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1. Introduction

Let H be a real Hilbert space, C be a nonempty closed convex subset of H and let Pc
be the metric projection of H onto the closed convex subset C. Let S: C — C be a
nonexpansive mapping, that is, ||Sx - Sy|| < ||x - y|| for all x, y € C. We denote by F
(S) the set fixed point of S. If C € H is nonempty, bounded, closed and convex and S
is a nonexpansive mapping of C into itself, then F(S) is nonempty; see, for example,
[1,2]. A mapping f: C — C is a contraction on C if there exists a constant 11 € (0, 1)
such that ||[fix) - fy)|| < n||x - y|| for all x, y € C. In addition, let D : C — H be a
nonlinear mapping, ¢ : C — R U {+} be a real-valued function and let F: C x C > R
be a bifunction such that C n dom ¢ # &, where R is the set of real numbers and dom
¢ ={xe C: px) <+oo}.

The generalized mixed equilibrium problem for finding x € C such that

F(x, y)+ (Dx, y —x) + o(y) —¢(x) >0, VyeC. (1.1)
The set of solutions of (1.1) is denoted by GMEP(F, ¢, D), that is,
GMEP (F, ¢, D) ={x € C:F(x, y)+(Dx, y —x) + ¢(y) — ¢(x) > 0, Vye C}.

We find that if x is a solution of a problem (1.1), then x € dom ¢.
If D = 0, then the problem (1.1) is reduced into the mixed equilibrium problem
which is denoted by MEP(F, ¢).
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If ¢ = 0, then the problem (1.1) is reduced into the generalized equilibrium problem
which is denoted by GEP(F, D).

If D =0 and ¢ = 0, then the problem (1.1) is reduced into the equilibrium problem
which is denoted by EP(F).

If F =0 and ¢ = 0, then the problem (1.1) is reduced into the variational inequality
problem which is denoted by VI(C, D).

The generalized mixed equilibrium problems include, as special cases, some optimi-
zation problems, fixed point problems, variational inequality problems, Nash equili-
brium problems in noncooperative games, equilibrium problem, Numerous problems
in physics, economics and others. Some methods have been proposed to solve the pro-
blem (1.1); see, for instance, [3,4] and the references therein.

Definition 1.1. Let B : C — H be nonlinear mappings. Then, B is called

(1) monotone if (Bx - By, x - y) 20, Vx, y € C,
(2) B-inverse-strongly monotone if there exists a constant 8 > 0 such that

(Bx— By, x—y) > Bl|Bx—By|I>, Vx, yeC.

(3) A set-valued mapping Q : H — 2 is called monotone if for all x, y € H, fe Qx
and ge Qy imply (x- y, f- g) > 0. A monotone mapping Q : H — 2" is called max-
imal if the graph G(Q) of Q is not properly contained in the graph of any other
monotone mapping. It is well known that a monotone mapping Q is maximal if
and only if for (x, f) I H x H, (x - y, f- g) > 0 for every (y, g) I G(Q) implies f 1 Qx.

A typical problem is to minimize a quadratic function over the set of fixed points of
a nonexpansive mapping defined on a real Hilbert space H:

1
min _(Ax, x) — {(x, b),

xeF

where F is the fixed point set of a nonexpansive mapping S defined on H and b is a
given point in H.

A linear-bounded operator A is strongly positive if there exists a constant y > 0 with
the property

(Ax, x) > 7|Ix||>, Vxe H.

Recently, Marino and Xu [5] introduced a new iterative scheme by the viscosity
approximation method:

Xns1 = EnVf(xXn) + (1 — €nA)Sxy. (1.2)

They proved that the sequences {x,} generated by (1.2) converges strongly to the
unique solution of the variational inequality

(yfe— Az, x—z) <0, VxeF(S),
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which is the optimality condition for the minimization problem:

1

min _(Ax, x) — h(x),

xeF(S) 2( ) (*)
where /1 is a potential function for .
For finding a common element of the set of fixed points of a nonexpansive mapping
and the set of solutions of variational inequalities for a &-inverse-strongly monotone
mapping, Takahashi and Toyoda [6] introduced the following iterative scheme:

xp € C chosen arbitrary,

(1.3)
Xn+l = VnXn + (1 - Vn)SPC(xn - aann)/ Yn >0,

where B is a &-inverse-strongly monotone mapping, {¥,} is a sequence in (0, 1), and
{o,} is a sequence in (0, 2¢). They showed that if F(S) n VI(C, B) is nonempty, then
the sequence {x,} generated by (1.3) converges weakly to some z € F(S) n VI(C, B).

The method of the steepest descent, also known as The Gradient Descent, is the
simplest of the gradient methods. By means of simple optimization algorithm, this
popular method can find the local minimum of a function. It is a method that is widely
popular among mathematicians and physicists due to its easy concept.

For finding a common element of F(S) n VI(C, B), let S : H — H be nonexpansive
mappings, Yamada [7] introduced the following iterative scheme called the hybrid stee-
pest descent method.:

Xpe1 = Sxy — ayuBSx,, VYn>1, (1.4)

where x; = x € H, {o,,} € (0, 1), B: H— H is a strongly monotone and Lipschitz
continuous mapping and 4 is a positive real number. He proved that the sequence {x,}
generated by (1.4) converged strongly to the unique solution of the F(S) n VI(C, B).

On the other hand, for finding an element of F(S) n VI(C, B) n EP(F), Su et al. [8]
introduced the following iterative scheme by the viscosity approximation method in
Hilbert spaces: x; € H

F(ttn, y) + Ly = tn, U — %) 20, y€C,

(1.5)
X1 = Anf (1) + (1 — on)SPc(uy — AyBuy,), Vn>1,

where o, € [0, 1) and r,, © (0, =) satisfy some appropriate conditions. Furthermore,
they prove {x,} and {u,} converge strongly to the same point z € F(S) n VI(C, B) n EP
(F), where z = Prs)avi(c,) n epfl2)-

For finding a common element of F(S) N GEP(F, D), let C be a nonempty closed con-
vex subset of a real Hilbert space H. Let D be a 3-inverse-strongly monotone mapping
of C into H, and let S be a nonexpansive mapping of C into itself, Takahashi and Taka-
hashi [9] introduced the following iterative scheme:

F(un, y) + (Dxp, v — tn) + ri (y —Un, Uy —x,) >0, VyeC,
Yn = anX + (1 — o), (1.6)
Xn+l = VnXn + (1 - Vn)SYn/ vn>1,
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where {o,,} € [0, 1], {3,,} € [0, 1] and {r,,} € [0, 2] satisfy some parameters control-
ling conditions. They proved that the sequence {x,} defined by (1.6) converges strongly
to a common element of F(S) N GEP(F, D).

Recently, Chantarangsi et al. [10] introduced a new iterative algorithm using a viscosity
hybrid steepest descent method for solving a common solution of a generalized mixed
equilibrium problem, the set of fixed points of a nonexpansive mapping and the set of
solutions of variational inequality problem in a real Hilbert space. Jaiboon [11] suggests
and analyzes an iterative scheme based on the hybrid steepest descent method for find-
ing a common element of the set of solutions of a system of equilibrium problems, the
set of fixed points of a nonexpansive mapping and the set of solutions of the variational
inequality problems for inverse strongly monotone mappings in Hilbert spaces.

In this article, motivated and inspired by the studies mentioned above, we introduce
an iterative scheme using a relaxed hybrid steepest descent method for finding a com-
mon element of the set of solutions of generalized mixed equilibrium problems, the set
of fixed points of a nonexpansive mapping and the set of solutions of variational inequal-
ity problems for inverse strongly monotone mapping in a real Hilbert space. Our results
improve and extend the corresponding results of Jung [12] and some others.

2. Preliminaries

Throughout this article, we always assume H to be a real Hilbert space, and let C be a

nonempty closed convex subset of H. For a sequence {x,}, the notation of x, - x and

x,, — x means that the sequence {x,} converges weakly and strongly to x, respectively.
For every point x € H, there exists a unique nearest point in C, denoted by Pcx, such that

[lx — Pcx|| < [lx—yll, VxeC.

Such a mapping P from H onto C is called the metric projection.
The following known lemmas will be used in the proof of our main results.
Lemma 2.1. Let H be a real Hilbert spaces H. Then, the following identities hold:

(i) for each x € H and x* € C, x* = Pcx & (x - x*,y - x*) <0, Vy e G;

(ii) Pc: H — C is nonexpansive, that is, ||Pcx - Poy|| < ||x - y||, V%, y € H;

(iii) P is firmly nonexpansive, that is, ||Pcx - Pey||> < (Pex - Pey, x - y), V%, y € H;
() ||t + (1 - 21> = llxl]> + (0 - D[yl - &1 - Dl - y||*, Ve e [0, 1], Vx, y € H;
W) 1 + 9117 < (1] + 20, % + 9).

Lemma 2.2. [2]Let H be a Hilbert space, let C be a nonempty closed convex subset of
H, and let B be a mapping of C into H. Let x* € C. Then, for A >0,

x* € VI(C, B) & x* = Po(x* — ABx™),

where Pc is the metric projection of H onto C.

Lemma 2.3. [2]Let H be a Hilbert space, and let C be a nonempty closed convex subset
of H. Let B >0, and let A : C — H be B-inverse strongly monotone. If 0 <p < 2f3, then I
-PA is a nonexpansive mapping of C into H, where I is the identity mapping on H.

Lemma 2.4. Let H be a real Hilbert space, let C be a nonempty closed convex subset
of H, let S : C — C be a nonexpansive mapping, and let B : C — H be a ¢-inverse
strongly monotone. If 0 < a,, < 2¢, then S - ,,BS is a nonexpansive mapping in H.



Onjai-uea et al. Fixed Point Theory and Applications 2011, 2011:32 Page 5 of 20
http://www fixedpointtheoryandapplications.com/content/2011/1/32

Proof. For any x, y € C and 0 < ¢, < 2¢, we have

|(S — auBS)x — (S — @uBS)y||* = 11(Sx — Sy) — on(BSx — BSy)||*
= 1Sx — Sy||* — 2a,(Sx — Sy, BSx — BSy) + 2||BSx — BSy||?
< |lx = yII* — 20,&||BSx — BSy|| + o ||BSx — BSy||?
= [lx = yI1> + ap(en — 2&)||BSx — BSy||?

2
< llx =yl

Hence, S - o,,BS is a nonexpansive mapping of C into H. O

Lemma 2.5. [13]Let B be a monotone mapping of C into H and let Ncw; be the nor-
mal cone to C at w, € C, that is, New, = {we H:{(w; - wy, w) 20, Vwy € C} and
define a mapping Q on C by

Bw; + Ncwy, w; € C;

QWI - @, w1 ¢ C.

Then, Q is maximal monotone and 0 € Qw, if and only if wy € VI(C, B).
Lemma 2.6. [14]Each Hilbert space H satisfies Opial’s condition, that is, for any

sequence {x,} © H with x,, — x, the inequality

lim inf||x, — x|| < lim inf||x,, — y||
n—oo n—oo

holds for each y € H with y # x.
Lemma 2.7. [5]Let C be a nonempty closed convex subset of H and let f be a contrac-
tion of H into itself with coefficient n € (0, 1) and A be a strongly positive linear-

bounded operator on H with coefficient y > 0. Then, for 0 <y < 1’;,

=y, A=yHx—(A—y )= F —ny)llx—ylI>, x yeH.

That is, A - y f is strongly monotone with coefficient y — ny.

Lemma 2.8. [5]Assume A to be a strongly positive linear-bounded operator on H with
coefficient 7 > Oand 0 < p < ||A||™". Then, ||l — pA|| <1 — pp.

For solving the generalized mixed equilibrium problem and the mixed equilibrium
problem, let us give the following assumptions for the bifunction F, the function ¢ and
the set C:

(H1) Fx, x) = 0, Vx e G;

(H2) F is monotone, that is, F(x, y) + F(y, x) <0 Vx, y € C;

(H3) for each y € C, x o F(x, y) is weakly upper semicontinuous;

(H4) for each x € C, y a F(x, y) is convex;

(H5) for each x € C, y a F(x, y) is lower semicontinuous;

(B1) for each x € H and A >0, there exist abounded subset G, € C and y, € C
such that for any ze C\n G,

F(z, yx) + 0(yx) — @(2) + , (1x —2, 2—X) < 0; (2.1)

(B2) C is a bounded set.
Lemma 2.9. [15]Let C be a nonempty closed convex subset of H. Let F: C xC — R be
a bifunction satisfies (H1)-(HS5), and let ¢ : C — RU{+oo} be a proper lower semi contin-
uous and convex function. Assume that either (B1) or (B2) holds. For A > 0 and x € H,
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define a mapping T§F %) . H —s Cas follows:
1
Tﬁp’(p)(x) = {ze C: F(z, y) +o(y) — ¢(z) + )\(y—z, z—x)>0, y€ C}, Vz € H.

Then, the following properties hold:

(i) For each x € H, TiF"”)(x) # 0
(ii) Tf ®js single-valued;

(iii) TiF “)is firmly nonexpansive, that is, for any x, y € H,

F, F, F, F,
||T£ (ﬂ)x_T)(\ (p)y”Z S(T)(\ (ﬂ)x_T)(\ (p)yl x_y>,

(iv) F(T\")) = MEP(F, ¢)
(v) MEP(F, ¢) is closed and convex.

Lemma 2.10. [16]Assume {a,} to be a sequence of nonnegative real numbers such
that

ans1 = (1 - bn)an +¢, n=0,

where {b,;} is a sequence in (0, 1) and {c,} is a sequence in R such that

(1) ZZZ] by = oo,

(2) limsup, ;" < Oor 302 feul < 00

Then, lim,, _,., a, = 0.

3. Main results
In this section, we are in a position to state and prove our main results.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F be bifunction from C x C toR satisfying (HI)-(HS), and let ¢ : C — R U {+oo} be
a proper lower semicontinuous and convex function with either (B1) or (B2). Let B, D
be two &, B-inverse strongly monotone mapping of C into H, respectively, and let S : C
— C be a nonexpansive mapping. Let f: C — C be a contraction mapping with n € (0,
1), and let A be a strongly positive linear-bounded operator with y > 0and 0 < y < }rlz
Assume that © := F (S) n VI(C, B) n GMEP(F, ¢, D) = &. Let {x,}, {y,} and {u,} be
sequences generated by the following iterative algorithm:

x1 =x € C chosen arbitrary,
F,
Uy = T}(\n ¢) (% — AnDxy),

Yn = Buyf(xn) + (I — BuA)Pc(Suy — oy BSuy),
Xns1 = (1 = 8,)yn + 8,Pc(Syn — anBSyn), Vn > 1,

(3.1)

where {on} and {B,} are two sequences in (0, 1) satisfying the following conditions:
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(C1) lim, . B, =0 and > 2, Bn = 0,

(C2) {0,} < [0, b], for some b e (0, 1) and lim,, _,.. |3,41 - 94| = 0,
(C3) A} € [¢, d] € (0, 2B) and lim,, _o. |Ays1 - Au| = 0,

(C4) {0} < [e, gl € (0, 28) and lim,, .. |04,,1 - ,| = 0.

Then, {x,} converges strongly to z € ©, which is the unique solution of the variational
inequality
(yf(z) — Az, x — z) <0, Vxe0O. (3.2)
Proof. We may assume, in view of 8, — 0 as n — o, that 8, € (0, ||A||™"). By
Lemma 2.8, we obtain || — B,Al| <1 — By, V, e N.
We divide the proof of Theorem 3.1 into six steps.

Step 1. We claim that the sequence {x,;} is bounded.
Now, let p € 0. Then, it is clear that

p=Sp = Pc(p — anBp) = T1. *(p — 1aDp).
Let u, = T/&F"p)(xn — AuDxy,) € dom ¢, D be B-inverse strongly monotone and 0 < A,
< 2f3. Then, we have
llun —pll < llxn — pll. (3.3)

Let z,, = PC(Su,, - a,,BSu,,) and S - o,BS be a nonexpansive mapping. Then, we have
from Lemma 2.4 that

llzn =PIl < lun —pll < [lxn — Pl (3.4)
and
llyn =PIl < Ballyf(xa) — Apll + 11 — BuAllllzn — pl|
< Bullyf(xn) — Apll + (1 — Buy)llzn — pl|
= ,BnVHf(xn)_f(p)”+ﬂn||7/f(p)_Ap||+(1_ﬂn);)Hxn_pH
= ﬂn]fnllxn—P||+,3n||J/f(P)—AP||+(1—l3n}7)||xn—P||

= (1= (7 = ny)Bu)llxa = pll + Bullyf(p) — Apll.
Similarly, and let w,, = P(Sy,, - @,,BSy,,) in (3.4). Then, we can prove that
llwn = pIl < llyn —pll = (1= (¥ — ny)Ba)llxn — pll + Bullyf(p) — Apll, (3.5)
which yields that

[xne1 =PIl < (1 = 8)llyn — PlI + Sullwn — pll
< (1 = 8)llyn — pll + Sullyn — plI
= |lyn — plll
< (1= (7 = ny)Ba)llxn — pll + Bullyf(p) — Apl|

S (= =Bl —pl + TP k) apl)

(v —nv)
3 )~ Al
< mas g1, 177
<...
3 o 1)~ Al N
,max{uxl ol T } Vnz 1
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This shows that {x,} is bounded. Hence, {1}, {z,.}, ..}, W}, {BSu,.}, {BSy,.}, 1Az} and
{flz,,)} are also bounded.
We can choose some appropriate constant M >0 such that

M = max {SUI;{IIBSunII}, SUI:{IIBSVnII}, SUI;{IIVf(xn) — Azy|l},
n> nx nx

(3.6)
sup{||un — xnll}, sup{|lw, — yn”} .

n>1 n>1

Step 2. We claim that lim,,_,.. ||%,,1 - x,,|| = 0.

It follows from Lemma 2.9 that u,,,l=Tg'_‘f)(xn,1—)m,1Dxn,1) and

Uy = T§F’“’)(xn — AnDxy) for all #n > 1, and we get

1
F(up-1, y)+o(y)—@(un-1)+{Dxn_1, y—un-1)+k (y—tn—1, Un—1—%n—1) =0, VyeC (3.7)
n—1

and

1
F(un, y) +o(y) — o(un) + (Dxy, y — uy) + N (Y — Un, up —x4) >0, VyeC.(3.8)
n

Take y = u,,, in (3.8) and y = u,, in (3.7), and then we have

F(“nflz un)+<p(un)—(p(un71)+(Dxn,1, un_un71>+)h (Un—Un—1, Up—1—Xp—1) =0
n—1

and

1
F(un, tn—1) + @(tn—1) — @(un) + (Dxp, Up—1 — up) + N (Up—1 — Up, Uy — Xp) > 0.
n

Adding the above two inequalities, the monotonicity of F implies that

Up — Xn Up—1 — Xn—1
(Dxy — Dxp—1, Up—1 — Un) + <un_1 — Up, - >0
)m )»n—l

and

An—
0= <un—1 — Un, }Ln—l(Dxn - Dxn—l) + ; ! (un - xn) - (un—l - xn—1)>
n

Anfl

= <un —Up_1, Upn_1 — Uy + <1 — > Un + (X0 — An—1Dxp)

n

kn—l
- (xnfl - Anlexnfl) — Xp + 3 xn>
n

An—1
= <u,, —Up_1, Un_1 — Uy + <1 - ; ) (thy — %) + (Xn — An_1Dxy)
n
S G _)Ln—len—ln-

Without loss of generality, let us assume that there exists ¢ € R such that 1,, > ¢ >0,

Vn > 1. Then, we have

2 An—
it = ttn1 112 =t =t { 1w = a1+ |1 = 750y = 011}

An
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and hence,

1
Nup — up—1ll < 1% — X011l + [An — An—1lllun — Xnl]
" (3.9)
=< ||xn _xn—1|| + c Mn - )\n—1|M-

Since S - @,,BS is nonexpansive for each n > 1, we have
[z — zn—1l| = ”PC(Sun - Oansun) - PC(Sun—l - an—lBsun—l)H
< ||(Sun - anBsun) - (Sun—l - an—lBsun—l)”
= ||(Sun — @nBSup) — (Stty—1 — €y BStiy—1) + (0tn—1 — @n)BSup—_1|| (3.10)
< 11(Sun — anBSuy) — (Sup—1 — anBSuy_1)|| + lon—1 — an|||BSuy_1]|

< ltun — tp—1ll + lotn—1 — an|||BSuty_11l.

Substituting (3.9) into (3.10), we obtain
1
zn — zn—1ll < [lxn — Xp—1l] + c [Ap — Ap—1|IM + |otp—1 — aul|[BSup—_1]]. (3.11)

From (3.1), we have

1yn = Va1l = 1Buyf(xn) + (I = BnA)zn — -1V f(Xn-1) — (I — Bu-1A)zn-1|
= 1By (f (xn) = f (xn-1)) + (Bn — Bn1)vf (xn-1)
+ (I = BuA)(zn — 2n—-1) — (Bn — Bn—1)Azn_1l]
= 1Bny (f (xn) — f(xn-1)) + (Bn — Bn—1) (V[ (xn-1) — Azn—1)
+ (I = BnA)(zn — 201 (3.12)
< By IIf (xn) = f(n—1)Il + 1Bn — Bn-alllyf (xn-1) — Azn—1]]
+ (I = BuA)llzn — zn—1ll
< By nllxn — xn-1ll + |Bn — Boa 1y f (Xn-1) — Azp—1|
+ (1 = Bu¥)llzn — zn-1ll.

Substituting (3.11) into (3.12) yields
Nyn = Y1l < Buynllxn — xn—1ll + Bn — Bu1lllvf (Xn—1) — Azp_1]|
_ 1
+ (1= Bny) {Hxn —Xn—1ll+ A — A1 M + oy _an|||Bsun—1||}
¢ (3.13)
=1 =y —ym)Ba)llxn — xn_1ll + 1Bn — Buo1 11y f (xn=1) — Azu_1]|

1— 8.y _
+ ( c ny)p\n — An-1IM + (1 _ﬁnl/)|an—1 — ayl||BSuy—1]].

Since w,, = Pc(Sy, - o,,BSy,) and S - @,,BS is nonexpansive mapping, we have

[lwn — wn—1l = [IPc(Syn — anBSyn) — Pc(Syn—1 — otn—1BSyn—1)l|

< [I(Syn — anBSyn) — (Syn-1 — an—1BSyn—1)ll 3.14)
(St — nBSp) — (S1 — @nBSyn1) + (s — cn)BSy 1|1
Nyn = VY1l + letn—1 — ou|||BSyn—11l.

A
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Also, from (3.1) and (3.13), we have

[Xne1 = Xnll = 11(1 = 8n)yn + 8nwn — {(1 — 8n_1)Yn—1 + Sn_1wn_1}l|
= H(l - 5n)()’n - Yn—l) + Sn(wn - wn—l) + (an - Sn—l)(wn—l - Yn—l)”
=< (1 - Sn)HYn _Yn—lll +8n||wn — Wyl + |8n - 8n—1|||wn—1 _ynfl‘l
< (1 =38)llyn — Y1l + 8ulllyn — yu-11l + latn—1 — an|l|BSyn-111}
+ “Sn - 8n71‘||wn71 - ynflll
= |yn = VYn-1ll + Snlon—1 — ctullIBSyn-1ll + [8n — Sn—1lllwn—1 — yn-1ll
< (1= (7 = ymB)lIa = xu-all + 1Bx = Buoall1yf (¥a-1) — Az | (3.15)
BT M (1= B — 1B
+8nlon—1 — anllIBSyn—1ll + 180 — Sn—1lllwp—1 — yn-1ll
(1 _,Bn};)
c

<= —ym)Bu)llxn — xp-1ll + {llgn = Bn-1l + [2n = An-1]

+(1 = a7 +8n)letn—1 — @ul + 180 — Sn1 1} M.
Set b, = (¥ — yn)Bn and
en = {180 = Bumal+ Uy = At + (1= B + 80wt — il + 160 — 8- || M.
Then, we have
[1xne1 — Xnll < (1 —bn)llxn — X1l +cn,  ¥n > 0. (3.16)

From the conditions (C1)-(C4), we find that

[ee)
lim b, =0, an =00 and limsupc, <0.

n—00 n—o00
n=0

Therefore, applying Lemma 2.10 to (3.16), we have
lim ||xn+1 - xn“ =0. (317)
n—oo

Step 3. We claim that lim,,_,.. ||Sw,, - w,|| = 0.
For any p € ® and Lemma 2.4, we obtain

l1za = pI* = [IPc(Stn — atnBSuy) — Pc(p — anBp)||?
< |/(Sun — anBSuy) — (p — anBp)||>
= 1(Stn — @aBStty) — (Sp — uBSP)|I*
< [1xn — pII* + (o — 200s€)[|BSu, — Bp||>.

(3.18)

From (3.1) and (3.18), we have

lvw = 2] = 1By f(xn) = Ap) + (I = Bad)(zn — P)II2
=11 (I = BuA)(zn — P)II* + B2llySf (xa) — AplI?
+2B((I = BuA)(zn — p), ¥f(xa) — Ap)
< (1= Ba?)llzn — pII* + B211f(xa) — Apl|?
+2Bu((I = BuA)(zn — ), ¥f(xn) — AP)
< (1= Bu7)* {Ilxna — pII* + (@7 — 200)|BSuy — Bp||?} (3.19)
+ Ballyf(xa) — AplI® + 2B,((I = BuA) (20 — ), ¥f(xn) — Ap)
= (1= Ba7)llxn — pII* + (1 = Bu7?)*(ep — 200)||BSuy — Bpl|?
+ Ballyf(xa) — AplI® + 2B,((I — BuA) (20 — ), ¥f(xn) — Ap)
< llxtn = plI* + (1 = Bu?)* (a5 — 20 )|IBSu, — Bpl|?
+ Ballyf(xa) — ApII® + 2B4((I = BuA) (20 — ), ¥f(xn) — Ap).
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From (3.1), (3.5), (3.19) and Lemma 2.1(iv), we have

1 = pIP < (1= 8n)llyn — pII* + Sullwn — plII?
< (1= 82)llyn — pII> + 8ullyn — plI?
<llya—pI? (3.20)
< llxa = pII* + (1 = Bu7 ) (s — 2048)|BSuy — Bpl[?
+ Ballyf(xn) — ApII® + 2B ((I — BuA) (20 — p), ¥f(xn) — Ap).

It follows that

(1 — Bu7)? (285 — €")|IBSuy — Bpl|* < (1 — Bu77)* (20 — o)|1BSuy, — Bpl|?
< lxn = pIP = lxner — plI> + B2y S (xa) — Apl?
+2Bu((I = BuA) (2 — P), S (%n) — Ap) (3.21)
< 1 — Xt 1(1%n =PI+ 1%nar — I + B2I1Yf(xn) — Apl[?
+2Bu((I = BuA) (20 — P), S (%n) — Ap).

From condition (C1) and (3.17), we obtain

lim ||BSu, — Bpl| = 0. (3.22)

From w,, = PC(Sy, - ¢,,BSy,), (3.19) and Lemma 2.4, we have
|[wn — plI> = [IPc(Syn — atnBSyn) — Pc(p — atnBp)|I?
< 11(Syn — @nBSyn) — (p — auBp)||?

|1(Syn — @uBSyn) — (Sp — anBSP)|I?
[lyn = PII* + (o7 — 2008 )|1BSyn — BplI? (3.23)
= {0 = I+ (1 = 7Y (1} = 2008)1 1B, — B

+Billyf(%n) = AII* + 284 ((I = BuA)(2n — p), vf(xn) — Ap)}

+ (o — 2a€)|1BSyn — Bpl|.

IA

Using (3.1), (3.19) and (3.23), we obtain
nar = pII> < (1 = 80)llyn — pII* + Snllwn — plI?

< (1= 8) {Ibw = pII% + (1 = Bu7) (s — 200,€) |BSu — Bpl
+Ballyf(xn) = AplI + 284 {(I = BuA) (2w — p), ¥f(xn) — Ap)}
# 80 {110 = pII% + (1= B’ (@} — 20,8)]1BSu, — Bpl?
+ Ballyf (xn) — AplI® + 2Ba((I = BaA) (20 — p), ¥f(xa) — Ap)]
+(az — 20 )[1BSyn — Bpl|*}

= [l = pII* + (1 = Bu)? (s — 20a)|IBSun — Bpl|?
+ Ballyf(xn) — AplI® + 2B ((I = BuA) (20 — p), ¥f(xn) — Ap)
+ (a7 — 204€)8,||BSy, — Bpl|.?

(3.24)

It follows that
(2g& — €)bIIBSyn — BplI> < [1xn — Xns1 (11w — PII + [1Xna1 — plI)
+ (1 — Bu7 ) (a? — 20048)||BSuy — Bpl|? + B2y f (xa) — Apl|1A3.25)
+ 2B, (I = BnA)(zn — p), vf(xn) — Ap).
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From condition (C1), (3.17) and (3.22), we obtain
lim [|BSy, — Bpl| = 0. (3.26)

Since Pc is firmly nonexpansive, we have

|IPc(Syn — @uBSyn) — Pe(p — aaBp)|1?
((Syn — anBSyy) — (p — anBp), wy — p)

1
2 {“(S}/n —anBSyn) — (p — Olan)”2 + ||lwy — P||2
—=[1(Syn — anBSyn) — (p — anBp) — (wn — P)||2}

1
< I = pIP + T =PI = 11(Syw = wn) = en(BSys = Bp)I}3.97)

2
[lwn —pll

IA

1
= Ul = pIP + (1 = Buy)* (e — 208 1BSuy — Bpl|?
+ ,372,||yf(xn) - AP||2 + 2,371((1 - IBHA)(Zn - P), Vf(xn) - AP))

1
+, {llwn = pII> = 11Syn — wall?

—a;||IBSyn — Bpl|* + 20 (Syn — wy, BSyn — Bp)} .

Hence, we have

llwn =PI < lxn =PI = 1Sy — wal I + (1 — Bui)*(a} — 20tE)[|BSuy, — Bp|[?
+ Ballvf (xn) — ApII* + 2Bu((I — BuA)(zn — P), ¥f(xn) — Ap) (3.28)
+ 20t Sy — wnl||IBSys — Bpl|.

Using (3.24) and (3.28), we have

xner — bl < (1= 8n)llyn — PII* + Sullwn — pl I

< (1= 8u){llxa — pl1> + (1 = Bu?)* (ep — 2000 )||BSu,, — Bp||?
+ Ballyf (xa) — AplI® + 2B,((I = BuA) (20 — P), ¥f(xn) — Ap)}
+8u{llxn — P> — [1Syn — wa] 2
+ (1= Buy) (cy — 2008)[1BSun, — Bpl|” + 20t [|Syn — w|l[1BSy, — Bpl| (3.29)
+ Ballyf (xa) — AplI? + 2B,((I = BuA) (20 — ), ¥f(xn) — Ap)}

= {10 — pII> = 8ulISyn — wall?
+ (1= Bu)* (cy — 2058)[1BSuty, — Bl + 208, |Syn — wn|[[1BSyn — Bpl|
+ Ballyf(xn) — ApIIZ + 2Ba((I — BuA) (20 — p), vf (%) — AP).

It follows that

blls}’n _wnll2 < 5n|\5)/n _wnHZ < Hxn _xn+1||(||xn —P|| + ||xn+1 —P||)
+ (1 - ,Bn);)z(ayzl - 2an§)||Bsun - BP||2 + 2018, ||Syn — waull||BSyn — BP|(330)
+ /313”)’]((3‘") _ApH2 + 20 ((I = BrA)(zn — p), vf(xn) — APD).

From the condition (C1), (3.17), (3.22) and (3.26), we obtain

lim ||Sy, — wyl|| = 0. (3.31)
n—-oo
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Note that

lyn =PI < (1 = Bu?)llzn — pII> + B2y S () — AplI> + 284((I — BuA) (20 — ), ¥S(%a) — AP)
< (1= Bu?)lluw = pII* + B2y f () — API® + 2Ba((I = BuA) (20 — ), vf(xa) — AP)
< (1= Bu?)*{l1xn =PI + An(hn — 28)|IDx — Dpl P} + B2 11y f () — AplI? (3.32)
+2Bu((I = BnA)(zn — b), vf(%n) — Ap)
< M = Pl + (1 = Bu?)* An(hn — 28)[1Dxy — Dpl[” + B2 11 f (xa) — AplI
+2B((I = BuA)(2n — ), ¥f(xn) — Ap).

From (3.1) and (3.32), we can compute
[xner — pIP < (1= 8u)llyn — pII® + Snllwy — plI?

< (1= 8x)llyn — pII? + 8ullyn — plI?
= {lyn — pIP (3:33)

<|lxn = pII* + (1 = Bu¥)*An(An — 2B)||Dx, — Dpl|*
+ Bollyf(xn) = Apl1> + 2Bu((I — BuA)(zn — P), ¥f(xn) — Ap).

It follows that
(1 = Bu?)?d(2B — O)IDxn — DpII* < |lxw — Xt [1(11xn — Pl + [xer — pII) + BEYS (%) —AP||2(3 34)
+ 2B, ((I = BnA)(zn — p), vf(xn) — Ap), ’
which implies that

lim ||Dx, — Dp|| = 0. (3.35)
n—-oo
In addition, from the firmly nonexpansivity of Tg"p), we have
lun = pIP = 1T (60 = 2aDx) = TV (p = 2, Dp) 11
< {(xn — AnDxy) — (p — AnDp), un —p)
1
= 2{||(xn — AnDxn) — (p — )\nDp)”z + ||un — P||2
— (%1 — AnDxn) — (p — 2nDp) — (un — P)||2}

1
= 2 {||xn —P||2 + |[un —P||2 — [lxtn — up — An(Dxy —DP)||2}

1
=5 {1160 = P11+l — pIIZ = 1lxn — wnll?

+2n (Xn — tn, Dxy — Dp) — A2||1Dx, — Dpl|?} .

Hence, we obtain

lun = plI> < 1160 = PP =[x — tnll® + 24nl1%0 — un| ||| D, — DplI. (3.36)

Substituting (3.36) into (3.32) to get

llyn = pII* < (1= Bu?)?lltn — pII + B2y S (xn) = APII> + 2Bu{(I — BaA)(2n — p), ¥f(xn) — AD)
< (1= Bu?)? {1160 — pII> = 110 — ttal® + 2n[x — uyll||Dxy, — Dpl|}
+ Ballyf (xn) — AP + 2B0((T — BuA) (20 — P), ¥f(xa) — Ap) (3.37)
< b = pIP = (1 = Bu?)1%n — ttnll* + 2(1 = Bu?)* Anllxn — unl||| Dy, — Dpl|
+ Ballyf(xn) — APl + 2Bu((I = BuA) (20 — p), ¥f(xa) — AP)
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and hence,

ner — pII% < llyn — I
< 1w = plI> = (1 = Bui? )l — unll?
+2(1 = Bu¥ ) nllxn — unl|||Dxy — Dpl|
+ Ballyf(xn) — AplI? + 2Ba((I = BuA) (20 — ), vf(xn) — Ap).

(3.38)

It follows that

(1 = Bu?)?11xn — unll® < 1xne1 — xul|(1%ne1 — plI + 1% — plI)
+2(1 = Bui?)? nllXn — unl|||Dxn — Dpl| + B2y f (xa) — Apl[A3.39)
+2B((I = BnA)(zn — p), vf(xn) — Ap).

This together with ||x,.1 - x,|| = 0, ||Dx,, - D,|| = 0, B, > 0 as n — e and the
condition on A,, implies that

lim |lxy —uyl[=0 and  lim el = 0, (3.40)

Consequently, from (3.17) and (3.40)

X1 — Unll = [Xne1 — Xl + [|Xn —unl] - 0 asn— oo. (3.41)
From (3.1) and condition (C1), we have

[[Yn = zall = 11Bnyf(xn) + (1 = BuA)zn — zall < Bullyf(xn) — Azull — 0 asn — 00(3.42)
Since S - ,BS is nonexpansive mapping(Lemma 2.4), we have

[lwn — znl| = |Pc(Syn — anBSy,) — Pc(Suy — 0 BSuy)||
(S — auBS)yn — (S — atuBS)un|| (3.43)

< lyn — uall.

IA

Next, we will show that ||x,, - y,|| = 0 as n — oo.
We consider x,,.1 - ¥, = 6,(W,, - y,,) = on(w,, - z,, + 2, - V).
From (3.43), we have

[1Xpe1 = Yull < 8n(llwn — zall + 12w — yull)
< Sn(Ilyn — unll + 1120 — yull) (3.44)

= 8n(||xn+1 - )’n” + ||xn+1 - un” + ||zn _le”)

From the condition (C2), (3.41) and (3.42), it follows that
Sn b
[1%n41 _ynll < 1-35 (||xn+l _un||+||zn_}/n||) =< 1— b(||xn+1 _un||+||zn_)/n||) g 0(345)

From (3.17) and (3.45), we obtain

Hxn —Yull < 1% — Xper || + [|Xne1 —yull = 0 asn — oo. (3.46)

We observe that

[ISwn — wull < [ISwn — Sznll + 11820 — Synll + [I1Syn — wall
< llwn — zal| + [1zn — Yull + [1Syn — wy]
< yn — tall + 2w — yull + [ISyn — wall

< yn = xull + 11xn — Unll + [|20 — Yull + [|Syn — wall.

(3.47)
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Consequently, we obtain

lim ||Sw, — wyl|| = 0. (3.48)
n—oo

Step 4. We prove that the mapping Pe(yf + (I - A)) has a unique fixed point.
Let f'be a contraction of C into itself with coefficient 17 € (0, 1). Then, we have

[Po(yf + (1 = A)(x) = Po(yf + (I =AW < I(rf + (T = ANE) = (vf + (I =AW
< yIIf() =W+ 1T = All [lx —yl]
< ynlle=yll+ (1= p)llx =yl
== —m)lx—yll, ¥xyeC

Since 0 < 1 — (y —ny) < 1, it follows that Pg(yf + (I - A)) is a contraction of C into
itself. Therefore, by the Banach Contraction Mapping Principle, it has a unique fixed
point, say z € C, that is,

z=Po(yf+(I—A))(2).

Step 5. We claim that ¢ € F(S) n VI(C, B) n GMEP(F, ¢, D).

First, we show that g € F(S).

Assume g ¢ F(S). Since Wn, = q and q = Sq, based on Opial’s condition (Lemma 2.6),
it follows that

liminf||wy,, — q|| < liminf||w,, — Sq||
1—>00 1— 00
< liminf{||wy, — Swy, || + ||Swn, — Sq[}
1— 00
= lim inf||Sw,, — Sq|
1—00
< liminf||w,, —q|.
1— 00

This is a contradiction. Thus, we have g € F(S).
Next, we prove that ¢ € GMEP(F, ¢, D).

From Lemma 2.9 that y, = TiF"p) (xn — AyDxy) for all # > 1 is equivalent to

1
F(unr Y) + <P()/) - (p(un) +(Dxp, ¥y — un) + A (y —un, up —x,) >0, VyeC.

n

From (H2), we also have

1
o(y) — o(un) + (Dxy, y — tn) + N (y — tn, Un — Xn) > —F(un, y) > F(y, un).
n

Replacing # by n;, we obtain

Up. — Xp,
¢(y) - €0(un,-) + (Dxni’ V— uni> + <y — Un;y ”1)L ”1> = F()/, uni)' (349)
n;

Lety,=t,+(1-t)gforallte (0,1] and ye C. Since ye Cand g€ C, we obtain y,
e C. Hence, from (3.49), we have
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(Ve — tn,, Dy) = (yr — tn;, Dyi) — @(vi) + @(un,) — (DX, ¥i — Un,)
Uy — Xp.
- <y¢ — Uy, > +F(yr, un,)
A,

> (y¢ — Up,, Dy — Dup,) + (yr — tn,, Duty, — Dxp,) — @(y1)
Un. — Xn:
‘ﬂ,)\‘ n1}+F(yt, uni).

ni

(3.50)
+ ¢(uni) - {)/t — Un;,

Since ||y, — Xy,|| — 0, i — o we obtain ||Duy, — Dxy,|| — 0. Furthermore, by the

monotonicity of D, we have
(y¢ — n;, Dy — Duy,) > 0.

i —n;

Hence, from (H4), (H5) and the weak lower semicontinuity of ¢, u"}\n‘ — 0 and

Up, — q, we have
(ye =4, Dyo) =z —o(yi) + ¢(q) + F(yi, q) asi— oo. (3.51)
From (H1), (H4) and (3.51), we also get

0=F(y, vi) +o() — o)

< tF(yu v) + (1= 0F(ye, q) +te(y) + (1 — )e(q) — ¢(v)

= t[F(ye, ¥) +o(y) — ()] + (1 = O[F(ver q) + ¢(q) — @(y1)]
tF(e v) +o(y) — ()] + (1 — 1)y — g4, Dy:)
tE(ye, v) +o(y) — o)l + (1 — )tly — g, Dyy).

IA

Dividing by ¢, we get
E(ye v) +o(y) = o(y1) + (1 = 0){y — q, Dy)) = 0.

Letting ¢ — 0 in the above inequality, we arrive that, for each y € C,
F(q, y) +o(y) —¢(a) + {y —a, Dq) = 0.

This implies that g € GMEP(F, ¢, D).
Finally, we prove that g € VI(C, B).
We define the maximal monotone operator:

_ | Ba1+Ncaq1, q1€C,

Qq1 b, g dC

Since B is ¢-inverse strongly monotone and by condition (C4), we have
(Bx — By, x —y) > &|[Bx — —By||* > 0.

Then, Q is maximal monotone. Let (g, ) € G(Q). Since g, - Bq; € Ncg; and w,, €
C, we have {q; - w,, ¢ - Bq;) = 0. On the other hand, from w,, = P(Sy,, - ¢,,BSy,.), we
have

(g1 — wn, wy — (Syn — anBSyn)) = 0,
that is,

Wp — Syn

n

<Cl1 — Wy, + BSy,,> > 0.
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Therefore, we obtain

(41 - w‘rl,-l fh) > <41 - w‘rl,-l th)

Wy, — Syp,
> {d1 — wy,, Bqg1) — <671 — Wy, I +BS)’ni>
ni
Wy, — Syn.
- <q1 — Wny, Bqy — BSy‘ﬂi - yn1>
o
(3.52)
= <611 — Wy;, Bgy — Bwn,-) + (41 — Wy, Bwn,- - BSVm)
Wy — Syn.
— <q1 — W, ni y'ﬂx>
op,
Wy, — Syn,
> (g1 — Wy, Bwy, — BSyn,) — (g1 — wy,, o .
ni

Noting that ||wy, — Synll — 0 as i — oo, we obtain
(g1 — 4, g2) = 0.

Since Q is maximal monotone, we obtain that ¢ € Q'0, and hence g € VI(C, B).
This implies g € ©. Since z = Pe(yf + (I - A))(2), we have

liglil:p (vf(2) — Az, x, —2) = ll_l)l1olo<yf(l) — Az, Xy, —2) = (yf(2) — Az, q—z) < 0(3.53)

On the other hand, we have

(vf(2) — Az, yn — 2) = (vf(2) — Az, yn — xa) + (vf(2) — Az, %, — 2)
< yf(2) — Azl| llyn — xall + (vf(2) — Az, x, —2).

From (3.46) and (3.53), we obtain that

limsup (yf(z) — Az, yn —2) < 0. (3.54)
n—o0
Step 6. Finally, we claim that x,, — z, where z = Po(yf + (I - A))(2).
We note that

lyw = 2> = 11U = BuA)(&n — 2) + Bulyf(xa) — A2)|2
<N = BeA) (20 — D)1 + 2Bu((vf (%) — A2), (I = BaA) (2 — 2) + Bu(v S (xn) — A2))
(T = BuA) (2 — DI + 2Bul(rf () — A2), 1o —2)
< I = BuAlPllzn — 2l + 284y (f(xn) = f(2), v —2) + 2Bulvf(2) — Az, ya—2)  (3.55)
< (1= Bu?)llzn —2l1* + 2Buynlln — 2l llyn — zl| + 2Bn(yf(2) — Az, yu —2)
< (1= Bup)llan — 2l + Buyn(llxn — 211 + llyn — 2l12) + 2Bu{yf(2) — Az, yu — 2)
= (1= 2Bu7 + Be7? + Baym)llxn — 2I1° + Buynllyn — 2lI1° + 2Bu(vf(2) — Az, yn —2)

which implies that

2 (27 —yn)Bn ,
”%_d|5(1_ l—wwn)HM—d|
i 1 _ﬁ;nﬁn [IBH);ZHxn - ZHZ + 2()/f(Z) — Az, Vn — Z>] .

(3.56)
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On the other hand, we have

I%ne1 — 2112 < [lyn — 2II?
2_ —
< (1 _(2y yn)ﬁn> s — 22
1- Vn,Bn
Bn

B [Ba7 Il = 211 + 2(rf(2) — Az, yu — 2)] (3.57)
< (1 _ @ y"””) s — 2112
1—ynBu
* —ﬁ;nﬁn [2(yf(z) — Az, Yy —2) + ,8n372K] ,

where K is an appropriate constant such that K > sup,.-.{||x, - z||*.

Set I, = (21y‘_—yyn7};)nﬂn and e, = l—innﬁn [2(yf(2) — Az, yu — 2) + Ba7?K]. Then, we have

121 — 2l1* < (1 = bp)llxn —2l1> + cu,  ¥n > 0. (3.58)

From the condition (C1) and (3.54), we see that

oo
lim [, = 0, Zl” =00 and limsupe, <O0.

n—o00 e n—00

Therefore, applying Lemma 2.10 to (3.58), we get that {x,} converges strongly to z €
0.

This completes the proof. O

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H, let
B be E-inverse-strongly monotone mapping of C into H, and let S : C — C be a nonex-
pansive mapping. Let f: C — C be a contraction mapping with 1 € (0, 1), and let A be
a strongly positive linear-bounded operator with y > Oand 0 <y < ’; Assume that © :
= F(S) n VI(C, B) # &. Let {x,} and {y,} be sequence generated by the following iterative
algorithm:

x1 =x € C chosen arbitrary,

Yn = Buvf(xa) + (I = BnA)Pc(Sxn — anBSxy),
Xne1 = (1 — 8n)yn + 8nPc(Syn — anBSyn), VYn=>1,

where {0,,} and {B,} are two sequences in (0, 1) satisfying the following conditions:

(C1) lim,, , . B, = 0 and Y 12, B = 00,
(C2) {6} < [0, b], for some b e (0, 1) and lim,, , « |6,41 - 6, = 0,
(C3) {0} < [e, gl € (0, 28) and lim,, _, .. |®,1 - Q] = 0.

Then, {x,} converges strongly to z € ©, which is the unique solution of the variational

inequality
(vf(z) —Az, x—2) <0, Vxe®. (3.59)
Proof. Put F(x, y) = ¢ = D =0 forall x, ye Cand A, =1 for all # > 1 in Theorem

3.1, we get u,, = x,.. Hence, {x,} converges strongly to z € ®, which is the unique solu-

tion of the variational inequality (3.59). B
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Corollary 3.3. [12]Let C be a nonempty closed convex subset of a real Hilbert space
H and let F be bifunction from C x C to R satisfying (H1)-(HS5). Let S : C — C be a
nonexpansive mapping and let f: C — C be a contraction mapping with n € (0, 1).
Assume that © := F(S) n EP(F) = O&. Let {x,}, {y,} and {u,} be sequence generated by
the following iterative algorithm:

x1 =x € C chosen arbitrary,

Yn = Buf (xn) + (1 — ﬂn)STfnxn: (3.60)
Xne1 = (1 — 8p)yn + 8nSyn, VYn>1,

where {0,,} and {B,} are two sequences in (0, 1) and {A,;} € (0, ) satisfying the follow-
ing conditions:

(C1) lim,, & . B, =0 and Y 2, Bn =00,
(C2) {9,; < [0, b], for some b € (0, 1) and lim,, , ., |01 - 0,| = 0,
(C3) lim,, 5 « |Aus1 - Au] = 0.

Then, {x,} converges strongly to z € ©.
Proof. Put $ =D =0,y=1,A =Iand o, = 0 in Theorem 3.1. Then, we have P(Su,,)

= Su,, and Pc(Sy,) = Sy,. Hence, {x,} generated by (3.60) converges strongly to z € ©@.
O
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