄n||2
⎞
⎠ = V, (12)

then {x̄n}converges (strongly) to z Î F (T ) as n ® ∞.

Proof. Suppose for some ε >0, there exists a subsequence {x̄nl} of {x̄n} such that∥∥x̄nl − z
∥∥ ≥ ε for all l Î N. For each y Î C and n Î N, define

ϕn(y) :=
∑

k≥n βnk||Tkx − y||2. Let 0 < δ <
ε2

8
. By (12) and z Î A(C, {Tkx}), we choose

nδ such that r2 − δ = V − δ < ϕnl(x̄nl) < V + δ = r2 + δ for all nl ≥ nδ and ||Tkx - z||2

<r2 + δ for all k ≥ nδ. Fix l ≥ nδ and let ω =
x̄nl+z
2
. By the Parallelogram law, we have for

each k ≥ nl,

||Tkx − ω||2 =
1
2

||Tkx − x̄nl ||2 +
1
2

||Tkx − z||2 − 1
4

||x̄nl − z||2.

Hence,

ϕnl(ω) <
1
2
(r2 + δ) +

1
2
(r2 + δ) − 1

4
ε2 < r2 − δ < ϕnl(x̄nl).

Using Lemma 2.2, we see that this contradicts to the minimality of ϕnl(x̄nl). □
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