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1 Introduction and preliminaries
Throughout this paper, we assume that H is a real Hilbert space with zero vector 6,
whose inner product and norm are denoted by (-, -) and || - ||, respectively. The sym-
bols N and R are used to denote the sets of positive integers and real numbers, respec-
tively. Let K be a nonempty closed convex subset of H and 7 : K — H be a mapping.
In this paper, the set of fixed points of T is denoted by F(T). We use symbols — and
— to denote strong and weak convergence, respectively.

For each point x € H, there exists a unique nearest point in K, denoted by Pxx, such
that

lx—=Pgxll<llx=yl, Vyek.

The mapping P is called the metric projection from H onto K. It is well known that
Py satisfies

(x —y, Pxx — Pxy) > || Pxx — Pyy|?

for every x, y € H. Moreover, Pix is characterized by the properties: for x € H, and z
e K,
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z=Pg(x) & (x—zz—y) >0, VyekK.

Let f be a bi-function from K x K into R. The classical equilibrium problem is to find
x € K such that

flxy)=0, Vyek. (1.1)

Let EP(f) denote the set of all solutions of the problem (1.1). Since several problems
in physics, optimization, and economics reduce to find a solution of (1.1) (see, e.g.,
[1,2]), some authors had proposed some methods to find the solution of equilibrium
problem (1.1); for instance, see [1-4]. We know that a mapping S is said to be nonex-
pansive mapping if for all x, y € K, [|Sx - Sy|| < ||x - y||. Recently, some authors used
iterative method including composite iterative, CQ iterative, viscosity iterative etc. to
find a common element in the intersection of EP(f) and F(S); see, e.g., [5-11].

Let I be an index set. For each i € I, let f; be a bi-function from K x K into R. The
system of equilibrium problem is to find x € K such that

fi(x,y) >0, VyeK and Viel (1.2)

We know that DIEP(fl) is the set of all solutions of the system of equilibrium pro-
1

blem (1.2).
For each i € I if fi(x, y) = (A, y - x), where A; : K — K is a nonlinear operator, then
the problem (1.2) becomes the following system of variational inequality problem:

Find an element x € K such that (Ax,y —x) >0, VyeK. (1.3)

It is obvious that the problem (1.3) is a special case of the problem (1.2).

The following Lemmas are crucial to our main results.

Lemma 1.1 (Demicloseness principle [12]) Let H be a real Hilbert space and K a
closed convex subset of H. S : K — H is a nonexpansive mapping. Then the mapping I -
S is demiclosed on K, where I is the identity mapping, i.e., x, ~ x in K and (I - S)x,, >
y implies that x € K and (I - S)x = y.

Lemma 1.2 [13] Let {x,}and {y,} be bounded sequences in a Banach space E and let
{B,} be a sequence in [0,1] with O < lim inf,_,., B, < lim sup,_,.. B, < 1. Suppose x,,,, =
By, + (L - B,)x, for all integers n = 0 and lim sup,,_se.(||Ys1 - Vull - ||%0s1 - %4]]) <0,
then lim,, ., ||y, - x4|| = 0.

Lemma 1.3 [5] Let H be a real Hilbert space. Then the following hold.

@ ||+ y[|* < |Iy||* + 2 x + 9) forall x, y € H;

() [lox + (1 - o)y||*> = ||| + (L - ) ||y]|* - @1 - @) ||x - y||* forall x, ye H
and o € R;

© Il - y11* = [l * + [Iyl|* - 2 v, 9) for all x, y € H.

Lemma 1.4. [14] Let {a,} be a sequence of nonnegative real numbers satisfying the

following relation:

ans1 = (1 - )\n)an + Y= 0.

I
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o0
(i) A, € [0,1], X° An = oC0r, equivalently, TI2,(1 — Ay) = 0;
n=0

o0
(i) limsup, . " < 0or Y- [yl < ox,
)Wz n=0

then lim a, =0,
n—oo

Lemma 1.5 [1] Let K be a nonempty closed convex subset of H and F be a bi-function
of K x K into R satisfying the following conditions.

(A1) F(x, x) = 0 for all x € K;

(A2) F is monotone, that is, F(x, y) + F(y, x) <0 for all x, y € K;

(A3) for each x, y, z € K,

lif(l)lF(tZ+ (1 —t)x,y) <F(xy)
t

(A4) for each x € K, y — F(x, y) is convex and lower semi-continuous.Let r > 0 and x
€ H. Then, there exists z € K such that

1
F(z,y)+ (y—zz—x)>0, forall y e K.
T

Lemma 1.6 [3] Let K be a nonempty closed convex subset of H and let F be a bi-
Sfunction of K x K into R satisfying (A1) - (A4). For r >0 and x € H, define a mapping
T,: H— K as follows:

1
Tr(x) = {zeK:F(z,y)+ T(y—z,z—x) >0, VyeK}
for all x € H. Then the following hold:

(i) T, is single-valued;
(i) 7, is firmly nonexpansive, that is, for any x, y € H,

I Trix = Toyll? < (Tox — Ty, x — p);

(iii) F(T,) = EP (F);
(iv) EP(F) is closed and convex.

2 Main results and their applications
Let I = {1, 2,.., k} be a finite index set, where k € N. For each i € I, let f; be a bi-func-

tions from K x K into R satisfying the conditions (A1)-(A4). Denote Tin : H— K by

. 1
T, (x) = {zeK:fi(z,y)+r (y—zz—x)>0, VyeK}.

n

For each (i, n) € I x N, applying Lemmas 1.5 and 1.6, T}'" is a firmly nonexpansive
single-valued mapping such that F(Tin) = EP(fi) is closed and convex. For each i € I,
let u} = T! x,, me N.

First, let us consider the following example.

Page 3 of 15
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Example A Let f; : [-1, 0]x[-1,0] =R be defined by fi(x, y) = (1+x*)(x - y), i = 1, 2, 3.
It is easy to see that for any i € {1, 2, 3}, fi(x, y) satisfies the conditions (A1)-(A4) and
N2, EP(f;) = {0}. Let Sx = x®> and gx = 1x, V x € [-1, 0] Then g is a }-contraction from

K into itself and S : K — K is a nonexpansive mapping with

(ﬂ3 1 EP(ﬁ))) (ME(S) = 0} Let A € (0, 1), {r,} € [1, + ) and {ar,} € (0,1) satisfy the
i=

conditions (i) lim,,. «, = 0, and (i) Y2, an=+00, or equivalently,

T2, (1 —ay) =0;eg., let A = ;, {or,} © (0, 1) and {r,} < [1, + =) be given by

o = 0, if n is even; d r - 2, if n is even;
e rll,ifnisodd. " 2—:!,ifnisodd.

Define a sequence {x,} by

X1 € [—1,0],
u, =T, xp, =123,
Xn+1 = O5ng(xn) + (1 - Oln))/n/
Vn = (1 — A)x, + ASzy,
1 2 3
u u u
Zy = n* 3"+ ", Vnel.

(2.1)

Then the sequences {x,} and {u'}, i = 1, 2, 3, defined by (2.1) all strongly converge to
0.

Proof

(a) By Lemmas 1.5 and 1.6, (2.1) is well defined.

(b) Let K = [-1, 0]. For each i € {1, 2, 3}, define

. 1
Li(y,z,v,1) = (2 —y) |:(l +22) — r(z—v)} Vy,z,ve K, Vr> 1.

We claim that for each v € K and any i € {1, 2, 3}, there exists a unique z = 0 € K
such that

(P) Li(y,z,v,r) >0 VyeK, Vr>1

or, equivalently,
(1+2%)(z—y) + ! (y—z,z—v) = (1+2%)(z—y) + 1(y—z)(z—v) >0 VyeK,Vr>1.
T I

Obviously, z = 0 is a solution of the problem (P). On the other hand, there does not
exist ze [-1, 0) such that z - y < 0 and (1 +2%) — ! (z—v) < 0. So z = 0 is the unique
solution of the problem (P).

(c) We notice that (2.1) is equivalent with (2.2), where
x1 € [-1,0],
filuy) + Tl (y—ul,uf —x,) =0, VyeK\Vi=1,23,

n

Xne1 = ong(xn) + (1 — an)yn, (2.2)
Yn = (1 — A)x, + ASzy,

Uy Uy U

Zn = 3 , neN.
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It is easy to see that {x,} € [-1, 0], so, by (b), u} =u2 =u3 =0 for all n € N. We need

to prove x,, — 0 as n — . Since z,, = 0 for all n € N, we have y, = (1 -A)x,, and
1 1
et =)+ (1= = (1) (1215 = | (1= o) = (1= )|, (23

for all n e N. For any n € N, from (2.3), we have

[xne1| = |:(1 - :lzan) - (1 — an))":| lxn| < (1 - :lzan) E (2.4)

Hence {|x,|} is a strictly deceasing sequence and |x,| > 0 for all n € N. So nlgglo [

exists.
On the other hand, for any n, m € N with n > m, using (2.4), we obtain

[Xne1| < <1 - an) |2 |
1
1— a, 1_2057171 |2n—1]
“T1(1= )
“ .. —_— a x ,
= | 2 i m

j=m

IA
N — N

IA

which implies liﬁsolip IXn| =0 = lirrlgglﬂxn | Therefore {x,} strongly converges to 0.
O

In this paper, motivated by the preceding Example A, we introduce a new iterative
algorithm for the problem of finding a common element in the set of solutions to the
system of equilibrium problem and the set of fixed points of a nonexpansive mapping.
The following new strong convergence theorem is established in the framework of a
real Hilbert space H.

Theorem 2.1 Let K be a nonempty closed convex subset of a real Hilbert space H
and I = {1, 2,.., k} be a finite index set. For each i € I, let f; be a bi-function from K x
K into R satisfying (Al1)-(A4). Let S : K — K be a nonexpansive mapping with

Q= (ﬂ;‘;l EP(f,)) N F(S) #@. Let A, pe (0, 1) and g: K — K is a p-contraction. Let

{x,.} be a sequence generated in the following manner:

X1 € K,
uy =T Xn, Viel
Xn+1 = ang(xn) + (1 - an))/n/ (DH)

Yn = (1 — A)x, + ASzy,,
Cup el

Zn = L , Vnel.

If the above control coefficient sequences {a,,} < (0, 1) and {r,} € (0, +) satisfy the
following restrictions:

oo
(D1) lim &y =0, 3" &y = +00 and lim Joma — anl = 0;
n=1

(D2) lim inf 1, > Ogp4 lim |rpe — 14| = 0,
n—oo n—oo
then the sequences {x,} and {ul}, for all i € I, converge strongly to an element c = Pog

(c) € Q. The following conclusion is immediately drawn from Theorem 2.1.



He and Du Fixed Point Theory and Applications 2011, 2011:33
http://www fixedpointtheoryandapplications.com/content/2011/1/33

Corollary 2.1 Let K be a nonempty closed convex subset of a real Hilbert space H.
Let f be a bi-function from K x K into R satisfying (A1)-(A4) and S : K — K be a non-
expansive mapping with Q = EP(f) NF(S) = &. Let A, p € (0,1) and g : K —> K is a p-
contraction. Let {x,} be a sequence generated in the following manner:

X1 € K,
up = Ty, Xy,

Xne1 = ong(Xn) + (1 — otn)yn,
Yn = (1 — A)xy + ASup, Vn e N.

If the above control coefficient sequences {o.,,} < (0, 1) and {r,} < (0, +e0) satisfy all
the restrictions in Theorem 2.1, then the sequences {x,} and {u,} converge strongly to an
element ¢ = Pag(c) € Q, respectively.

If fx, y) = 0 for all (x, y) € K x K in Theorem 2.1 and all i € I, then, from the algo-
rithm (Dyy), we obtain u, = Px(x,), V i € I So we have the following result.

Corollary 2.2 Let K be a nonempty closed convex subset of a real Hilbert space H.
Let S : K — K be a nonexpansive mapping with F(S) = &. Let A, pe (0, 1) and g: K
— K is a p-contraction. Let {x,} be a sequence generated in the following manner:

x1 €K,

Xne1 = Ang(Xn) + (1 — an)yn,
Yn = (1 = A)x, + ASPk (xn), Vn e .

If the above control coefficient sequences {c,} < (0, 1) satisfy HILHJO on =0,
nlgfolo lotne1 — anl = Ogpd nlgglo lotns1 — anl = 0, then the sequences {x,} converge strongly
to an element ¢ = Pog(c) € F (S).

As some interesting and important applications of Theorem 2.1 for optimization pro-
blems and fixed point problems, we have the following.

Application (I) of Theorem 2.1 We will give an iterative algorithm for the following
optimization problem with a nonempty common solution set:

min h;(x), ie€{l,2,...,k}, (opr)
xeK

where h;(x), i € {1, 2,..., k}, are convex and lower semi-continuous functions defined
on a closed convex subset K of a Hilbert space H (for example, /,(x) = &', x € K := [0,
1], ie {1, 2,.., &}).

If we put fi(x, y) = hi(y) - hix), i € {1, 2,..., k}, then ﬂ?:l EP(f;) is the common solu-
tion set of the problem (OP), where ﬂﬁl EP(f;) denote the common solution set of the
following equilibrium:

Findx € K such that fi(x,y) >0, VyeK andVie{l,2,... k}.

For i e {1, 2,.., k}, it is obvious that the fi(x, y) satisfies the conditions (A1)-(A4). Let
S = I (identity mapping), then from (D), we have the following algorithm

. 1 L
hi()/)—hi(u’n)+r (y—ul,ul —x,) >0, VyeK andVie{1,2,...,k},

n

Xn+1 = ang(xn) + (1 — O571))’71/

Yn = (1 —A)xn + Azy,

Y ul +- o+t
" k

(2.5)

, n>1.

Page 6 of 15
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where x; € K, A € (0, 1), g: K — K is a p-contraction. From Theorem 2.1, we know
that {x,} and {u'}, i € {1,2,..., k}, generated by (2.5), strongly converge to an element of
ﬂle EP(f;) if the coefficients {c,,} and {r,;} satisfy the conditions of Theorem 2.1.

Application (1) of Theorem 2.1 Let H, K, I, A, p, g be the same as Theorem 2.1. Let

k
Ay, Ay, Ap : K — K be k nonlinear mappings with (1) F(A;) # @. For any i € I, put f;
i=1

. k k

(%, 9) ={x - Ax, y - x), ¥V x, y € K. Since ﬂi:l EP(f;) = ﬂi:l F(A;), we have
k
ﬂEP(f,) # (. Let S = I (identity mapping) in the algorithm (Dp). Then the sequences
i=1
{x,} and {u!}, defined by the algorithm (Dy), converge strongly to a common fixed
point of {4, Ay,..., Ai}, respectively.

The following result is important in this paper.

Lemma 2.1 Let H be a real Hilbert space. Then for any xq, x5,... xy € H and ay, as,...,
ai € [0,1] with Z;‘;l ai=1 ke N, we have

2

k k k-1 k

2 2
Yoami| =Y aillwl® =) Y a | x—x)*. (2.6)
i=1 i=1 i=1 j=i+l

Proof It is obvious that (2.6) is true if @; = 1 for some j, so it suffices to show that
(2.6) is true for a; # 1 for all j. The proof is by mathematic induction on k. Clearly,
(2.6) is true for k = 1. Let x1, ¥ € H and a3, a, € [0,1] with a; + a, = 1. By Lemma
1.3, we obtain

2 2 2 2
| a1x1 + axx2||1” = ay | 1117 + a2 || X217 — araz || x1 — x2|1%,

which means that (2.6) hold for k = 2. Suppose that (2.6) is true for k = / € N. Let

. 1+1 i
X1, X2yey X X141 € H and aq, ao,..., a;, aq € [0, 1) with Zi: ai=1Lety=3%"" 1f1ulxi.

Then applying the induction hypothesis we have

141 2

P

i=1

=l arxy + (1 —ay)yl?

=ar 2l + (1 —ar) I y1? —ar(1 —ar) Il 1 =yl
1+1 11+

1
=Y allxl? - SO a6 — 0
o 1—a;

i=2 j=isl
L 2
’
—a(-a)|Y (i —x1)
—~ 1 —a
i=2
1+1 I+ 1+1
2 1 2 ai 2
=Y ail sl - X aw s -5l —a(l—a) )y Il 1 — il
" 1—a “—~ ~ —~ 1 —a
i=1 i=2 j=i+l i=2
Lo @
1 ) 2
+a;(1—a ZZ Xi — Xj
(1-a) L—ay1—a ¥l
i=2 j=i+1
1+1 I+
2 1 2
=Y ailxl’ - SO aia lxi -l
" 1—a &~ -~
i=1 i=2 j=isl
1+1 a 11+l
2 1 2
=2 aa v xS | — xl
i=2 1o jeint
1+1 1+1 1+l
2 2 2
=Y ailwl? =Y aa x —xl? =) Y aiay | xi — x|
i=1 i=2 i=2 j=i+1

I+1 I I+l

2 2
= Zax I xill= — Z Zai“j Il xi — %17
i=1

i=1 joi+]



He and Du Fixed Point Theory and Applications 2011, 2011:33 Page 8 of 15
http://www.fixedpointtheoryandapplications.com/content/2011/1/33

Hence, the equality (2.6) is also true for k = [ + 1. This completes the induction. O

3 Proof of Theorem 2.1
We will proceed with the following steps.

Step 1: There exists a unique ¢ € Q € H such that Pagl(c) = c.

Since Png is a p-contraction on H, Banach contraction principle ensures that there
exists a unique ¢ € H such that ¢ = Pog(c) € Q.

Step 2: We prove that the sequences {x,}, {7}, {z,} and {u'}, Vi € I, are all bounded.

First, we notice that (Dy) is equivalent with (Z;;), where
x1 €K

1
fiuly)+  (y—ubul —x,) >0, VyeKk,

Tn

i
falug,y) + . y—u2 12 —x,) >0, Vyek,
n

: (Zn)
k 1 k ok
fk(un'y) + r (y_unlun _xn) Z Or V)/E K/
n
Xn+1 = ang(xn) + (1 - an))/n/
Yn = (1 — A)x, + ASzy,
wl .oyt
Zn = n ™t * n, ne N.
k
For each i € I, we have
iy —cll = T2 = Ticll < llw—cll, ¥ e . (3.1)
For any n € N, from (Zy) we have
lzn —cll <Ml xp—c
and
lyn—cll <llxn—cl. (3.2)

Since g is a p-contraction, it follows from (3.2) that

| X1 —c |l < o ||g(xn) - C” + (1 - an) ||)/n - C”
< an [|g(xn) — 8()|| +an [ 8(c) — ¢ + (1 — ) [yn =]
< anp %0 — cll +an [8(c) — | + (1 — a) [lxn — €

8(c) —c¢
= [1 —an(1 - /0)] llxn — cll + (1 = p) ” 1—p ”
SmaX{Hxn—CH,”g(c)_cn}, forn e N.
1-p
By induction, we obtain
lx, —c| < max{ll x1—cl, | g(lc)—c ”}forallne N,
—p
which shows that {x,} is bounded. Also, we know that {y,,}, {z,} and {u!}, Vi € I, are
all
bounded.

Step 3: We prove lim,, ... ||%,.1 - .|| = 0.
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For each i € I, since ”fq—p ul € K, from (Z), we have

filul, vl )+ . W —ul,u —x,) >0, (3.3)
n

and

. ) 1. . )
filuy,_q, up,) + - (U, —up,_y, Uy —Xy—1) > 0. (3.4)
.

By (3.3) and (3.4) and (A2),

0.2 0 ) =t )]+ 0 — ot == " ()
n—1
. S T, .
= (ui:—l - u;'u; —Xn — . ! (u;z_l — Xn—1))
1

n—
which implies

. . . . Tn .
i N1 — Uyt Xy — Xp1 + Xy — Uy + - (w1 —xn—1)) <0. (3.5)
e

(U_y —u,u

It follows from (3.5) that

i i ™h — Th—1 i
Iy, — vy | < Il — Xy | + | Xp—1 —u;,_; || forallneN. (3.6)

n—1

Let M := | Sl %01 —tl_, < oo For any n e N, since z, = | (u} +---+uf), by
(3.6), we have

k
1 : : Tn — Tn—
e D [ e e RVl (3.7)
i-1 Th—1
Set
+1 ™ 1-
v, = Xn+1 ( ,Bn)xn’ (3.8)
Bn
where ,=1- (1 -A)(1 - &), n € N. Then for each n e N,
Xn+l — Xp = ,Bn(vn - xn) (39)
and
by ang(xn) + 2(1 — an)Szn. (3.10)

Bn

For any n € N, since

amlg(xml) _ ang(xn) _ )L(l - Oln)szn N )\(1 - O571+I)SZ11+1

Unyl — Up =
/Sn+1 ﬁn /Sn ﬁn+l
_ Olmlg(xml) _ ang(xn) _ )b(l _an)(szn - Szml) _ )\(1 — Oy _ 1—ap )SZWHI
ﬂrHl ﬁn ﬁn lsn /3"+1
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by (3.7), it follows that

o X o X Ml -« Zp— 2%
oo = s, < et 18Co) | e 18Ca) I 21— e} [ 20 =2 |

ﬁn+1 ,Bn ﬁn
o= St = W =
n+ n+ n n )L 1— n
e A (LY
+M The1 —Tn ‘1_0‘71_1_0‘;%1 ||SZ,H.1 ”
Bn Tn Bn B
From this and (D1), (D2), we get
lim sup{l| vne1 — v | = || %01 — %4 I} < 0. (3.11)
n—oo
By Lemma 1.2 and (3.11),
lim || v, —x, || = 0. (3.12)
n—o00
Owing to (3.9) and (3.12), we obtain
lim || X541 — % || = 0. (3.13)
n—o00
Step 4: We show lim,_ o || Sul, —ui || = 0.
By (3.6), (3.13) and (D2), we have
lim | . —u =0, Viel
From (Zy), we get
lim || xp1 —yn | = lim ay || g(x2) —ya || = 0. (3.14)
n—o00 n—0oo

Since ||x,, - yull < 1%, - %ps1l] + %041 - ¥ul], by (3.13) and (3.14),

Jim | yn — x|l =0,
which implies that

. 1

lim || Sz —x, || = im || yp — 2, || = 0.

n— 00 n—o00 \
By Lemma 1.6,

el = I Ty=T5 ol = (T =T, cxu—) = ) {1 = e+ 130 =l 1 = 5l
which yields that

Ity = cl® <l 2 — el ||y, — xull®. (3.15)

From (3.15) and Lemma 2.1,

k

> -0

i=1

2
lzn—cll® =

P 1<
< i 2~ 2 i 2
< | u, —cll® <1l xn—cll”— I uy, —xall”
k i=1 k i=1
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Since
I %ne1 —cll® < o Il §Ctn) —cll® + (1 — o) || yu — cll?
< [ %0 —cll® + 200, L + (1 — 0tn) ||y — Il
<[1 =11 —ap)] || X0 — cll* + 20, L + A(1 — at) || 20 — c|)?
where

L =max{2 | g(c) —c Il xa—cll, Il §(c) — cll*} < o0,
We have

k
11—« .
) "R =l < 0 el = | X —cl?+20mL < (I 2a—c | + 1| K1 —C 1) | 50 =1 || +2000.L(3.16)
i=1

Letting n — o in the inequality (3.16), we obtain
lim | uw —x, =0, Viel (3.17)
Furthermore, it is easy to prove that
lim |2y —xq || = lim [ u, —20 =0 Vi€l
For any i € I, since
ISty — iy Il < 1 Sty = Sz | + 1| Sz — % || + 1l 0 =ty |,
it implies

lim || S, —uj, || = 0. (3.18)

n—oo

Step 5: Prove lim sup,, ;.. {(g(c) - ¢, x,, - ¢) < 0.
Take a subsequence {xy,} of {x,} such that

lim sup(g(c) — ¢, xn —¢) = [lirg)(g(c) — ¢, Xy, — C). (3.19)

n—-oo

Since {x;,} is bounded, there exists a subsequence of {x,,} which is still denoted by
{x4,} such that X», — 2z as £ — oo, Notice that for each i € I, ZILTEO I Ui,z — X, I=0 by
(3.17), so we also have ”iz[ —~zasl —>oo,Vie L

We want to show z € . First, we show that z € F(S). In fact, since
Zli)f{.lo I (I— S)UL{ Il = Zlif{.lo I Sui,@ - ui,g Il =0 and uiu — z as £ — «, by Lemma 1.1, we

have (I - S)z = 0 or, equivalently, z € F(S).

A 1 o
For each i € I, since fi(u,,.y) + . {y —up, uy, —%xn,) 20,V y e K, it follows from
ng

(A2) that
Uy, =) = ) i) =t — %) = fi )
- V4 ne’ Un, ne) = Jilys g i n[/y Ty Y ne’ Y, ne) = JilYs ng )’
and hence
Ul —x .
y—u, " Y= firul), VyekK.

e
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Applying (3.17) and (A4),
fily,z) <0, VyeKk. (3.20)

Let y € K be given. Put y, =ty + (1 - £)z, t € (0, 1). Then y, € K and f{(y,, z) < 0 for
all i e 1. By (A1) and (A4), we get

0=firy) = tiyoy) + (1 = Oy 2) < tfi(piy) Viel
For any i € I, by (A3), we have

filz ) = ltifgﬁ(ty +(1-1)zy) = l}g}ﬁ(yu y) = 0. (3.21)

Hence, from (3.21), ze ﬂi‘:l EP(f3) Therefore, we proved
z€Q= (ﬂ?zl EP(f;)) (N F(S)- On the other hand, by (3.19), we obtain

lim sup(g(c) — ¢, %, —¢) = (g(c) —c,z—¢) < 0. (3.22)

n—oo

Step 6: Finally, we prove {x,} and {ul}, for all i € I, converge strongly to ¢ = Png(c)
e Q.
From (Zy) and (a) of Lemma 1.3, we have
e = ell? < (1= @) llyn — cll? + 20 (8(x) — 8(€) +8(¢) = ¢, %ne1 — )
< (1 —an)’xn —cll* + 2anpllxn — |l [1xn 1 —cll + 20(8(¢) — €, %n 41 —©)
< (1= 20y + ap)lln — ¢l + 2appllxn = el 1% = %n 11| + 20p]l%0 — cl|?
+20,(8(¢) — ¢ X1 — ) (3.23)
= (1=2(1 = p)an)llxn — ¢l + apllxn —cll* + 2anplln — | |1xn — %n 1]
+20,(8(¢) — ¢ Xnse1 —C)
= (1=2(1 = p)aa)lln — clI* + g llxn — c|I* + 2apl1xn — cl| [1Xn — Xp1 |

+20,(8(¢) — ¢ X1 — C).
Forany n e Z, let
an = |lxn —cll?,

by = allx, — C”2 + 2p|1%0 = cl] l1xn — xpaa |l + 2(8(c) — ¢, xps1 — ),
An=2(1—p)ay,

and
¥n = Qnby.
From (3.23), we have
Ayl < (1 —Ap)an +yn, VYnelN

It is easy to verify that all conditions of Lemma 1.4 are satisfied. Hence, applying
Lemma 1.4, we obtain lim,,_,.. a,, = 0 which implies
lim |[x, —cl| =0,
n—oo

or equivalence, {x,} strongly converges to c¢. By (3.17), we can prove that for any i €

I, {ul} strongly converges to c. The proof of Theorem 2.1 is completed. 0
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4 Further remarks

Let K be a nonempty closed convex subset of H and f be a bi-function of K x K into R.
Remark 4.1 Recently, some authors introduced the following mixed equilibrium pro-

blem (MEP, for short) (see [15-17] and references therein) and generalized equilibrium

problem (GEP, for short) (see [18-20] and references therein):

(a) Mixed equilibrium problem [15-17]:

Find an elementx € Csuch thatf(x,y) + ¢(y) — ¢(x) > 0, VyeC. (MEP)

where ¢ : C — R is a real-valued function.

(b) Generalized equilibrium problem [18-20]:
Find an elementx € Csuch thatf(x,y) + (Ax,y —x) >0, VyeC. (GEP)

where A : C — H is a nonlinear operator.

In [15-17], the authors gave some iterative methods for finding the solution of MEP
when the bi-function flx, y) admits the conditions (A1)-(A4) and the real-valued func-
tion ¢ satisfies the following condition:

(A5) ¢ : C — R is a proper lower semi-continuous and convex function.

However, in this case, we argue that the problem MEP is still the equilibrium pro-
blem (1.1). In fact, if we put fi(x, y) = fix, ¥), folx, y) = ¢(y) - ¢(x) and F(x, y) = fi(x, y)
+ fo(x, y) for each (x, y) € C x C, then fi(x, y) satisfies the conditions (A1)-(A4), f>(x,
y) satisfies the condition (A5) and the function ¢ must satisfy the conditions (A1)-
(A4). This shows that for each (x, y) € C x C, F(x, y) satisfies the conditions (Al)-
(A4). So, when we study the solution of MEP, we only need to study the solution of
the equilibrium (1.1). This also shows that some “so-called” mixed equilibrium pro-
blem studied in [15-17] is still the equilibrium problem (1.1).

Remark 4. 2 Let us recall some well-known definitions. A mapping 7: C — C is said
to be

(1) v-expansive if ||Tx - Ty|| = v||x - y|| for all x, y € C. In particular, if v = 1, then
T is called expansive.
(2) v-strongly monotone if there exists a constant v >0 such that

(Tx — Ty, x —y) = v|jx —y||>, Vx,yeC.

Clearly, any v-strongly monotone mapping is v-expansive.
(3) u-inverse strongly monotone if there exists a constant z# >0 such that

(Tx — Ty, x —y) > ul|Tx — Ty||*, Vx,y e C.

(4) L-Lipschitz continuous if ||Tx - Ty|| < L||x - y|| for all x, y € C. In particular, if
L =1, then T is called nonexpansive.



He and Du Fixed Point Theory and Applications 2011, 2011:33 Page 14 of 15
http://www fixedpointtheoryandapplications.com/content/2011/1/33

It is easy to see that a u-inverse strongly monotone operator is ;-Lipschitz
continuous.

For the problem GEP, if the nonlinear operator A : C — H is a u-inverse strongly
monotone operator and the bi-function f(x, y) admits the conditions (A1)-(A4), we
argue that the problem GEP is still the problem (1.1) and so it is indeed not a general-
ization. In fact, if A is a u-inverse strongly monotone operator from C into H, then A
is a continuous operator. So, we obtain easily that the function (x, y) > <Ax, y - x),
Vx, y € C, satisfies the conditions (A1)-(A4). Hence, if we put F(x, y) = flx, y) + (Ax, y
- x) > 0, then the problem GEP studied in [18-20] is still the problem (1.1).

5 Conclusion
The problem MEP studied in [15-17] and the problem GEP studied in [18-20] are still
the problem (1.1) studied in the literature [5-11,21-24] and others.
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